Skip to Main content Skip to Navigation
Conference papers

Nouveaux modèles de choix qualitatifs prenant en compte des caractéristiques individuelles et des caractéristiques de choix

Jean Peyhardi 1, *
* Corresponding author
1 VIRTUAL PLANTS - Modeling plant morphogenesis at different scales, from genes to phenotype
CRISAM - Inria Sophia Antipolis - Méditerranée , INRA - Institut National de la Recherche Agronomique, UMR AGAP - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales
Abstract : In the econometric framework, multinomial and conditional logit models are very usual regression models for qualitative choices incorporating respectively individual caracteristics and choice caracteristics. They differ by their parametrization while sharing the canonical link function. This link function can be decomposed into the reference ratio of probabilities and the logistic cumulative distribution function (cdf). We propose to conserve the reference ratio, appropriate for qualitative choices, but to select the cdf among an enlarged family containing the Student cdf for instance. These new qualitative choice models often outperform logit models in terms of likelihood and error rate of classification and stay easily interpretable. This is illustrated with a benchmark dataset of travel demand between Sydney and Melbourn.
Complete list of metadata

Cited literature [6 references]  Display  Hide  Download

https://hal.inria.fr/hal-01242827
Contributor : Christophe Godin <>
Submitted on : Monday, December 14, 2015 - 10:42:04 AM
Last modification on : Thursday, March 4, 2021 - 3:25:10 PM
Long-term archiving on: : Tuesday, March 15, 2016 - 11:43:51 AM

File

submission_23.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01242827, version 1

Citation

Jean Peyhardi. Nouveaux modèles de choix qualitatifs prenant en compte des caractéristiques individuelles et des caractéristiques de choix. 47èmes Journées de Statistique, Société Française de Statistique, Jun 2015, Lille, France. ⟨hal-01242827⟩

Share

Metrics

Record views

298

Files downloads

217