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Abstract— A rich class of communication networks can be rep-
resented as queueing networks with state-dependent arrival rates
and service rates. We provide necessary and sufficient conditions
for such queueing networks to be insensitive in the sense that the
steady-state distribution depends on the service time distribution
at each queue through the mean only. This insensitivity property
is key to the development of simple engineering rules that do not
require the knowledge of fine traffic statistics.

Index Terms— Queueing theory, partial reversibility, insensi-
tivity, communication networks.

I. INTRODUCTION

Since its publication in 1917, the Erlang formula has proved
instrumental in sizing telephone networks [13]. It determines
the required number of telephone lines given a prediction of
expected demand and a target blocking probability. A key
property of the Erlang formula is its insensitivity: the blocking
probability does not depend on the holding time distribution
beyond the mean [28]. Traffic is in fact characterized by a
unique parameter, the traffic intensity, which is defined as the
product of the call arrival rate and the mean holding time. This
makes the Erlang formula both simple to apply and robust to
changes in fine traffic characteristics, and explains its enduring
success.

The only assumption required by the Erlang model is that
calls arrive as a Poisson process. It may in fact be shown
that the Erlang formula holds for non-Poisson call arrivals
provided call sessions arrive as a Poisson process, where a
session corresponds to the sequence of calls generated by
the same user [4]. This assumption is reasonable for a large
user population. For a small user population, sessions do not
arrive as a Poisson process (the higher the number of ongoing
sessions, the less likely the arrival of new sessions). All
sessions are then considered as permanent, the traffic intensity
being determined by the ratio of mean call duration to mean
idle duration. This is the well-known Engset model [10], [11].
For equal traffic intensities, the Engset formula gives a lower
blocking probability than the Erlang formula and tends to the
latter when the user population grows to infinity.

Both the Erlang model and the Engset model are insensitive
to all traffic characteristics beyond the traffic intensity. Call
durations and idle durations may have arbitrary distributions.
There may be arbitrary correlation between these random
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variables within the same session. The blocking probability is
given by the corresponding Erlang or Engset formula, which
is a function of traffic intensity and the number of telephone
lines only [4].

These strong insensitivity results extend to reservation-
based communication networks like circuit-switched networks.
The corresponding models are known as loss networks [21]
and include the extension of the Erlang model to a link shared
by users having different bandwidth requirements [12], [15],
[19], [23]. The blocking probability of a call depends only on
its resource requirement (bandwidth, path in the network) and
on the traffic intensity of each type of call.

It has recently been shown that similar insensitivity results
hold for connection-less data networks like the Internet. Data
transfers are represented as fluid flows whose bit rate changes
at each flow arrival and flow departure. The basic model is a
processor-sharing queue that represents a single, evenly shared
bottleneck link [22]. Both the distribution of the number of
active flows and the throughput of each flow is insensitive to
all traffic characteristics beyond the traffic intensity [2]. It is
again sufficient that sessions arrive as a Poisson process, each
session consisting of a random sequence of flows separated
by idle periods. For a finite user population, the analogue of
the Engset model with a fixed number of permanent sessions
applies [3], [16].

The same insensitivity property is satisfied by more complex
models that consist of several links and where flows do not
have a full access to the network but are constrained by
some access line. It is only required that resources are shared
according to balanced fairness [6], [8]. The throughput of each
flow then depends only on its characteristics (access bit rate,
path in the network) and on the traffic intensity of each type
of flow. Various traffic control schemes like admission control
and load balancing can be considered as well [5].

We shall see that all these traffic models belong in fact
to a class of queueing systems we refer to as partially
reversible networks. Specifically, consider a queueing network
with Poisson external arrivals and independent, exponentially
distributed service requirements. The service discipline is
processor-sharing at each queue. We refer to the network state
as the vector of the number of customers at each queue.
External arrival rates, routing probabilities and service rates
depend on the network state. The network may be open, closed
or mixed depending on its state.
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Unformally stated, we say that the network is partially
reversible if:

(i) in each network state, the traffic equations have a positive
solution, referred to as the arrival rates;

(ii) the corresponding network with the same arrival rates and
without routing (cf. figure 1) is described by a reversible
Markov process.

We prove that the invariant measure of a partially reversible
queueing network is explicit and insensitive to the service
requirement distribution at each queue. Conversely, any queue-
ing network whose invariant measure is insensitive to the
service requirement distribution at each queue must satisfy
conditions (i) and (ii). Partially reversible networks are there-
fore the only queueing systems leading to insensitive results.

