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Java 5 introduced annotations as a systematic mean to attach syntactic meta-data to various
elements of Java source code. Since then, annotations have been extensively used by a number
of libraries, frameworks and tools to conveniently extend behavior of Java programs that would
otherwise have to be done manually or synthesized from external resources. The annotations
are usually processed through reflection and the extended behavior is injected into Java classes
using aspect-oriented techniques or a direct byte code modification. However, in some cases,
class-level instrumentation might not always be available neither desirable and therefore the
transformation is done at the source code level.

In this case study we focus on such source-level transformation. Concretely, the task is
to inject behavior specified by an annotation library that encapsulates common programming
concerns such as logging, caching and a failure retry. The objective is to explore how are the
contemporary transformation tools suitable for programming language transformations.

1 Introduction

Java 5 has been extended with annotations that provide a convenient way to supply meta-data to
various element of Java source code such as classes and methods. Since then, annotations have
been extensively used by a number of Java libraries, frameworks and tools. One of the advantage
of using annotations is that they attach syntactic meta-data directly to the relevant element of Java
source code rather than decoupling them to external resources or setting them up manually through
some API.

Among other things, annotations can be used to express crosscutting concerns such as logging
or caching that would otherwise cluttered the source code as they are difficult to encapsulate using
regular programming techniques [3]. Essentially, an annotation acts as a marker for a transforma-
tion tool which applies the expressed concern into the corresponding Java element (e.g., a class, a
method). Majority of these tools rely on Java reflection API and some sort of class instrumentation
using aspect-oriented programming (AOP) techniques or direct byte code manipulation to process
the these annotations. While this is usually the preferred way, in some cases, the class level in-
strumentation might not available neither desirable. The problem is that it might (i) lead to leaky
abstraction since the transformation is transparent to a developer, (ii) introduce some performance
penalties, or (iii) bring some extra non-trivial dependencies.
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In this case study we focus on the situation when class level instrumentation is not possible
and develop a solution for annotation processing based on source level transformation. Concretely,
the transformation task is to inject behavior specified by an annotation library that covers common
programming concerns such as logging, caching and retry certain type of failures. The objective
is to explore how the current model transformation tools are suitable for programming language
transformations; particularly in comparison to some dedicated program transformation libraries
such as Spoon [4]. The idea to bring together different communities on a common transformation
problem.

In the next section we present the sample annotation library and describe the tasks of the case
study in more details. After that, Section 3 overviews criteria that will be used to evaluate submitted
solutions.

All supporting material, as well as this document, is available on the case study github page1.
The contestants are invited to submit an issue shall there be any ambiguity about the transformation
tasks that are carried in this case study.

2 Case Description

As the annotation library, we use a simplified version of jcabi-aspects [2], a collection of Java
annotations together with AOP-based processing tool that allows developers to conveniently apply
some common crosscutting concerns into Java applications. In order to balance the development
effort in this case study, we have selected the following annotations from the jcabi-aspects library:
– @RetryOnFailure for an automated retry of failed method execution,

– @Cacheable for a simple data caching of parameterless methods return values, and

– @Loggable for an automated logging of method calls.
The core transformation involves traversing Java source code and extending the annotated

methods with the behavior specified by these annotations. The details of each annotation including
the specification of its arguments are provided in its associated javadoc.

In the following text we provide an overview of the individual transformation tasks that are part
of this case study. The transformations are illustrated on an example rather than formally described
which we believe should be sufficient2 given the nature of the transformation. In the following we
discuss the details of the individual annotation transformations. The code for these transformation
tasks is provided on the github page in the ttc15.tranj.examples package.

2.1 Running Example

To better illustrate the transformation tasks of this case study, we use the following example. Let
us consider a class that is used to download a content of an URL. A possible3 Java implementation

1https://github.com/fikovnik/ttc15-live-contest
2Shall there be any ambiguity, the readers are invited to raise an issue on the case study github page.
3In order to keep the case study concise and clear we omit the use of any external library.

