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Abstract

We consider Kelly networks with shuffling of customers within each queue. Specifically,
each arrival, departure or movement of customer from one queue to another triggers a shuffle
of the other customers at each queue. The shuffle distribution may depend on the network
state and on the customer that triggers the shuffle. We prove that the stationary distribution
of the network state remains the same as without shuffling. In particular, Kelly networks
with shuffling have the product form. Moreover, the insensitivity property is preserved for
symmetric queues.
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1 Introduction

Since the pioneer work of Jackson [11], an intense research activity has been devoted to the study
of queueing networks, with applications ranging from production lines to computer systems and
communication networks [2, 8, 13]. Specific attention has been paid to product-form networks,
whose stationary distribution can be evaluated explicitly, see e.g. [3, 4, 10, 17]. As originally
proved by Kelly [12], the stationary distribution of such networks does not depend on the
service time distribution beyond the mean for a large class of symmetric service disciplines,
that includes the processor-sharing discipline and the preemptive-LIFO discipline considered by
Baskett, Chandy, Muntz and Palacios [1]. This insensitivity property is of great practical interest
since usual performance metrics like the mean sojourn time of customers can be evaluated
without knowing the precise statistics of service requirements.

In the present paper, we consider Kelly networks with shuffling. When a customer arrives
at or leaves a queue, the positions of the other customers present at this queue are permuted at
random. Such random permutations have already been considered by Yashkov [18] and Daduna
[6], see also Daduna, Schassberger [7, 5] and Yates [19, 20] for discrete-time queues. We here
consider Kelly networks with arbitrary routes and assume that any movement of customer may
trigger the shuffle of customers at all queues. The shuffle distribution may depend on the whole
network state and on the customer that triggers the shuffle. Such a process does not enter the
framework of Chao et. al. [4] where a customer or signal can only impact other queues through its
propagation throughout the network. We prove that the stationary distribution of the network



state remains the same as without shuffling. In particular, Kelly networks with shuffling have
the product form. Moreover, the insensitivity property is preserved for symmetric queues.

Following Kelly [12], we use the notion of customer class to represent arbitrary routes in the
network. Without any loss of generality, we assume that each class is associated with a single
queue. Customers of the same class require independent services of exponential distribution at
this queue and become customers of another class or leave the network after service comple-
tion. The proof of the product form simply consists in verifying the associated partial balance
equations. The general results of Miyazawa, Schassberger and Schmidt [14, 15, 16] showing the
equivalence between partial balance and insensitivity for generalized semi-Markov schemes with
reallocation may then apply to prove the insensitivity property of symmetric queues. We prefer
a simple, direct proof based on the method of phases.

In the rest of the paper, we describe the considered queueing network in Section 2, prove the
product form and the insensitivity property in Sections 3 and 4, respectively, and discuss some
extensions in Section 5.

2 Network description

We consider an open network of J queues. In this section, we assume that all queues have unit
service rates. The general case of state-dependent service rates is considered in Section 5. We
denote by n; the number of customers at queue j, by n the vector (ni,...,ny) and by e; the
unit vector with 1 in component j and 0 elsewhere. We refer to n as the macro-state. We define
below the micro-state ¢ that contains information about the classes and positions of customers
in the queues.

Customer classes. We consider an arbitrary set of I customer classes. Without any loss of
generality, we assume that each class is associated with a single queue. Denoting by C; the set
of classes associated with queue j, the sets C1,...,C; form a partition of {1,...,1}.

Class-i customers arrive according to a Poisson process of intensity v;. We refer to these
arrivals as external arrivals. Class-¢ customers require independent, exponentially distributed
services with mean 1/u; at the associated queue. After service completion, a class-i customer
becomes a class-k customer with probability p;r, which corresponds to an internal arrival, and
leaves the network with probability p; = 1 — Zé:l pik- We assume that 21‘121 v; > 0 and that
all customers eventually leave the network so that the arrival rate A; of class-i customers is the
unique solution to the traffic equations:

I
Ai=vi+ Y Mebri- (1)
k=1

The load due to class-i customers is then given by:

Ai
pPi = —.
i
By increasing the number of classes, one may describe an arbitrary set of routes in the network,
as in the original work of Kelly [12].



Service discipline. The service rate of queue j is shared by the n; customers present at
this queue as a function of their position in the queue, denoted by [ = 1,2,...,n;. We denote
by 7;(l,n) the fraction of the service rate directed to the customer in position [ in macro-
state n, with Z;Z 17vi(l,;n) = 1; when this customer leaves the queue, customers previously in

positions [ + 1,1+ 2,...,n; are shifted to positions [,/ +1,...,n; — 1, respectively. A customer
arriving at queue j in macro-state n moves into position ! with probability 6;(l,n + e;), for
all [ =1,2,...,n; + 1; customers previously in positions I,/ + 1,...,n; are shifted to positions

I+1,1+2,...,n; + 1, respectively.
Queue j is said to be symmetric if for all macro-states n,

Vi=1,...,n5, 0;(l,n)=";(n). (2)

If queue j is not symmetric, we assume that all customers in this queue have the same exponential
service distribution, that is:

This is the case of FIFO queues for instance.