(a) (b)

Fig. 1. A queueing network (a) and the corresponding network with the
same arrival rates and without routing (b).

We believe these insensitive queueing models are key to the
derivation of simple and robust engineering rules that do not
require the knowledge of fine traffic statistics. Moreover, they
may be useful for the design of traffic control schemes like
congestion control, admission control and load balancing that
make the performance of communication networks both simple
to predict and robust to changes in traffic characteristics.

We present a brief overview of related work in the next
section. The notion of partial reversibility is introduced in
section III. We prove in section IV that partial reversibility is a
necessary and sufficient condition for insensitivity. Section V
is devoted to examples of communication networks that can be
represented as partially reversible queueing networks. Section
VI concludes the paper.

II. RELATED WORK

The study of queueing networks started with the seminal
work of Jackson [18]. We first introduce Jackson networks,
then present various extensions including state-dependent ar-
rival rates and service rates. For convenience, we describe open
networks only though all these networks have their closed
counterpart (cf. section III). We refer the reader to the book of
Serfozo [27] for a detailed bibliography on queueing networks.
In all the paper, we say that a Markov process is reversible
if the local balance property holds. In particular, we do not
impose ergodicity.

A. Jackson networks

Consider a Jackson network of N queues with external
arrival rates νi, routing probabilities pij and service rates µi.
Let X(t) be the N -dimensional vector whose i-th component
gives the number of customers in queue i at time t. It is

well-known that the invariant measure of the Markov process
{X(t)}t≥0 has the product form:

π(x) =

(

λ1

µ1

)x1

. . .

(

λN

µN

)xN

,

where the arrival rates λi are the solution of the traffic
equations:

λi = νi +

N
∑

j=1

λjpji, i = 1, . . . , N. (1)

This solution exists and is unique provided all customers
eventually leave the network.

B. State-dependent service rates

Assume that the service rates now depend on the network
state. Let ei be the N -dimensional unit vector with 1 in
component i and 0 elsewhere. If there is a positive function
Φ such that for all i and all states x,

Φ(x) = Φ(x + ei)µi(x + ei), (2)

the invariant measure of the Markov process {X(t)}t≥0 be-
comes:

π(x) = λx1
1 . . . λxN

N Φ(x).

We refer to such networks as Whittle networks. Usual product-
form networks like BCMP networks [1] and Kelly networks
[20] may be seen as Whittle networks where each customer
class is represented as a separate queue [27]. It is worth
noting that condition (2) is equivalent to the reversibility of
the service process, which describes the evolution of the state
of a virtual network with unit external arrival rates and no
routing. The function Φ corresponds to the invariant measure
of this Markov process.

C. State-dependent arrival rates

Assume now that, in addition to the service rates, both the
external arrival rates and the routing probabilities depend on
the network state. Let λi(x) be the arrival rate at queue i
in state x. The arrival rates are the solution of the traffic
equations:

λi(x) = νi(x) +

N
∑

j=1

λj(x)pji(x + ej), i = 1, . . . , N. (3)

We assume that this solution exists and is unique for all states
x. If there is a positive function Λ such that for all i and all
states x:

Λ(x)λi(x) = Λ(x + ei), (4)

the invariant measure of the Markov process {X(t)}t≥0 be-
comes:

π(x) = Λ(x)Φ(x).

Similarly, condition (4) is equivalent to the reversibility of the
arrival process, which describes the evolution of the state in a
virtual network with external arrival rates equal to the arrival
rates, no routing and unit service rates. The function Λ corre-
sponds to the invariant measure of this Markov process. Thus



3

the invariant measure π of the Markov process {X(t)}t≥0 may
be seen as the product of the invariant measures of the arrival
process and the service process. This is often considered as
the most general class of queueing networks whose invariant
measure is explicit.

It is in fact not necessary to assume that both the arrival
process and the service process are reversible [7]. Provided
the traffic equations (3) have a positive solution in all states
x, it is sufficient that the Markov process that describes the
evolution of the state of a virtual network with external arrival
rates equal to the arrival rates and no routing is reversible (see
condition (ii) above). This is the notion of partial reversibility
we present in section III in its most general form, that is for
an arbitrary state space, a state-dependent network structure
(open, closed or mixed), and possibly null arrival rates and
service rates.

