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ABSTRACT
Designing efficient and fair algorithms for sharing multiple
resources between heterogeneous demands is becoming in-
creasingly important. Applications include compute clusters
shared by multi-task jobs and routers equipped with middle-
boxes shared by flows of different types. We show that the
currently preferred objective of Dominant Resource Fairness
(DRF) has a significantly less favorable efficiency-fairness
tradeoff than alternatives like Proportional Fairness and our
proposal, Bottleneck Max Fairness. We propose practical
algorithms to realize these sharing objectives and evaluate
their performance under a stochastic demand model. It is
shown, in particular, that the strategyproofness property
that motivated the choice of DRF for an assumed fixed set
of jobs or flows, is largely irrelevant when demand is dy-
namic.

Categories and Subject Descriptors
C.2.1 [Computer communication networks]: Network
Architecture and Design—packet-switching networks; C.4
[Performance of systems]: [modeling techniques, perfor-
mance attributes]

General Terms
Algorithms, Performance

Keywords
Dominant resource fairness, proportional fairness, bottle-
neck max fairness, multi-resource sharing, cluster computing

1. INTRODUCTION
Multi-resource fairness has recently received a lot of at-

tention thanks mainly to two papers by A. Ghodsi and co-
authors [6, 5]. In the present paper we argue that the
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objective of dominant resource fairness (DRF), advocated
by Ghodsi et al. for resource sharing in compute clusters
and routers equipped with middleboxes, respectively, is not
preferable to more classical sharing objectives like propor-
tional fairness (PF) which achieve a better efficiency-fairness
tradeoff. Such objectives were discarded by Ghodsi et al. as
being vulnerable to manipulation by users seeking to gain
more than their fair share by falsely stating their require-
ments. The advocated strategyproofness property, possessed
by DRF but not PF in a context of static demand, is not
in fact discriminating when considering the more realistic
context of dynamic demand.

Multi-resource sharing in a compute cluster consists in
launching appropriate numbers of tasks of multi-task jobs.
Each task of a given job has its particular requirements for
CPU, RAM and other resources. In practice, various con-
straints on the placement of tasks on physical machines need
to be taken into account but, for present purposes, we fol-
low Ghodsi et al. [6] and assume resources of the same type
are assembled in homogeneous pools. The question is, how
should a central scheduler determine the numbers of simulta-
neous tasks to run for all the currently active jobs, ensuring
efficiency and some measure of fairness.

Routers increasingly employ middleboxes to process pack-
ets and these constitute potential bottlenecks for flows, in
addition to link bandwidth. Different flows have different
per-packet resource requirements (e.g., some require com-
plex packet processing, others none) and the issue here is
what packet rates should be imposed for concurrent flows in
order to efficiently and fairly share all types of resource of
these software routers.

Bandwidth sharing in a network is a particular form of
multi-resource sharing. The problem is generally simpler
since all flows sharing a given link are assumed to have iden-
tical requirements. This assumption is not true, however,
for some wireless links where the resource to be allocated is
spectrum time and the amount required to realize a given
bit rate varies considerably between terminals, depending
on their particular radio conditions. It is important to share
wireless and wired links in a manner that adequately bal-
ances efficiency and fairness.

We have already made the case in a recent paper for pro-
portional fair sharing of compute cluster resources [2]. Here
we extend those arguments to the case of router resources
and networks and introduce a new allocation objective called
bottleneck max fairness (BMF). BMF is a pragmatic alter-
native to PF to which it has similar performance in all three
application areas.



In addition to the introduction of BMF, the main contri-
butions of the paper are

• a characterization of the properties of BMF including,
in Theorem 1, a first result on the stability conditions
of this sharing objective,

• practical algorithms allowing the implementation of
PF and BMF allocations, the algorithms for BMF be-
ing rather simpler than those for PF,

• results on the impact of falsely declared resource re-
quirements, illustrating the practical strategyproofness
of PF and BMF allocations under dynamic demand.

We first describe DRF, PF and BMF sharing objectives in
abstract terms common to the above three application con-
texts. We define the corresponding allocations and discuss
their significant characteristics. Algorithms are then dis-
cussed for realizing the respective allocations and we propose
practical, low-complexity algorithms to realize PF and BMF
sharing in compute clusters, software routers and networks,
respectively. The following section on performance includes
an important theorem on BMF stability and presents nu-
merical results that justify our claim that DRF is not in
fact the preferred objective. Under dynamic demand, where
jobs or flows arrive over time and have finite size, completion
times are consistently and significantly smaller with either
PF or BMF allocations. We further highlight the implausi-
bility of players being able to game the system when these
allocations are applied to a dynamic population of jobs or
flows.

2. OBJECTIVES
We define DRF, PF and BMF multi-resource sharing ob-

jectives with respect to a fluid model where resources are as-
sumed infinitely divisible. The model is abstract and, rather
than jobs or flows, we refer to transactions. These are as-
sumed divisible into a large number of infinitesimal com-
ponents (representing tasks or packets, for instance) having
homogeneous resource usage characteristics.

2.1 The fluid model
Consider R infinitely divisible resources of normalized ca-

pacity 1 to be shared by n transactions indexed by i. Each
transaction i requires amounts of each resource in fixed pro-
portions and the amount allocated determines the rate at
which the transaction progresses. We denote the require-
ments of transaction i by a vector ai = (ai1, . . . , aiR). We
say that transaction i requires resouce j if aij > 0. A re-
source j for which aij = maxk{aik} is called a dominant
resource for transaction i.

An allocation is defined by a vector of real numbers ϕ =
(ϕ1, . . . , ϕn) such that ϕiaij is the fraction of resource j allo-
cated to transaction i. The allocation must satisfy capacity
constraints:

n∑
i=1

ϕiaij ≤ 1, for j = 1, . . . , R. (1)

We say that resource j is saturated if
∑n
i=1 ϕiaij = 1. We

refer to such a resource as a bottleneck.

2.2 Sharing properties
The allocation ϕ should arguably possess the following

properties [6, 2]:

Pareto-efficiency. Each transaction requires some re-
source which is saturated.

Envy-freeness. No transaction should prefer the alloca-
tion of some other transaction.

Sharing-incentive. Each transaction gets no less than a
1/n share of its dominant resource.

Single-resource fairness. Resource shares ϕiai1 are all
equal to 1/n when R = 1.

Single-bottleneck fairness. The shares ϕiaij of resource
j are all equal to 1/n whenever j is the only bottleneck.

Strategyproofness. The resource shares of any trans-
action do not increase if this transaction modifies its
vector of resource requirements.