https://github.com/fikovnik/ttc15-live-contest
https://github.com/fikovnik/ttc15-live-contest/blob/master/src/ttc15-tranj/src/main/java/ttc15/tranj/annotation/RetryOnFailure.java
https://github.com/fikovnik/ttc15-live-contest/blob/master/src/ttc15-tranj/src/main/java/ttc15/tranj/annotation/Cacheable.java
https://github.com/fikovnik/ttc15-live-contest/blob/master/src/ttc15-tranj/src/main/java/ttc15/tranj/annotation/Loggable.java
https://github.com/fikovnik/ttc15-live-contest/tree/master/src/ttc15-tranj/src/main/java/ttc15/tranj/annotation
https://github.com/fikovnik/ttc15-live-contest/tree/master/src/ttc15-tranj/src/main/java/ttc15/tranj/examples
https://github.com/fikovnik/ttc15-live-contest
https://github.com/fikovnik/ttc15-live-contest
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is shown in Listing 1.

1 public class URLDownload {
2 private final URL url;
3
4 public URLDownload(String url) throws MalformedURLException {
5 this.url = new URL(url);
6 }
7
8 public byte[] get() throws IOException {
9 try (InputStream input = url.openStream()) {

10
11 ByteArrayOutputStream buffer = new ByteArrayOutputStream();
12 byte[] chunk = new byte[4*1024];
13 int n;
14
15 while ((n = input.read(chunk)) > 0 ) {
16 buffer.write(chunk, 0, n);
17 }
18
19 return buffer.toByteArray();
20 }
21 }
22 }

Listing 1: Basic version of URLDownload class.

When the basic functionality is implemented, we would like to extend it with the following
features:

– Failure handling. The method should become more robust and accommodate for some of the
inevitable network delays by retrying the download in the case an exception occurs. It should,
however, only retry the call in the case when it makes sense–i.e. when it is possible to recover.
For example, in the case of SocketTimeoutException exception, the execution should be retried
(preferably after a delay), while UnknownHostException it should fail immediately.

– Caching. The URL should not be consulted every single time the method is called, but instead
it should be keep the result of the last invocation in memory and reuse it for certain amount of
time.

– Logging. Each call to the method should be logged. The logging message should present the
state of the current instance at the method entrance as well as how long the invocation took at
the method exit. All exceptions handled within the method body should be also logged.

Instead of coding this manually, we would like to use annotations to declaratively specify the
above concerns, and have a transformation tool automatically synthesize code similar to the listing
shown in Section A. Concretely, the only change to the original code should be the following
annotations:

1 @RetryOnFailure(attempts = 3, delay = 1000, retry = { SocketTimeoutException.class },
escalate = { UnknownHostException.class })↪→

2 @Cacheable(lifetime = 1000)
3 @Loggable
4 public byte[] get() throws IOException { ... }
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2.2 Task 1: Retrying on a Failure

The first transformation tasks should handle the @RetryOnFailure annotation. The objective is to ex-
tend a given method with a simple failure handling strategy that retries failed invocations according
to given options. Annotating the URLDownload.get() method with

1 @RetryOnFailure(attempts = 3, delay = 1000, retry = { SocketTimeoutException.class },
escalate = { UnknownHostException.class })↪→

should produce the following code:

1 public byte[] get() throws IOException {
2 // added retry counter
3 int __retryCount = 0;
4
5 // added loop
6 while (true) {
7 try {
8 // the content of the original method
9 ...

10 } catch (UnknownHostException e) {
11 // added escalation cases
12 throw e;
13 } catch (SocketTimeoutException e) {
14 // added retry cases
15 __retryCount += 1;
16
17 if (__retryCount > 3) {
18 throw e;
19 } else {
20 // added delay
21 try {
22 Thread.sleep(1000);
23 } catch (InterruptedException e1) {
24 throw e;
25 }
26 }
27 }
28 }
29 }

The original method code–i.e. what is between the lines 9–20 in Listing 1, is wrapped by
another try-catch block (line 7) which is itself in a while loop (line 6). The number of attempts
(3) is projected in the condition if (__retryCount > 3) (line 17) and the delay is translated in a
current thread sleep on lines 21–25. Finally, we make a distinction in the exceptions that on which
the call should be retried (the retry parameter – SocketTimeoutException) and the ones that should
be escalated (the escalate parameter – UnknownHostException) in the generated catch clauses in line
10 and 13 respectively.