D. Insensitivity

Partially reversible networks are actually covered by the re-
sults of Hordijk and van Dijk [17], where the so-called adjoint
process plays the role of the Markov process of condition (ii).
But the network state is described in terms of the location
of each customer in the network instead of the number of
customers in each queue. As a consequence, the insensitivity
property is expressed in terms of the service distribution of
each customer. This is a much stronger requirement than the
insensitivity to the service distribution at each queue we are
interested in. Necessary conditions for the latter insensitivity
property cannot be deduced from the results of Hordijk and
van Dijk. The more general results derived by Whittle [29] for
Markov processes and by Schassberger [24] for generalised
semi-Markov processes also apply to the insensitivity to the
service distribution of each customer only [25], [26].

Regarding the insensitivity to the service distribution at
each queue, we proved in [7] that condition (ii) is necessary
and sufficient in networks that satisfy condition (i). We here
prove the much stronger result that both conditions (i) and (ii)
are necessary and sufficient for insensitivity. In particular, the
traffic equations must have a positive solution in all states x
for a network to be insensitive to the service distribution at
each queue. This solution is unique for open networks and
defined up to a multiplicative constant per closed subnetwork
for closed or mixed networks.

E. Other queueing networks

Following the seminal work of Kelly [20], many authors
have studied so-called symmetric service disciplines, that lead
to insensitive results. We here restrict the analysis to the
processor-sharing service discipline, which is sufficient to
represent most usual communication networks (cf. section V).
Other extensions include networks with batch arrivals and
batch services, introduced by Boucherie and van Dijk [9], and
networks with negative customers introduced by Gelenbe [14].
We do not consider such extensions in the present paper.

III. PARTIAL REVERSIBILITY

We first introduce the notion of partial reversibility in its
most general form, then consider the specific cases of open,
closed and mixed networks. Since the service requirements are
assumed to be independent, exponentially distributed at each
queue, we do not specify the service discipline in this section.

A. General framework

Consider a network of N queues. Some customers are
generated by a source, follow a random path in the network
and eventually leave the network. Some other customers stay
forever in the network. We refer to arrivals from the source
as external arrivals, to other arrivals as internal arrivals. Let
x = (x1, . . . , xN ) be the network state, where xi denotes the
number of customers in queue i. External arrivals at queue i
form a Poisson process of intensity νi(x) in state x. We may
have νi(x) = 0, in which case there are no external arrivals
at queue i in state x. The overall external arrival rate in state
x is denoted by:

ν(x)
def
=

N
∑

i=1

νi(x).

After service completion at queue i in state x, a customer
is routed to queue j with probability pij(x) and leaves the
network with probability:

pi(x)
def
= 1 −

N
∑

j=1

pij(x).

Service requirements are independent, exponentially dis-
tributed of unit mean at each queue. The service rate of queue
i is µi(x) in state x. We may have µi(x) = 0, in which case
no service is provided by queue i in state x. By convention, we
let pii(x) = 1 in this case. We denote by ei the N -dimensional
unit vector with 1 in component i and 0 elsewhere.

Network dynamics: We are interested in the evolution of
the network state. We denote by X(t) the network state at
time t. Under the above assumptions, the stochastic process
{X(t)}t≥0 is a Markov process with the following transition
rates:

q(x, x + ei) = νi(x),

q(x + ei, x + ej) = µi(x + ei)pij(x + ei),

q(x + ei, x) = µi(x + ei)pi(x + ei).

We assume that this Markov process is irreducible and denote
by S its state space, S ⊂ N

N . Without any loss of generality,
we let νi(x) = µi(x) = 0 for all x 6∈ S.

Customer path: We now describe the random path fol-
lowed by an arbitrary customer in the network when the other
customers are frozen in some state x ∈ N

N . Specifically,
let {Rn(x)}n≥0 be the Markov chain on {0, 1, . . . , N} with
transition matrix P (x) defined by P00(x) = 1 if ν(x) = 0,

P00(x) = 0, P0i(x) =
νi(x)

ν(x)
∀i 6= 0 otherwise,

and

Pi0(x) = pi(x + ei), Pij(x) = pij(x + ei) ∀i, j 6= 0.
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Viewing state 0 as the source of external arrivals, the sequence
of states visited by this Markov chain between two consecutive
visits of state 0 corresponds to the path followed by an
arbitrary customer arriving in the network when the other
customers are frozen in state x. We assume that the Markov
chain {Rn(x)}n≥0 has closed communication classes. Its
invariant measure η(x), defined by the balance equation:

P (x)η(x) = η(x) (5)

with ηi(x) > 0 for all i ∈ {0, 1, . . . , N}, is then unique up to
a multiplicative constant per communication class. We denote
by Ci(x) the communication class of state i. For all i ∈ C0(x),
the ratio ηi(x)/η0(x) corresponds to the mean number of visits
to state i between two consecutive visits to state 0.