Scale-invariance. The resource shares remain the same
when the vector of resource requirements of any trans-
action is multiplied by a scaling factor.

It is straightforward to check that single-resource fairness
is a rather crucial requirement in that it is realized by any
Pareto-efficient allocation that fulfills any one of the other
properties.

2.3 Dominant resource fairness
Dominant resource fairness (DRF) is the unique Pareto ef-

ficient allocation where transactions obtain fractions of their
dominant resource that are as equal as possible. Equality
may not be possible if some transactions require only a sub-
set of the resources [15]. DRF in fact corresponds to weighted
max-min fairness where the weight of transaction i is in-
versely proportional to its dominant resource requirement
maxj{aij}.

DRF satisfies all properties listed in §2.2 except single-
bottleneck fairness [6, 2]: even in the presence of a single
bottleneck, the shares of this resource are not equal and de-
pend on requirements for non-saturated resources. The main
advantage of DRF over other allocations is that it is strat-
egyproof. This means a transaction cannot gain a greater
share of resources by boosting some component of its re-
quirement vector.

2.4 Proportional fairness
An allocation ϕ is proportional fair (PF) if, for any other

allocation ϕ′ satisfying (1), the sum of proportional changes
is non-positive,

∑
i(ϕ
′
i − ϕi)/ϕi ≤ 0 [12]. Equivalently, ϕ

maximizes
∑
i logϕi subject to (1) and can thus be said

to maximize social welfare assuming a logarithmic utility
function.

While PF was introduced in [12] as an objective for shar-
ing bandwidth in a wired network, it was advocated inde-
pendently by Tse and co-authors as the preferred allocation
for a time-shared wireless downlink channel [19].

By the Karush-Kuhn-Tucker theorem, PF is uniquely char-
acterized in terms of Lagrange multipliers νj . We have,

1

ϕi
=

R∑
j=1

aijνj , (2)



for i = 1, . . . , n, where νj ≥ 0 and νj > 0 if and only if
resource j is a bottleneck.

PF is clearly Pareto-efficient. In fact, it satisfies all prop-
erties of §2.2 except strategyproofness. The proof of envy-
freeness is given below; other properties are proved in [2].

Proposition 1. The PF allocation is envy-free.

Proof. For any two transactions i1, i2, it follows from
(2) that

R∑
j=1

νj(ϕi1ai1j − ϕi2ai2j) = 0.

Since not all Lagrange multipliers are zero, this implies that
ϕi1ai1j ≥ ϕi2ai2j for some resource j: transaction i1 does
not prefer the allocation of transaction i2.

PF is the only utility maximizing allocation that is single-
resource fair [2]. In particular, none of the properties except
Pareto-efficiency is satisfied by a utility maximizing alloca-
tion other than PF.

To see why PF is not strategyproof, consider the following
example: we have R = 2 resources and n = 2 transactions
with requirements a1 = (1/2, 1) and a2 = (1, 1/2). The PF
allocation is then ϕ = (2/3, 2/3). If transaction 1 claims
requirement a′1 = (2/3, 1), we find ϕ′ = (3/4, 1/2) yielding a
bigger share for transaction 1 at the expense of transaction
2. Note, however, that if a user does not know the other
requirements, an ill-chosen modification can instead lead to
it receiving a smaller share. Continuing the above example,
if transaction 1 claims a′1 = (1, 1), the PF allocation would
be ϕ′ = (1/2, 1/2). Both transactions lose out compared to
the result of the truthful declaration, a1 = (1/2, 1).

It is interesting to note that, for n = 2, one can charac-
terize the maximum gain a transaction can obtain by a false
declaration. We have the following proposition.

Proposition 2. For n = 2 transactions, the relative gain
obtained by a transaction declaring false requirements cannot
exceed 50% under PF.

Proof. Without loss of generality, we can assume that
R = 2 (whenever R > 2, one of the resources is never satu-
rated since its requirements are dominated by those of an-
other resource). By scale invariance, we can take a12 =
a21 = 1 and a11, a22 ≤ 1. Assume transaction 1 declares
false requirement a′11 on resource 1. If 1

2
(1/a11 + a22) < 1

then resource 1 is the single bottleneck and no winning strat-
egy exists. Otherwise, resource 2 is a bottleneck for the true
requirement and transaction 1 gets the maximum share of
this resource, given by:

ϕ1 = min

(
1

2
,

1− a22
1− a11a22

)
.

The best strategy for transaction 1 is to increase a11 until it
gets the maximum share of both resource 1 and resource 2,
that is to set

a′11 =
1

2− a22
,

in which case the allocation is given by

ϕ′1 = 1− a22
2
.

It can be verified that the relative gain satisfies

ϕ′1 − ϕ1

ϕ1
≤ 1

2
,

with equality for a11 = 0, a22 = 1/2, that is a′11 = 2/3.

2.5 Bottleneck max fairness
Dolev et al. proposed the “no justified complaints” objec-

tive as an alternative to DRF [4]. To be concise, we adopt
a simplified version of this objective: a transaction has no
justified complaint if it receives at least a fraction 1/n of
at least one bottleneck. Pareto efficient allocations fulfilling
this objective for all users are said to realize “bottleneck-
based fairness” [24, 9].

There are in fact many allocations that are bottleneck-
based fair. We restrict the class of such allocations some-
what by requiring in addition that every transaction i re-
ceives an allocation ϕiaij of some bottleneck resource j that
is maximal for that resource. We call such allocations “bot-
tleneck max fair” (BMF).

Discussions on bottleneck-based fairness in [4] and [9] sug-
gest the existence of a BMF allocation is far from obvious.
The following proposition, proved in the appendix, estab-
lishes the existence of a BMF allocation.

Proposition 3. A BMF allocation always exists.

Like PF, BMF meets all properties of §2.2 except strat-
egyproofness. It is Pareto-efficient by definition and envy-
free since, for any transaction i, there is some resource j
such that ϕiaij is maximal over all transactions. The no
justified complaints objective clearly implies BMF has the
sharing-incentive property. It is both single-resource fair
and single-bottleneck fair since all transactions attain the
maximum allocation of the resource in question and this is
necessarily equal to 1/n. It is scale-invariant since the defi-
nition involves the resource shares ϕiaij only.

It turns out that BMF is not necessarily unique. The
following proposition, also proved in the appendix, shows
however that BMF is unique for R = 2 resources.

Proposition 4. The BMF allocation is unique for two
resources.