Micro-state. Let c; be the sequence of n; elements of C; whose I-th element c;(l) is equal to
the class of that customer in position [ at queue j. We refer to the vector ¢ = (c1,...,cy) as the
micro-state. We denote by 0 the micro-state corresponding to an empty network.

Let C(n) be the set of micro-states corresponding to the same macro-state n. For all ¢ € C(n),
we denote by ¢@® (i,1) the micro-state obtained from ¢ by adding a class-i customer in position [

to the associated queue j according to the shifting rule described above, foralll =1,2,... ,n;+1.
Similarly, we denote by ¢© (i,1) the micro-state obtained from ¢ by deleting a class-i customer in
position [ from the associated queue j according to the above shifting rule, foralll = 1,2,...,n;

such that ¢;(l) = 1.

Shuffling. We refer to a shuffle in macro-state n as an element of S(n) = P(n1) x...x P(ny),
where P(m) denotes the set of permutations of m elements, for all m > 1, and P(0) is the
identity mapping on {()}. For any micro-state ¢ € C(n) and any shuffle ¢ € S(n), we denote by
o(c) the micro-state whose j-th component is equal to oj(c;), i.e., the positions of customers
are permuted according to o; at queue j.

In the following, we assume that any movement of customer may trigger a shuffle of customers
at each queue. The shuffle distribution may depend on the macro-state and on the customer
that triggers the shuffle. For all macro-states n and classes i, k, let a;(-,n), Bi(,n), Bi(-,n)
be arbitrary distributions on S(n). When a new class-i customer arrives in macro-state n,
the other customers are permuted according to the shuffle distribution «;(-,n) immediately
before the customer arrival. Specifically, the micro-state becomes o(c) with probability «;(o,n)
immediately before the customer arrival. Similarly, when a class-i customer becomes a class-
k customer after service completion in macro-state n, with 7 € Cj}, the other customers are
permuted according to the shuffle distribution B;,(-,n — e;) immediately after the customer
departure from queue j and before the arrival to the next queue. Finally, when a class-i¢ customer
leaves the network in macro-state n, with i € Cj}, the other customers are permuted according
to the shuffle distribution §;(-,n — e;) after the customer departure from queue j.



3 Product form

The evolution of the micro-state defines a Markov process on a countable state space. The
following result is proved in Appendix A:

Theorem 1 The micro-state has the stationary measure:
I
m(c) = (0) [T o,
i=1

where x; = 2121 Lee; (=i} denotes the number of class-i customers at queue j, for all i € Cj.

Note that the stationary measure of the micro-state is invariant by shuffling of customers
at each queue. It only depends on the number of customers of each class. In particular, the
macro-state has the stationary measure:

) I J
LOED IECEL VRS I ey | IO )
j=1

ceC(n) TLyen T iec; Tir i
Vi e C; Ti="nj

where p; denotes the load of queue j:

pj = Zpi-

iECj

We deduce that the network is stable if and only if p; < 1 for all j = 1,...,J, in which case the
stationary distribution of the macro-state is given by:

J
#(n) =[] - 55},

Jj=1

The network has the product form.

4 Insensitivity property

Assume that the network is stable. In view of Theorem 1, the stationary distribution of the
number of customers of each class at any given queue depends on the load of these classes only.
Furthermore, the stationary distribution of the numbers of customers belonging to some subsets
of classes forming a partition of the set of classes C; at any given queue j depends on the
total loads of these subsets of classes only. This shows the insensitivity of symmetric queues to
hyper-exponential distributions of service requirements. To prove the insensitivity property of
symmetric queues to arbitrary phase-type distributions of service requirements, that is mixtures
of Erlang distributions, we replace the exponential distribution of service requirements of each
class by an Erlang distribution with the same mean.

Specifically, assume that class-i customers require m; independent exponential service phases
with mean 1/(m;u;) at queue j, for all i € Cj and j = 1,...,J. The distribution of service
requirements remains exponential for any non-symmetric queue j, so that m; =1 for all i € C}
in this case. Let s; be the sequence of service stages of those customers present at queue j.
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Specifically, if the customer in position [ is of class 4, that is ¢;(l) = i, s;(1) is an element of
{1,...,m;}. We refer to the pair (c,s), with s = (s1,...,5s7), as the eztended micro-state. We
still denote by 0 the extended micro-state corresponding to an empty network.

The evolution of the extended micro-state defines a Markov process on a countable state
space. The following result is proved in Appendix B:

Theorem 2 The extended micro-state has the stationary measure:

- <Z)

i=1
where x; = 27;1 Lie;(1)=iy denotes the number of class-i customers at queue j, for all i € Cj.