Traffic equations: We refer to the arrival rate to queue i
in state x as:

λi(x) = ν(x)
ηi(x)

η0(x)
, i = 1, . . . , N.

In view of the balance equation (5), the arrival rates satisfy
the traffic equations:

ν(x) =
N
∑

i=1

λi(x)pi(x + ei) (6)

and

λi(x) = νi(x) +

N
∑

j=1

λj(x)pji(x + ej). (7)

The positive solution to these equations is unique up to a
multiplicative constant per communication class. Equation (6)
states that the departure rate from the source is equal to the
arrival rate to the source. Equations (7) state that the arrival
rate at each queue i is the sum of the external arrival rate
and the internal arrival rate. Note that (6) follows from (7) by
summation.

Partial reversibility: The network is said to be partially
reversible if the traffic equations have a positive solution in all
states x ∈ N

N and if the Markov process {X̄(t)}t≥0, defined
by the transition rates:

q̄(x, x + ei) = λi(x), q̄(x + ei, x) = µi(x + ei), i ∈ C0(x),

q̄(x + ei, x + ej) = µi(x + ei)λj(x), i 6∈ C0(x), j ∈ Ci(x),

is reversible. This describes the evolution of the state of
a network with arrival rate λi(x) at queue i in state x
and without routing in the corresponding open component
(cf. figure 1), with homogeneous routing in the corresponding
closed components (cf. figure 3 below). Following Hordijk
and van Dijk [17], we refer to the Markov process {X̄(t)}t≥0

as the adjoint process. We denote by G the corresponding
transition graph.

We have the following key result:
Theorem 1: For a partially reversible network, the Markov

process {X(t)}t≥0 has the same invariant measure π as the
adjoint process, given by π(y) = 1 for some reference state
y ∈ S and for all states x ∈ S, x 6= y, by

π(x) =

n
∏

k=1

q̄(x(k − 1), x(k))

q̄(x(k), x(k − 1))
,

where x(0) ≡ y, x(1), . . . , x(n) ≡ x denotes any path from
state y to state x in the transition graph G.

Proof: It follows from the traffic equations (6) and (7)
that the measure π satisfies:

π(x)ν(x) =

N
∑

i=1

π(x + ei)µi(x + ei)pi(x + ei),

π(x + ei)µi(x + ei) = π(x)νi(x)

+
N
∑

j=1

π(x + ej)µj(x + ej)pji(x + ej).

These are equations of partial balance, which imply the global
balance by summation:

π(x)

(

ν(x) +
N
∑

i=1

µi(x)

)

=
N
∑

i=1

π(x − ei)νi(x − ei)

+

N
∑

i,j=1

π(x + ej − ei)µj(x + ej − ei)pji(x + ej − ei)

+

N
∑

i=1

π(x + ei)µi(x + ei)pi(x + ei),

where we use the convention that π(x) = 0 if x 6∈ N
N .

It is worth noting that the Markov process {X(t)}t≥0

associated with a partially reversible network is generally not
reversible. We verify that the Markov process {X(t)}t≥0 is
reversible if and only if for all states x ∈ N

N , the Markov
chain {Rn(x)}n≥0 is reversible:

Corollary 1: For a partially reversible network, the Markov
process {X(t)}t≥0 is reversible if and only if for all states
x ∈ N

N , the Markov chain {Rn(x)}n≥0 describing the path
of an arbitrary customer when the other customers are frozen
in state x is reversible, that is:

νi(x) = λi(x)pi(x + ei), ∀i,

λi(x)pij(x + ei) = λj(x)pji(x + ej), ∀i, j.

Proof: The Markov process {X(t)}t≥0 is reversible if
and only if for all states x ∈ N

N ,

π(x)νi(x) = π(x + ei)µi(x + ei)pi(x + ei), ∀i,

π(x + ei)µi(x + ei)pij(x + ei)

= π(x + ej)µj(x + ej)pji(x + ej), ∀i, j.

The result is then a direct consequence of Theorem 1.