That uniqueness does not extend to more than 2 resources
is established by the following counter-example. Consider a
3 resource system with 3 transactions having requirement
vectors (1, 1, 1), (1, 1/2, 3/4) and (1/2, 1, 3/4). Allocations

ϕ(0) = (2/5, 2/5, 2/5) and ϕ(1) = (1/3, 4/9, 4/9) both satisfy

the definition. In fact, allocations ϕ(x) = (2/5−x/15, 2/5 +
2x/45, 2/5+2x/45) for 0 ≤ x ≤ 1 are all BMF. Note that the
absence of uniqueness is not necessarily problematic since all
the allocations may be considered satisfactory with respect
to the considered properties.

The fact that BMF is not strategyproof follows on ob-
serving that BMF coincides with PF for n = 2 transactions,
so that the counterexample of §2.4 applies to BMF as well.
BMF and PF in fact coincide for any two homogeneous pop-
ulations of transactions.

Proposition 5. BMF coincides with PF for two types of
transactions.



Proof. We assume without loss of generality that R = 2
(see the proof of Proposition 2). Take n1 transactions with
resource requirements a1 and n2 transactions with resource
requirements a2. By scale invariance, we can assume that
a11a22 6= a12a21 (otherwise, there is actually a single type of
transaction and each transaction gets a fraction 1/n of the
most constraining resource).

Assume resource 1 is the single bottleneck. By single-
bottleneck fairness, the allocation ϕ is the same under PF
and BMF and given by ϕ1a11 = ϕ2a21 = 1/n. Since resource
2 is not saturated, we obtain

1

n

(
n1
a12
a11

+ n2
a22
a21

)
< 1. (3)

Similarly, resource 2 is the single bottleneck if and only if

1

n

(
n1
a11
a12

+ n2
a21
a22

)
< 1, (4)

in which case PF and BMF coincide. Now assume that
neither (3) nor (4) hold. Then both resources are bottlenecks
under both BMF and PF. We deduce that{

n1ϕ1a11 + n2ϕ2a21 = 1,
n1ϕ1a12 + n2ϕ2a22 = 1,

which has a unique solution whenever a11a22 6= a12a21.

It is worth noting that the proof of the above proposition is
based on the following three properties of BMF and PF only:
scale-invariance, Pareto efficiency and single-bottleneck fair-
ness. This means in particular that, for two types of trans-
action, there is no other allocation that satisfies these three
properties. By the counterexample of §2.4, this allocation is
not strategyproof, which shows that there is no allocation
meeting all properties listed in §2.2. Any Pareto-efficient,
scale-invariant allocation is either strategyproof (like DRF)
or single-bottleneck fair (like PF and BMF).

3. ALGORITHMS
We discuss algorithms to realize DRF, PF and BMF, suc-

cessively for the fluid model, for a compute cluster shared by
multi-task jobs and for router or network resources shared
by flows of packets.

3.1 Dominant resource fairness
Since DRF corresponds to max-min fair sharing with weights

equal to the dominant resource requirements, the alloca-
tion can be computed through a water-filling algorithm [6,
15]: the ϕi are increased at rates inversely proportional to
the dominant resource requirements maxj{aij} until some
resource is fully used; transactions using that resource are
frozen while rates of the others with non-zero requirements
on non-saturated resources are further increased at their re-
spective rates until a second resource is full; the process
continues until all the ϕi are frozen. The complexity of this
algorithm is of order O(Rn).

Ghodsi et al. [6] show how the DRF allocation can be
realized in practice for compute cluster resources. As re-
sources are freed on task completion they are re-allocated
preferentially to the most deprived job. This is the job with
the smallest share on its dominant resource. Tasks are as-
signed when jobs arrive, if resources are available, or when
other tasks end. If available resources are insufficient to ac-
commodate a task of the most deprived job, allocations are

frozen until a sufficient number of other tasks end or some
other job takes over the most-deprived status. Note that we
continue to assume resources are pooled though the assign-
ment algorithm could be adapted to account for additional
practical constraints such as assigning CPU and RAM on
the same physical server, say [16], or meeting other compat-
ibility constraints [7].

To share router resources between flows, we can apply the
DRFQ algorithm defined by Ghodsi et al. [5]. To highlight
parallels with similar algorithms defined below for PF and
BMF, we adopt a slightly different specification of DRFQ.

DRFQ approximately realizes weighted max-min fairness
by applying the start-time fair queuing (SFQ) algorithm at
each resource [8]. This algorithm serves waiting packets in
increasing order of their virtual start time. The virtual start
time Skij of packet k of flow i at resource j is determined
recursively,

Skij = max

(
Vj(u

k
ij), S

k−1
ij + max

j
{aij}

)
, (5)

where ukij is the packet arrival time at resource j and the
virtual time functions Vj(t) of real time t are set equal to
the largest start time at t of any packet to have begun service
at that resource. Each resource needs to maintain a sorted
list of virtual start times, yielding a complexity of O(logn)
per packet arrival.

As long as each resource is aware of the weight to apply
(i.e., the dominant resource requirement maxj{aij}), the
scheduling can be applied independently at each resource,
even when the resources are separated geographically as in
the network application. There is no constraint on the order
in which resources are used and processing can proceed in
parallel, if possible, without compromising the DRF prop-
erties.

Note that the virtual time functions determine how the
first packet of a burst is inserted into the schedule while
the second term in the max operator of (5) ensures fairness
between flows that are backlogged. DRFQ basically inherits
the latency and fairness properties of SFQ and is satisfactory
as long as packet processing times are small, as is usual.

3.2 Proportional fairness
The optimization problem defining PF is computationally

expensive in general. An approximate solution can be ob-
tained by the gradient descent algorithm applied iteratively
to the Lagrange multipliers,

νj ← max

(
νj + θ

(
n∑
i=1

ψiaij − 1

)
, 0

)
, (6)

where θ > 0 is a sufficiently small step size and

ψi =
1∑R

j=1 aijνj
,

for i = 1, . . . , n. The allocation is then given by (2).
This approximate solution can be used in a practical task-

based algorithm for sharing a compute cluster. This consists
in applying the same “most deprived job” approach from
§3.1. Specifically, the most deprived job is that whose ratio
of actual to ideal allocation is smallest.