2.3 Task 2: Caching

The second transformation task concerns the @Cacheable annotation. The objective is to extend
a given method with a simple caching strategy that keeps a result of a method invocation for a
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given period of time. Annotating the URLDownload.get() method with @Cacheable(lifetime = 1000)

should produce the following code4:

1 public class URLDownload {
2 // added bookkeeping fields
3 private long __getCacheLastAccessed = 0;
4 private byte[] __getCacheContent = null;
5
6 ...
7
8 public byte[] get() throws IOException {
9 // added condition

10 if (System.currentTimeMillis() - __getCacheLastAccessed < 1000 && __getCacheContent
!= null) {↪→

11 return __getCacheContent;
12 }
13
14 try (InputStream input = url.openStream()) {
15 ByteArrayOutputStream buffer = new ByteArrayOutputStream();
16 byte[] chunk = new byte[4 * 1024];
17 int n;
18
19 while ((n = input.read(chunk)) > 0) {
20 buffer.write(chunk, 0, n);
21 }
22
23 // added
24 __getCacheContent = buffer.toByteArray();
25 __getCacheLastAccessed = System.currentTimeMillis();
26
27 // added
28 return __getCacheContent;
29 }
30 }
31 }

The __getCacheLastAccessed and __getCacheContent defined on line 3 and 4 are cache book-
keeping fields used for storing the information about the last access time and method result respec-
tively. The condition on line 10 checks the validity of the cache based on the annotation lifetime.
Finally, the method exit point is replaced with the stored result on lines 24–25. Clearly, this have
to be done for all method exit points in the case the annotated method have multiple ones.

2.4 Task 3: Logging

The last transformation task introduces logging. Any method annotated with @Loggable should
have conditionally (depending on the annotation options) logged (i) its entry point, (ii) all its exit
points, and (iii) all exceptions that are caught within the method body.

Annotating the URLDownload.get() method with @Loggable should produce the following code:

1 public class URLDownload {
2 // added logger
3 private final org.slf4j.Logger __logger =

org.slf4j.LoggerFactory.getLogger(URLDownload.class);↪→
4
5 ...
6

4Too keep things simple, we do not concern ourselves with invalidating the cache and thus freeing occupied memory.
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7 public byte[] get() throws IOException {
8 // added entry point logging
9 long __entryTime = System.currentTimeMillis();

10 if (__logger.isTraceEnabled()) {
11 __logger.trace(String.format("get() [url=’%s’]: entry", url));
12 }
13
14 try (InputStream input = url.openStream()) {
15
16 ByteArrayOutputStream buffer = new ByteArrayOutputStream();
17 byte[] chunk = new byte[4 * 1024];
18 int n;
19
20 while ((n = input.read(chunk)) > 0) {
21 buffer.write(chunk, 0, n);
22 }
23
24 // added exit point logging
25 if (__logger.isTraceEnabled()) {
26 __logger.trace(String.format("get(): exit in %d ms", System.currentTimeMillis() -

__entryTime));↪→
27 }
28 return buffer.toByteArray();
29 }
30 }
31 }

Line 3 defines an instance of SLF4J logger [1]. Lines 9–12 and 25-27 insert the entry and exit
point logging respectively. The entry point logging message additionally includes the state of the
object–i.e. the value of all its declared (non-inherited) fields.

Because, there is no exception handling code–i.e. no catch clause, only entry and exit points are
traced. If we would, however, apply the logging annotation on the method which is the output of
@RetryOnFailure transformation, log messages should be also added right after every catch clause.
The result should therefore look like:

1 while (true) {
2 try {
3 ...
4 } catch (UnknownHostException e) {
5 // added exception handling
6 __logger.error("get(): exception", e);
7
8 throw e;
9 } catch (SocketTimeoutException e) {

10 // added exception handling
11 __logger.error("get(): exception", e);
12
13 __retryCount += 1;
14
15 if (__retryCount > 3) {
16 throw e;
17 } else {
18 try {
19 Thread.sleep(1000);
20 } catch (InterruptedException e1) {
21 // added exception handling
22 __logger.error("get(): exception", e);
23
24 throw e;
25 }
26 }
27 }
28 }
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2.5 Task 4: Annotation composition

It should be possible to have all the extension present together on one method:

1 @RetryOnFailure(attempts = 3, delay = 1000, escalate = { UnknownHostException.class })
2 @Cacheable(lifetime = 1000)
3 @Loggable
4 public byte[] get() throws IOException { ... }

The code transformation should be performed in the declared order–i.e., first applying @RetryOnFailure,
then @Cacheable and finally adding @Loggable. The expected result is shown in Section A.