B. Open networks

By definition, the network is said to be open if:

∀x ∈ N
N , C0(x) = {0} ∪ {i : x + ei ∈ S}.

Thus all other communication classes correspond to non-
admissible states. An example of open network is given in
figure 1.
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Partial reversibility implies the existence of a positive so-
lution to the traffic equations. Figure 2 below gives examples
of non-partially reversible queueing networks. In both cases,
there is no positive solution to the traffic equations. Note that
it is sufficient that the traffic equations do not have a positive
solution in at least one state x for the insensitivity property to
be violated.

Fig. 2. Examples of non-partially reversible queueing networks: the traffic
equations do not have a positive solution.

C. Closed networks

By definition, the network is said to be closed if:

∀x ∈ N
N , C0(x) = {0}.

In particular, there is no external arrivals and the network
contains a fixed number of customers. The network may
consist in several closed subnetworks, as illustrated in Figure
3 (a). Note that these subnetworks may interact through the
state-dependent service rates. The set of closed subnetworks
may also change depending on the state x. Partial reversibility
implies the existence of a positive solution to the traffic
equations in all states x. In addition, the Markov process that
describes the evolution of the network with the same arrival
rates and homogeneous routing probabilities per subnetwork,
as illustrated in Figure 3 (b), must be reversible.

(a) (b)

Fig. 3. A closed queueing network consisting of two subnetworks (a) and the
corresponding network with the same arrival rates and homogeneous routing
probabilities per subnetwork (b).

Figure 4 below gives an example of a non-partially re-
versible closed network: the traffic equations do not have a
positive solution. Again, it is sufficient that the traffic equations
do not have a positive solution in at least one state x for the
insensitivity property to be violated.

D. Mixed networks

Mixed networks may have open and closed components,
as illustrated in Figure 5 (a). Partial reversibility implies the
existence of a positive solution to the traffic equations in

Fig. 4. Example of a non-partially reversible closed queueing network: the
traffic equations do not have a positive solution.

all states x. In addition, the Markov process that describes
the evolution of the network with the same arrival rates, no
routing for the open subnetwork and homogeneous routing
probabilities per closed subnetwork, as illustrated in Figure 5
(b), must be reversible.

(a) (b)

Fig. 5. A mixed queueing network consisting of an open subnetwork
and a closed subnetwork (a) and the corresponding network with the same
arrival rates, no routing for the open subnetwork and homogeneous routing
probabilities for the closed subnetwork (b).

IV. INSENSITIVITY

In this section, we assume that the service discipline is
processor-sharing at each queue and prove that partial re-
versibility is a necessary and sufficient condition for insen-
sitivity. We restrict the analysis to phase-type distributions
(also known as Cox distributions) which are known to form a
dense subset within the set of all distributions with nonnegative
support [27].

Specifically, we say that the network is insensitive if the
invariant measure of the number of customers at each queue
remains unchanged when the distribution of service require-
ments at each queue is replaced by any phase-type distribution
with the same mean. Note that we do not assume that the
Markov process {X(t)}t≥0 is ergodic. The following result is
proved in the appendix:

Theorem 2: Partial reversibility is a necessary and sufficient
condition for insensitivity.

In particular, the insensitivity property implies the existence
of a positive solution to the traffic equations in all states x.

V. APPLICATION TO COMMUNICATION NETWORKS

We now show that various communication networks can be
represented as partially reversible queueing networks.
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A. Reservation-based networks

Erlang model: We first consider the Erlang model with
C telephone lines, Poisson call arrivals of intensity ν and inde-
pendent, exponentially distributed call durations of mean 1/µ.
This is represented as a single queue1 with state-dependent
arrival rate ν(x) = ν if x < C, ν(x) = 0 otherwise, and
state-dependent service rate µ(x) = µx. This is trivially a
partially reversible network, with invariant measure:

π(x) =
ρx

x!
, x = 0, 1, . . . , C,

where ρ
def
= ν/µ corresponds to the traffic intensity in Erlangs.

By the PASTA property, the call blocking probability B is
equal to πt(C), the stationary probability that all lines are
occupied:

B =

ρC

C!

1 + ρ +
ρ2

2
+ . . . +

ρC

C!

. (8)

This is the Erlang formula, which in view of Theorem 2 does
not depend on distribution of call durations beyond the mean.