An algorithm for packet-based PF can be derived on ex-
tending the analysis of Massoulié and Roberts for network
bandwidth sharing [14]. This relies on an assumption that



resources are used consecutively and not in parallel. Each
flow maintains a fixed window of W packets. This win-
dow might be realized within a router by creating an ingress
queue and only admitting packet k to any internal buffer
when packet k −W has finished processing at all resources.
Denote the number of flow i packets waiting or in service
at resource j by Qij and let Qj =

∑
iQij . We have the

conservation equation,

W =

R∑
j=1

Qij . (7)

Assume the system attains a stable regime where the Qij are
positive constants when resource j is a bottleneck, or zero
otherwise. This corresponds to the fluid limit regime where
W tends to infinity, as considered for instance by Schweitzer
[17] and Walton [20]. In practice, assuming constant packet
sizes, it is sufficient that W ≥ R so that each flow is back-
logged on some resource. It turns out that serving packets
at rates proportional to Qij/aij yields the PF allocation.
We have,

n∑
i=1

ϕiaij = 1 =⇒ Qkj
Qij

=
ϕkakj
ϕiaij

and summing over k yields Qij = ϕiaijQj . On substituting
for Qij in (7) we derive,

1

ϕi
=
∑
j

aij
Qj
W

where Qj ≥ 0 and Qj > 0 if and only if
∑
i ϕiaij = 1. Com-

parison with (2) shows that the variables Qj/W coincide
with the Lagrange multipliers νj and, therefore, that ϕ is
indeed the unique PF allocation.

To realize the required packet rates we can again adapt
the SFQ algorithm. Start times Skij are defined recursively
and independently for each resource j,

Skij = max
(
Vj(u

k
ij), S

k−1
ij + aij/Qij

)
, (8)

where notation is as defined above in §3.1. Complexity is
still O(logn).

This algorithm is not entirely satisfactory. The assump-
tion that resources are visited sequentially by each packet
is restrictive for the software router application. Moreover,
for the network application, it would be necessary to take
account of non-zero propagation times between visits to suc-
cessive resources. This case is considered in [14] where it is
shown that, even with homogeneous resource requirements,
the algorithm only realizes PF approximately if the window
W is large compared to the bandwidth delay product, i.e.,
the product of ϕi and the round trip propagation time of
flow i.

3.3 Bottleneck max fairness
For small systems, it is possible to determine a BMF al-

location by testing the feasibility of all possible one-to-one
mappings of transactions to potential bottlenecks. For a
mapping to be feasible, it must be possible to find values
ϕi satisfying (1) such that every resource j with at least
one mapped transaction is a bottleneck and all transactions
mapped to j have the maximum share of j. Fortunately,
it is not necessary to apply this algorithm in any practical
implementation, as discussed below.

The most deprived job approach can be adapted to re-
alize BMF in a compute cluster. For every job i we note
its rank at each resource j: jobs with the biggest allocation
have rank 1, jobs of rank k for k > 1 have a smaller share
than k − 1 other jobs. The deprivation status of job i is its
highest rank on a bottleneck resource. A resource is con-
sidered a bottleneck here if its residual capacity is less than
the maximal requirement for that resource over all transac-
tions. Tasks are launched preferentially for the job whose
current status is furthest from 1. Each resource maintains
a sorted list of n jobs, yielding a complexity of O(logn) per
task arrival or departure.

For the router application, BMF can be realized by im-
posing local weighted max-min fairness at each resource with
respective weights 1/aij . To demonstrate this, we again as-
sume the existence of a steady state and extend arguments
from [14]. We assume each flow i maintains a window of Wi

packets and, to include the possibility of remotely located
resources (as in the network application), we introduce the
round trip propagation times Ti. The following conservation
relations generalize (7),

Wi = ϕiTi +

R∑
j=1

Qij . (9)

Relation (9) shows that for every flow i, as long as Wi is
sufficiently large, there is at least one bottleneck resource
j such that Qij > 0 (assuming constant packet sizes, it is
in fact sufficient that Wi > ϕiTi + R to ensure that flow
i is backlogged at some resource). Moreover, the weighted
fair queuing scheduler at j ensures ϕiaij = maxk(ϕkakj),
completing the BMF defining conditions.

To realize BMF using SFQ, start times must be calculated
as follows,

Skij = max
(
Vj(u

k
ij), S

k−1
ij + aij

)
, (10)

where notation is again as defined above in §3.1. Complexity
is O(logn).

Note that this algorithm is much simpler than that of PF
in not requiring knowledge of queue lengths or imposing the
same window for all flows. Like DRFQ, it can be applied
independently of whether the resources are visited in parallel
or sequentially and it does not depend on propagation times
beyond the requirement that Wi be big enough to maintain
a positive queue at bottlenecks.

4. PERFORMANCE
While the sharing algorithms are defined above with re-

spect to a fixed set of n transactions, their behavior can
only be realistically appraised under dynamic demand where
transactions occur over time, each bringing a finite amount
of work to be accomplished. We propose a simple Marko-
vian demand model and use it to compare the performance
of DRF, PF and BMF.

4.1 Markovian demand model
We suppose transactions belong to one of K classes and

transactions of class k arrive as a Poisson process of rate λk.
Class k transactions have requirement ak = (ak1, . . . , akR)
and bring a random amount of work with an exponential
distribution with parameter µk. This work corresponds to
the job duration for the computer cluster application and to
the flow size in bits for the network application, for instance.



The state vector ~n = (n1, . . . , nK), giving the current
number of transactions of each class in progress, is then a
Markov process with component-k birth rate λk and death
rate φkµk, where φ = (n1ϕ1, . . . , nKϕK) denotes the per-
class allocation vector. The Markovian model is adopted for
the sake of simplicity. We expect, however, in view of the
approximate insensitivity of fair resource sharing systems,
that the comparative performance of DRF, PF and BMF
will be similar under more accurate demand models (see [1],
for example, for a discussion on the insensitivity property in
the context of bandwidth sharing).

Capacity constraints (1) can be written

K∑
k=1

φkakj ≤ 1, (11)

for j = 1, . . . , R. When the allocation φ is DRF or PF,
known results for bandwidth sharing in networks (e.g., [23])
allow us to conclude that the above process is stable as long
as loads ρk = λk/µk satisfy the following inequalities,

K∑
k=1

ρkakj < 1, (12)

for j = 1, . . . , R. This follows for DRF since the objec-
tive is just a particular weighted max-min allocation. The
BMF allocation is not included in the class of allocations
considered by Ye [23] and it proves difficult to establish the
stability condition for a general system. The following the-
orem, proved in the appendix, shows that condition (12) is
sufficient for a system limited to two resources with homo-
geneous mean service requirements, µ1 = . . . = µK . We
believe that, like DRF and PF, this result in fact extends to
any number of resources and is insensitive to the distribu-
tions of service requirement beyond the means.