Note that the stationary measure of the extended micro-state is independent of the service
stage of each customer. It only depend on the number of customers of each class. Moreover,
the stationary distribution of the micro-state remains unchanged. In particular, the stationary
distribution of the numbers of customers belonging to some subsets of classes forming a partition
of the set of classes C; at any given queue j depends on the total loads of these subsets of
classes only. This shows the insensitivity of symmetric queues to phase-type distributions. Such
distributions are known to form a dense subset of the set of distributions with nonnegative
support. The general insensitivity property then follows by continuity as in [4, 9].

5 Extensions

There are several possible extensions to these results. First, the same results apply to closed
Kelly networks, as well as to mixed Kelly networks with both open and closed components.
Second, the service rates may depend on the macro-state. Let ¢;(n) be the service rate of queue
4 in macro-state n. Assume that there is a positive function ® on N such that ®(0) = 1 and
for all macro-states n such that n; > 1,

(I)(’I’L - 6]')

¢j(n) = —¢ )

This is the balance property of Kelly-Whittle networks [17]. The stationary measures of the
micro- and macro-states become:

I
m(c) =m(0)@(n) [[ o and 7(n) =7(0)2(n) ]2
=1

The insensitivity property is preserved for symmetric queues. Similarly, one may extend the
result to state-dependent arrivals rates and routing probabilities, see e.g. [17].

As a final remark, we note that shuffles may additionally be triggered by an external point
process at each queue (e.g. Poisson). It is indeed sufficient to consider additional queues whose
role is to trigger shuffles (e.g. through customer arrivals at these queues). The intensity of shuffle
events may depend on the network state (e.g. through state-dependent arrival rates).



Appendix
A  Proof of Theorem 1

We prove that the stationary measure m of Theorem 1 satisfies the partial balance equations for
all queues j =1,...,J and for the source of external arrivals.

Consider a micro-state ¢ € C(n) such that ¢;(I) = i. The probability flux corresponding to
the departure of the customer in position [ from queue j in micro-state c is given by:

m(c)piv; (L, n). (4)

Now the probability flux corresponding to the external arrival of a customer in position [ at
queue j leading to micro-state c is given by:

Z (i (o,n — €;)d;(1,n),

o€S(n—ej)

where ¢’ denotes the micro-state such that ¢ = ¢’ @ (i,1). Using the fact that 7(c) = 7(c')p;, we

get the probability flux:
7(c)

v

pi(s (1, n) Z a;(o,n —ej) = m(c)d;(l, n)ulyi.

Ai
o€S(n—ej)

Similarly, the probability flux corresponding to the internal arrival of a customer in position [
at queue j leading to micro-state c is given by:

nyr 15y

Z Z Z Z (Vv (', n + ey — e5)piiByi(o,n — e5)0;(1,n),

=1¢€Cy I'=1 c€S(n—ej)

where ¢ denotes the micro-state such that ¢ = o(c’ © (¢/,I')) @ (i,1). Using the fact that
7(c) = w(c)pi/pir, we get the probability flux:

Ly

Z Z ,uz/p”cs (I,n) Z v (U'sn+ ey — €5) Z Biri(o,n — ;)

J'=1i'€eCy I'=1 oeS(n—ej )

(1, n) Zx\/p”

i'=1

Summing both probability flux gives:

I
W(C)%(Sj(la n) (Vi + Z Ai’pi/i) :
! i'=1

In view of the traffic equations (1), the total probability flux corresponding to the arrival of a
customer in position [ at queue j leading to micro-state c is given by:

m(c)pid;(l,n). (5)



Now if queue j is symmetric, we deduce from (2) that the probability flux (4) and (5) are equal.
If queue j is not symmetric, summing both probability flux over all positions [ = 1,...,n; in
the queue yields equality in view of (3).

To conclude the proof, we need to verify the partial balance equations for the source. Let
¢ € C(n). The probability flux corresponding to external arrivals in micro-state ¢ is given by:

7(c) Z V. (6)

Now the probability flux corresponding to the departure of a customer from the network leading
to micro-state c is given by:

n/+1
Y Y Z pairyy (U + )b By (o),
’1zeC/l’ 1 oe8S(n

where ¢’ denotes the micro-state such that ¢ = o(¢’&(#’,1")). Using the fact that w(c) = w(c')/py,
we get the probability flux:

n;r+1
Z Z c)pir it Pir Z ’Y] l n—+—e] Z Bir(o,n) = ( Z)\/pz,
J'=1veCy =1 ceS(n

which is equal to the probability flux (6) in view of the traffic equations (1).

B Proof of Theorem 2

The proof is similar to that of Theorem 1. The only difference lies in the partial balance equations
for symmetric queues.

Let ¢ € C(n) with ¢;(I) = i for some symmetric queue j. The probability flux corresponding
to the completion of the service stage of the customer in position [ at queue j in the extended
micro-state (c, s) is given by:

(e, s)%’yj(l, n).

(]

In particular, this probability flux does not depend on the service stage s;(1) of the customer.
Now, by the same argument as in the proof of Theorem 1, we get the probability flux corre-
sponding to the arrival of a customer in position [ at queue j leading to micro-state (c, s), with

Sj(l) =1: ‘
(e, s)%éj(l, n).

Both probability flux are equal in view of (2).
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