3 Evaluation

The evaluation will be done in two parts. First, the submitted solutions will be evaluated by the case
study authors on their correctness (the percentage of successful transformations) and performance
(how long each transformation takes). Second, all the TTC’15 participants will judge the solutions
on their conciseness, readability and the overall usability and suitability of the transformation tool
for the given task.

The solution is expected to be packed in the way that it is runnable from a command line shell.
The program should take two arguments, a path to a valid Java 5 source file input and a path to
where the result transformation should be stored.
$ ./my-solution.sh URLDownload.java SynthesizedURLDownload.java

The main part of the evaluation is the assessment of the usability of a given transformation tool
to the problem being addressed. Usability of a programming language, a library or a tool is difficult
to assess as it tends to be subjective since it largely depends on the preferences and background of
its users. We therefore leave it for the TTC attendees as they shall represent a mixture of preferences
and backgrounds.
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A Source Code of Synthesized URLDownloader

1 package ttc15.tranj.examples;
2

3 import java.io.ByteArrayOutputStream;
4 import java.io.IOException;
5 import java.io.InputStream;
6 import java.net.MalformedURLException;
7 import java.net.SocketTimeoutException;
8 import java.net.URL;
9 import java.net.UnknownHostException;

10

11 import org.slf4j.Logger;
12 import org.slf4j.LoggerFactory;
13

14 public class SynthesizedURLDownload {
15 private final Logger __logger = LoggerFactory.getLogger(SynthesizedURLDownload.class);
16 private long __getCacheLastAccessed = 0;
17 private byte[] __getCachedContent = null;
18

19 private final URL url;
20

21 public SynthesizedURLDownload(String url) throws MalformedURLException {
22 this.url = new URL(url);
23 }
24

25 public byte[] get() throws IOException {
26 long __entryTime = System.currentTimeMillis();
27 if (__logger.isTraceEnabled()) {
28 __logger.trace(String.format("get() [url=’%s’]: entry", url));
29 }
30

31 if (System.currentTimeMillis() - __getCacheLastAccessed < 1000 && __getCachedContent
!= null) {↪→

32 if (__logger.isTraceEnabled()) {
33 __logger.trace(String.format("get(): exit [%d ms]", System.currentTimeMillis() -

__entryTime));↪→
34 }
35 return __getCachedContent;
36 }
37

38 int __retryCount = 0;
39 while (true) {
40 try (InputStream input = url.openStream()) {
41

42 ByteArrayOutputStream buffer = new ByteArrayOutputStream();
43 byte[] chunk = new byte[4*1024];
44 int n;
45

46 while ((n = input.read(chunk)) > 0 ) {
47 buffer.write(chunk, 0, n);
48 }
49

50 __getCachedContent = buffer.toByteArray();
51 __getCacheLastAccessed = System.currentTimeMillis();
52

53 if (__logger.isTraceEnabled()) {
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54 __logger.trace(String.format("get(): exit [%d ms]", System.currentTimeMillis()
- __entryTime));↪→

55 }
56 return __getCachedContent;
57 } catch (UnknownHostException e) {
58 __logger.error("get(): exception", e);
59 if (__logger.isTraceEnabled()) {
60 __logger.trace(String.format("get(): exit [%d ms]", System.currentTimeMillis()

- __entryTime));↪→
61 }
62 throw e;
63 } catch (SocketTimeoutException e) {
64 __logger.error("get(): exception", e);
65

66 __retryCount += 1;
67

68 if (__retryCount > 3) {
69 if (__logger.isTraceEnabled()) {
70 __logger.trace(String.format("get(): exit [%d ms]",

System.currentTimeMillis() - __entryTime));↪→
71 }
72 throw e;
73 } else {
74 try {
75 Thread.sleep(1000);
76 } catch (InterruptedException e1) {
77 __logger.error("get(): exception", e);
78 if (__logger.isTraceEnabled()) {
79 __logger.trace(String.format("get(): exit [%d ms]",

System.currentTimeMillis() - __entryTime));↪→
80 }
81 throw e;
82 }
83 }
84 }
85 }
86 }
87 }
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