Theorem 1. Conditions (12) are sufficient to ensure the
stability of BMF in the case of two resources with homoge-
neous mean service requirements.

In the following we assume the system is stable and has
a stationary distribution π(~n) from which we can compute
performance measures like expected completion times. We
compare algorithm performance via the mean service rate
γk, defined as the ratio of the mean work 1/µk to the mean
completion time. Using Little’s law, we find γk = ρk/E(nk)
where E(nk) is the mean number of class k transactions in
progress. Observe that, if there are only class-k transac-
tions with normalized dominant resource requirement, that
is maxj akj = 1, the model reduces to a processor-sharing
queue with arrival rate λk and service rate µk. In particular,
E(nk) = ρk/(1 − ρk) and γk = 1 − ρk: the relative service
rate decreases linearly with the system load.

4.2 Performance of the fluid model
We illustrate the relative performance of DRF, PF and

BMF using a numerical example. Two resources are shared
by 3 classes of transaction with requirement vectors a1 =
(.1, 1), a2 = (1, .1), a3 = (1, 1). The figures plot realized
service rates γk against the load of the heaviest loaded re-
source, argmaxj=1,2

∑K
k=1 ρkakj .

Figure 1 corresponds to balanced load ρ1 = ρ2 = ρ3 and
shows performance is similar for all three allocations. BMF
is very close to PF while both are somewhat better than
DRF, especially at high load.
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Figure 1: Service rates γk against resource load for
BMF and DRF with balanced load: a1 = (.1, 1), a2 =
(1, .1), a3 = (1, 1); ρ1 = ρ2 = ρ3; γ1 = γ2 > γ3.

The difference in performance is accentuated under unbal-
anced load, as illustrated in Figure 2 for the case ρ1 = 4ρ2 =
4ρ3. In this scenario resource 1 has less than half the load
of resource 2. The plots show that strict fairness imposed
by DRF prevents class 2 transactions from fully exploiting
this. The service rates of PF and BMF are roughly equiva-
lent, both yielding a better efficiency-fairness tradeoff with
a significant gain in γ2 for negligible reductions in γ1, γ3.

The generality of these results for DRF and PF was dis-
cussed in [2] where light and heavy load behavior was de-
termined for two resources and two transaction classes. It is
noteworthy that the performance advantage of PF for unbal-
anced load arises due to the fact that DRF sacrifices single-
bottleneck fairness in the interest of strategyproofness.

4.3 Strategyproofness
The strategyproof property in §2.2 relates to a static pop-

ulation of transactions. We demonstrate in this subsection
that the absence of this property for PF and BMF is hardly
a disadvantage in dynamic traffic. Even if some transaction
knows some statistics about the resource requirements of
competing transactions, it does not know how many trans-
actions are active or how this number will evolve and thus
can hardly define a consistent strategy to improve its service
rate by lying about its resource requirements.
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Figure 2: Service rates γk against resource 2 load for
BMF and DRF with unbalanced load: a1 = (.1, 1),
a2 = (1, .1), a3 = (1, 1); ρ1 = 4ρ2 = 4ρ3; γ2 > γ1 > γ3.

Consider the potential for gaming when some test trans-
action competes with a homogeneous population of other
transactions evolving according to the model of §4.1. Recall
from Proposition 5 that PF and BMF allocations are iden-
tical for this case (since only two resources can be limiting).

From Proposition 2, the greatest gain for two resources
and two transactions is obtained for a1 = (0, 1) and a2 =
(1, 1/2) with transaction 1 falsely declaring a′1 = (2/3, 1).
Suppose first that transaction 1 truly declares a1 = (0, 1).
The service rate of transaction 1 is then φ1 = 1 for n2 = 0
and φ1 = 1/2 otherwise, while φ2 = 1 for any n2. In par-
ticular, n2 has a geometric distribution with parameter ρ2.
If transaction 1 is infinitesimally small, n2 remains constant
during its service. We deduce that the mean duration of
transaction 1 is proportional to 1− ρ2 + 2ρ2 for an infinites-
imally small size, yielding

γ1 =
1

1 + ρ2
.

If transaction 1 is infinitely large, the service rates average
and we get

γ1 = 1− ρ2 +
ρ2
2

= 1− ρ2
2
.

Now assume transaction 1 claims requirement a′1 = (2/3, 1).
The service rate of transaction 1 is then φ1 = 1 for n1 = 0
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Figure 3: Service rate of a test transaction against
class 2 load: the test transaction requires (0,1) but
falsely declares (2/3,1) and competes with a dy-
namic population of transactions of profile (1,1/2).

and φ1 = 3/(2(n2 + 1)) otherwise, while φ2 = n2/(n2 + 1)
for any n2. If transaction 1 is infinitesimally small then n2

still has a geometric distribution with parameter ρ2 and the
mean duration of transaction 1 is proportional to

1− ρ2 +
2

3

∑
n2≥1

(n2 + 1)(1− ρ2)ρn2
2 ,

yielding

γ1 =
1− ρ2

1− 2
3
ρ2 +

ρ22
3

.

If transaction 1 is infinitely large, the probability of state
(1, n2) is proportional to (n2 + 1)ρn2

2 so that

γ1 = (1− ρ2)2(1 +
3

2

∑
n2≥1

ρn2
2 ) = (1− ρ2)(1 +

ρ2
2

),

which is less that the original service rate for any load ρ2.
Figure 3(a) shows how the service rate of transaction 1 be-

haves with the false declaration a′1 = (2/3, 1) as a function
of ρ2 when this transaction occurs at an arbitrary instant
and is infinitesimally small. The maximum gain in this con-
figuration is only 10% compared to the 50% gain realized
under static load. Moreover, this gain is realized only under



a very particular configuration and rapidly disappears as the
worst case conditions are relaxed. For example, Figure 3(b)
confirms that if transaction 1 is not small but very large,
there is no gain from the false declaration at any load.

The fact that transaction 1’s competitors all have the
profile (1,1/2) further exaggerates the scope for illicit gain.
Transaction 1 can take no additional rate from any con-
current transactions with the same dominant resource (i.e.,
having a profile (a11, 1) for a11 ≤ 1). In any mixed demand
scenario, it is clear that the maximum gain is considerably
less than 10%. Moreover, we note from the results of Fig-
ure 3 that the false requirements only ever yield a marginal
improvement in the smallest completion times. Longer com-
pletion times, because load is heavy, as on the right of Fig.
3(a), or because the transaction is intrinsically long, as in
Fig. 3(b), will be increased and not decreased.

The above clearly does not show that PF and BMF are
strategyproof. Indeed they are not in case of static demand.
However, the results do suggest it is rather implausible that
any transaction can define a winning strategy when demand
is dynamic.

4.4 Task-based allocations
While the fluid models analyzed above are useful in ap-

praising the relative merits of alternative fairness objectives,
it is necessary in practice to account for the fact that jobs are
not infinitely divisible. In this section we relax this assump-
tion. We compare the performance of task-based versions of
DRF, PF and BMF through the results of simulation exper-
iments. We follow the proposal in [6] in seeking to realize
the fairness objective by preferentially launching tasks of the
most deprived job with respect to the objective fairness cri-
terion. The respective criteria for defining deprivation status
were presented in §3.

Figure 4 plots the results of simulations showing how the
algorithms perform in a particular configuration. Two re-
sources (e.g., CPU and RAM) are shared by jobs of three
classes with profiles (.1,1), (1,.1) and (1,1) and demand is
unbalanced with ρ1 = 4ρ2 = 4ρ3. This is the same data
used for the fluid model in Figure 2. The present results
show the service rate is much smaller for the task-based al-
location. This is due to the finite task size which invalidates
the infinite divisibility assumption of the fluid model.

We have assumed here that each job has 500 tasks to run,
each having an independent exponential duration, and that
the capacities of CPU and RAM are 100. For very low load,
each job is alone with high probability and 100 of its tasks
are processed in parallel while there remain at least 100 to
run. From then on, the task completion rate decreases with
the number of remaining tasks in progress from 99 to 1. It is
possible in this case to compute the maximum service rate of
0.54 [2]. The discrepancy with respect to the fluid model is
smaller when the task duration is less variable or when the
number of tasks to run is much greater than the resource
capacity.

The figure shows that PF and BMF still significantly out-
perform DRF for the class of jobs whose dominant resource
is the least loaded (class 2 and resource 1 in this case). The
algorithm for BMF is rather more effective than that of PF
and yields greater service rates whereas the fluid results were
virtually the same.
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Figure 4: Cluster sharing: service rates γk against
resource 2 load for unbalanced load: a1 = (.1, 1), a2 =
(1, .1), a3 = (1, 1); ρ1 = 4ρ2 = 4ρ3.



4.5 Packet-based allocations
In this section we evaluate by simulation the effectiveness

of the SFQ-based algorithms defined in §3 for router resource
sharing. The simulations assume two resources (e.g., CPU
and bandwidth) are used successively by flow packets. The
number of packets in each flow has a geometric distribution
of mean 20000. For all algorithms we set the window W
to 30 for all flows. We have verified that these parameter
choices do not critically impact the presented results.

Service rates are shown in Figure 5 for the same unbal-
anced load scenario used in the previous section. Crosses are
results of packet-based simulations for 105 flow arrivals and
lines are the fluid model results from Figure 2. The results
show that all three packet-based algorithms closely approx-
imate the service rates of the ideal allocations, confirming
the performance advantage of PF and BMF over DRF.

From a practical point of view, BMF is preferable to PF
in that the algorithm is simpler to implement and more ro-
bust. Like DRF, BMF sharing is also realized by the same
algorithm when some resources can be used simultaneously
and not sequentially. Crucially for the network application,
BMF is also applicable when propagation times are non-zero.

5. RELATED WORK
DRF [6] and “no justified complaints” [4] were placed in a

more general economics framework in the work of Gutman
and Nisan [9]. Joe-Wang et al. also generalized DRF by in-
troducing two families of allocations that allow a controlled
tradeoff between efficiency and fairness [11]. However, all
these objectives are evaluated assuming static demand. It
would be necessary to reappraise the impact of such gener-
alizations under the more realistic assumption of dynamic,
stochastic demand.

The “serve the most deprived job” approach introduced in
[6] proves very versatile. It is used by Zeldes and Feitelson
[24] to implement bottleneck-based fairness and by Ghodsi
and co-authors [7] to account for compatibility constraints in
task placement. Our proposed implementations of PF and
BMF for sharing cluster resources are further illustrations
of this versatility. It would be not difficult to account for
possible placement constraints in these implementations.

The packet-based algorithms designed by Ghodsi et al.
[5] to realize DRFQ for shared router resources are based on
start-time fair queuing. Wang and co-authors have proposed
alternative realizations that adapt Deficit Round Robin [18]
to the multi-resource context [22]. Our implementations of
PF and BMF rely on SFQ though it would be straightfor-
ward to substitute alternative fair queuing mechanisms.

The need to evaluate the performance of resource sharing
objectives under dynamic demand is still not widely recog-
nized. The paper by Massoulié and Roberts [13] was per-
haps the first to note the importance of this while some of
the most significant subsequent findings are summarized by
Bonald et al. [1]. Our earlier paper [2] and the present work
extend this analysis to the domain of multi-resource sharing.

The stability of network bandwidth sharing under vari-
ous allocation objectives, with and without Markovian de-
mand assumptions, is discussed by Walton and Mandjes [21].
Their paper surveys the literature on the stability question
and illustrates its inherent difficulty. While existing results
can be applied to prove the stability of DRF and PF, this is
not the case for BMF.
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Figure 5: Router sharing: service rates γk against
resource 2 load for unbalanced load: a1 = (.1, 1), a2 =
(1, .1), a3 = (1, 1); ρ1 = 4ρ2 = 4ρ3.



6. CONCLUSIONS
Multi-resource sharing for efficiency and fairness is an old

issue in networking with challenging new variants occurring
in the domains of cluster computing and software routers.
Recent prominent publications have led to the emergence of
DRF and its apparent acceptance as the preferred sharing
objective. DRF is implemented in the Hadoop Next Gener-
ation Fair Scheduler, for instance.

We have argued in this paper that this popularity is mis-
placed since alternative objectives like PF display a better
efficiency-fairness tradeoff. This result is revealed on consid-
ering the completion time performance of alternative objec-
tives under the realistic and crucial assumption that demand
is dynamic: jobs and flows occur over time and their com-
pletion times depend critically on the implemented resource
sharing objective.

We have proposed BMF as a pragmatic alternative to PF.
It has similar performance and can be realized more simply,
especially when sharing router and network resources be-
tween flows. It is clearly the most practical objective for
a network integrating radio access and wired backhaul. In-
dependent schedulers simply share their own resource equi-
tably. BMF thus generalizes network-wide max-min fairness
that is known to be realized by fair schedulers acting inde-
pendently on each link [10].

Concerns about the vulnerability of objectives like PF and
BMF to malicious gaming have been shown to be largely un-
founded. While users can manipulate allocations by falsely
boosting their declared requirement of non-dominant resources,
their gain depends critically on knowing the requirements
of competitors. Such knowledge is hardly conceivable in
the context of highly dynamic populations of active trans-
actions occurring in a realistic model of demand. Moreover,
we have shown that the falsification is counter-productive in
most cases, especially for large transactions.

While BMF is relatively straightforward to implement,
it remains difficult to completely characterize its essential
properties. We have proved that the usual per-resource sta-
bility conditions are sufficient in a system limited to two re-
source types. However, the extension of this result to more
than two resources is a challenging open problem.
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APPENDIX
Proposition 3 – Existence of BMF
It is convenient here to abandon the normalization of re-
source capacities and define the vector C = (C1, ..., CR) as-
sociated with capacity constraints

n∑
i=1

ϕiaij ≤ Cj , for j = 1, . . . , R.

We prove by induction on n that there exists a BMF alloca-
tion ϕ which is a continuous function of the vector C. For
n = 1 transaction, we take ϕ1 = minj:a1j>0 Cj/a1j , which is
a continuous function of C. Now assume that the property
holds for n − 1 transactions, for some n ≥ 2. For any non-
negative θ < minj:a1j>0 Cj/a1j , there exists a bottleneck-

max fair allocation ϕ(θ), which is a continuous function of θ,
for the system restricted to transactions 2, . . . , n−1 and the
capacity vector C(θ) = C − θa1. For any sufficiently small
θ, we have, for all j = 1, . . . , R,

n∑
i=2

ϕ
(θ)
i aij = C

(θ)
j =⇒ θa1j < max

i=2,...,n
{ϕ(θ)

i aij}. (13)

Let θ1 be the largest number such that this property is sat-
isfied for all θ < θ1. Observe that, by the continuity of ϕ(θ)

in θ, this property is violated for θ = θ1. In particular, there
exists some resource j1 such that

n∑
i=2

ϕ
(θ1)
i aij1 = C

(θ1)
j1

and

θ1a1j1 ≥ max
i=2,...,n

{ϕ(θ1)
i aij1}. (14)

Now define ϕ1 = θ1 and ϕi = ϕ
(θ1)
i for i = 2, . . . , n. In view

of (14), transaction 1 gets the maximum share of bottle-
neck resource j1 under allocation ϕ. Now take any increas-
ing sequence θ(1), θ(2), . . . tending to θ1 such that for each
transaction i = 2, . . . , n, there is some bottleneck resource
ji in the system restricted to transactions 2, . . . , n whose

transaction-i share ϕ
(θ)
i aiji is maximum over all transactions

2, . . . , n, for all θ = θ(1), θ(2), . . . Such a sequence exists be-

cause ϕ(θ) is bottleneck-max fair and there is a finite number

of resources. It follows from (13) that θa1ji < ϕ
(θ)
i aiji for all

transactions i = 2, . . . , n and all θ = θ(1), θ(2), . . .. Taking

the limit, it follows from the continuity of ϕ(θ) that each
transaction i gets the maximum share of resource ji under
allocation ϕ: the allocation is BMF. It remains to prove the
continuity of the function ϕ in C, which follows from that
of ϕ(θ) in θ and that of θ1 in C. 2

Proposition 4 – Uniqueness of BMF
We first assume that aij > 0 for all i, j and number the
transactions in increasing order of ai2/ai1. Observe that
ϕ1a11 ≥ ϕ2a21 ≥ . . . ≥ ϕnan1 (if ϕ1a11 < ϕ2a21 for in-
stance then ϕ1a12 ≤ ϕ1a11 × a22/a21 < ϕ2a22 so that the
bottleneck-max property is violated for transaction 1). Sim-
ilarly, ϕ1a12 ≤ ϕ2a22 ≤ . . . ≤ ϕnan2. Without loss of gener-
ality, we can assume that n ≥ 2 and

a12
a11

< 1 <
an2
an1

. (15)

Otherwise, one of the two resources is not limiting and the
allocation is unique by single-bottleneck fairness.

We consider three cases:

• Case 1
n

∑n
i=1 ai2/ai1 ≤ 1. The allocation ϕ such that

(ϕ1a11, . . . , ϕnan1) = (1/n, . . . , 1/n) is BMF. Assume
there is another BMF allocation, say ϕ′ 6= ϕ. We have

n∑
i=1

ϕ′iai2 =
1

n

n∑
i=1

ai2
ai1

+

n∑
i=1

ai2
ai1

(ϕ′iai1 −
1

n
). (16)

Since ϕ′ 6= ϕ, ϕ′1a11 > 1/n > ϕ′nan1. Let k be the
maximum index i such that ϕ′iai1 > 1/n and define

θ =

k∑
i=1

(ϕ′iai1 −
1

n
) > 0.

Observe that

n∑
i=k+1

(
1

n
− ϕ′iai1) ≥

k∑
i=1

(ϕ′iai1 −
1

n
) = θ.

Then

n∑
i=1

ai2
ai1

(ϕ′iai1 −
1

n
) =

k∑
i=1

ai2
ai1

(ϕ′iai1 −
1

n
)

−
n∑

i=k+1

ai2
ai1

(
1

n
− ϕ′iai1),

≤ (
ak,2
ak,1

− ak+1,2

ak+1,1
)θ ≤ 0,

where one of the last two inequalities is strict in view
of (15). Using (16), we get

n∑
i=1

ϕ′iai2 <
1

n

n∑
i=1

ai2
ai1
≤ 1.

By single-bottleneck fairness, this implies ϕ′ = ϕ, a
contradiction.

• Case 1
n

∑n
i=1 ai1/ai2 ≤ 1. We prove similarly that the

BMF allocation is unique.

• Case 1
n

∑n
i=1 ai2/ai1 > 1 and 1

n

∑n
i=1 ai1/ai2 > 1. By

the bottleneck-max property, there exists some index
k < n such that α1 = ϕ1a11 = . . . = ϕkak1 ≥ ϕk+1ak+1,1



and α2 = ϕk+1ak+1,2 = . . . = ϕnan2 ≥ ϕkak2. With-
out loss of generality, we can assume that α1 > ϕk+1ak+1,1

(we take index k + 1 instead of k otherwise). We have{
kα1 + S2(n− k)α2 = 1,
S1(k)α1 + (n− k)α2 = 1,

where

S1(k) =

k∑
i=1

ai2
ai1

and S2(k) =

n∑
i=n−k+1

ai1
ai2

.

Now

S1(k)

k

S2(n− k)

n− k ≤ ak,2
ak,1

× ak+1,1

ak+1,2
≤ 1,

where one of the last two inequalities is strict in view
of (15). Then S1(k)S2(n− k) < k(n− k) and

α1 =
n− k − S2(n− k)

k(n− k)− S1(k)S2(n− k)
,

α2 =
k − S1(k)

k(n− k)− S1(k)S2(n− k)
.

In particular, S1(k) < k and S2(n− k) < n− k.

It remains to prove the uniqueness of the index k. De-
fine δk = α2/α1. Note that

ak,2
ak,1

≤ δk <
ak+1,2

ak+1,1
. (17)

Let Pk be the property that S1(k) < k and S2(n−k) <
n− k. In view of (15), there exists some index i1 such
that

ai1,2
ai1,1

≤ 1 <
ai1+1,2

ai1+1,1
.

If Pk holds and k < i1 then Pk+1 holds; similarly if Pk
holds and k > i1 + 1 then Pk−1 holds. Thus the set of
indices k such that Pk holds is of the form {k1, . . . , k2}
with k1 ≤ k2. For all k = k1 + 1, . . . , k2,

δk ≥
ak2
ak1

,

⇐⇒ k − S1(k) ≥ ak2
ak1

(n− k − S2(n− k)),

⇐⇒ k − S1(k − 1) ≥ ak2
ak1

(n− k + 1− S2(n− k)),

⇐⇒ k − 1− S1(k − 1) ≥
ak2
ak1

(n− k + 1− S2(n− k + 1)),

⇐⇒ δk−1 ≥
ak2
ak1

,

where we have used the fact that S1(k) = S1(k − 1) +
ak2/ak1 and S2(n−k) = S2(n−k+1)−ak1/ak2. Now as-
sume that k satisfies (17). If k > k1 then δk ≥ ak2/ak1
implies δk−1 ≥ ak2/ak1 ≥ ak−1,2/ak−1,1 and, by in-
duction, δl ≥ al+1,2/al+1,1 for all l = k1, . . . , k − 1.
Similarly, if k < k2 then δk < ak+1,2/ak+1,1 implies
δk+1 < ak+1,2/ak+1,1 ≤ ak+2,2/ak+2,1 and, by induc-
tion, δl < al,2/al,1 for all l = k+1, . . . , k2. We conclude
that there is at most one index k such that Pk holds
and (17) is satisfied.

We now relax the assumption that aij > 0 for all i, j. We
still number the transactions in increasing order of ai2/ai1,
with ai2/ai1 = +∞ if ai1 = 0. Again, we consider three
cases:

• Case 1
n

∑n
i=1 ai2/ai1 ≤ 1. This implies that ai1 > 0

for all i = 1, . . . , n and we prove in the same way
that the allocation ϕ such that (ϕ1a11, . . . , ϕnan1) =
(1/n, . . . , 1/n) is the unique BMF allocation.

• Case 1
n

∑n
i=1 ai1/ai2 ≤ 1. This implies that ai2 > 0

for all i = 1, . . . , n and the allocation ϕ such that
(ϕ1a12, . . . , ϕnan2) = (1/n, . . . , 1/n) is the unique BMF
allocation.

• Case 1
n

∑n
i=1 ai2/ai1 > 1 and 1

n

∑n
i=1 ai1/ai2 > 1. By

the bottleneck-max property, there exists some index
k < n such that α1 = ϕ1a11 = . . . = ϕkak1 ≥ ϕk+1ak+1,1

and α2 = ϕk+1ak+1,2 = . . . = ϕnan2 ≥ ϕkak2. Observe
in particular that, by the sharing-incentive property,
ai1 > 0 for all i ≤ k and ai2 > 0 for all i > k. The rest
of the proof is identical.

Theorem 1 – Stability of BMF
Assume that max(ak1, ak2) = 1 for all k; this assumption is
not restrictive by scale invariance. We know by the proof of
Proposition 4 that resource 1 is the single bottleneck if and
only if ak1 > 0 for all k and

∑K
k=1 nk

ak2
ak1

< n, which implies

~n.a2 < ~n.a1 since

~n.(a2 − a1) =

K∑
k=1

nk
ak2 − ak1

ak1
+

K∑
k=1

nk
ak2 − ak1

ak1
(ak1 − 1),

≤

(
K∑
k=1

nk
ak2
ak1

)
− n < 0.

In particular, ~n.a2 ≥ ~na1 implies that resource 2 is a bot-
tleneck; similarly, ~n.a1 ≥ ~na2 implies that resource 1 is a
bottleneck.

Let V be the function defined by V (x) = max(x.a1, x.a2)
for all x ∈ RK+ . Observe that the sets {~n : V (~n) ≤ m} are
finite for any m > 0 so that V is a Lyapunov function for
the Markov process ~n(t). The drift is given by

∆V (~n) =

K∑
k=1

λk(V (~n+ ek)− V (~n))

+
∑

k:nk>0

µφk(~n)(V (~n− ek)− V (~n)),

where ek denotes the unit vector on component k and µ =
µ1 = . . . = µk. For any state ~n such that ~n.(a1−a2) ≥ 0 and
(~n±ek).(a1−a2) ≥ 0 for all k, resource 1 is a bottleneck both
in state ~n and after any jump from state ~n. In particular,
V (~n) = ~n.a1 and

∆V (~n) = µ

(
K∑
k=1

ρkak1 − 1

)
≤ −µδ,

where δ = 1−maxj=1,2

∑K
k=1 ρkakj is a positive constant.

Similarly, in any state ~n such that ~n.(a2 − a1) ≥ 0 and
(~n±ek).(a2−a1) ≥ 0 for all k, resource 2 is a bottleneck both
in state ~n and after any jump from state ~n and ∆V (~n) ≤
−µδ. Since V is a continuous, piecewise linear function and
the transition rates of the Markov process ~n(t) are bounded,
there exists some smoothened version W of V , which is a
Lyapunov function for ~n(t) and such that ∆W (~n) ≤ −µδ/2
outside a compact set [3]. By Foster’s criterion, the Markov
process ~n(t) is ergodic.


	Introduction
	Objectives
	The fluid model
	Sharing properties
	Dominant resource fairness
	Proportional fairness
	Bottleneck max fairness

	Algorithms
	Dominant resource fairness
	Proportional fairness
	Bottleneck max fairness

	Performance
	Markovian demand model
	Performance of the fluid model
	Strategyproofness
	Task-based allocations
	Packet-based allocations

	Related work
	Conclusions
	References