Now assume users generate calls within sessions. We con-
sider the simple case where sessions arrive as a Poisson
process of intensity ν, start with a call of exponential duration
of mean 1/µ1, followed after an idle period of exponential
duration of mean 1/µ2 by a second call of exponential duration
of mean 1/µ3. In case of call blocking, the session goes on
as if the call were accepted and terminated instantaneously.
This is represented as a network of N = 3 queues on the state
space:

S = {x : x1 + x3 ≤ C},

with null external arrival rates except for

ν1(x) = ν if x1 + x3 < C,

ν2(x) = ν if x1 + x3 = C,

null routing probabilities except for

p12(x) = 1 if x1 + x3 ≤ C,

p23(x) = 1 if x1 + x3 < C,

and service rates:

µ1(x) = µ1x1, µ2(x) = µ2x2, µ3(x) = µ3x3, ∀x ∈ S.

This is an open queueing network with arrival rates:

λ1(x) = ν if x1 + x3 < C, λ1(x) = 0 otherwise,

λ2(x) = ν ∀x ∈ S,

λ3(x) = ν if x1 + x3 < C, λ3(x) = 0 otherwise.

The network is partially reversible with invariant measure:

π(x) =
ρx1
1 ρx2

2 ρx3
3

x1!x2!x3!
, x ∈ S,

1For convenience, we use the same notation for the arrival rate to the queue
ν (resp. the per-customer service rate µ) and the state-dependent arrival rate
ν(x) (resp. the state-dependent service rate µ(x)).

where ρi
def
= ν/µi. The blocking probability is again given

by the stationary probability
∑

x:x1+x3=C πt(x) that all lines
are occupied, which coincides with the Erlang formula (8)
for the traffic intensity ρ = ρ1 + ρ3. In view of Theorem
2, the result is independent of the distributions of call and
idle durations except for the traffic intensity. More generally,
the call blocking probability is given by (8) for any type
of session, with a random number of calls and possible
correlation between the duration of successive calls and idle
periods of the same session [4].

Engset model: The Engset model with a fixed number
M of permanent sessions leads to similar insensitive results.
Assume call durations are exponential of mean 1/µ1, idle
durations are exponential of mean 1/µ2. This is represented
as a closed queueing network of N = 2 queues on the state
space:

S = {x : x1 ≤ C, x1 + x2 = M},

with routing probabilities:

p12(x) = 1 ∀x ∈ S,

p21(x) = 1 if x1 < C, p21(x) = 0 otherwise,

and service rates:

µ1(x) = µ1x1, µ2(x) = µ2x2, ∀x ∈ S.

The network is a partially reversible with invariant measure:

π(x) =

(

M

x1

)

%x1 , x ∈ S,

where %
def
= µ2/µ1 denotes the ratio of mean call duration to

mean idle duration. Note that the PASTA property does not
hold in this case. It is indeed well known that the network state
distribution seen by new calls is in fact equal to the steady
state distribution with M − 1 permanent sessions, yielding
the following expression for the blocking probability when
C < M :

B =

(

M−1

C

)

%C

1 + (M − 1)% + . . . +
(

M−1

C

)

%C
.

This is the Engset formula, which is insensitive to the distri-
butions of call durations and idle durations beyond the ratio
of their mean %.

Multirate systems: We now consider a multirate system
with N types of calls. Calls of type i arrive as a Poisson
process of intensity νi and require a circuit of ci bit/s during a
random period of exponential duration of mean 1/µi. The link
capacity is equal to C bit/s. New type-i calls are blocked when
the link occupancy is higher than C − ci. This is represented
as a network of N queues on the state space:

S = {x : x.c ≤ C}, x.c
def
=

N
∑

i=1

xici,

with null external arrival rates except for

νi(x) = νi if x.c ≤ C − ci,

null routing probabilities and service rates:

µi(x) = µixi, ∀x ∈ S.
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This is a partially reversible network with invariant measure:

π(x) =
N
∏

i=1

ρxi

i

xi!
, x ∈ S.

where ρi
def
= νi/µi corresponds to the traffic intensity of

type-i calls in Erlangs. The blocking probability of type-
i calls is equal to the steady-state probability that the link
occupancy is higher than C − ci and, like the Erlang formula,
is independent of all traffic characteristics beyond the traffic
intensities ρ1, . . . , ρN .

Loss networks: Finally, we consider a network of L links.
Link l has a capacity of Cl bit/s. There are N types of calls.
Calls of type i arrive as a Poisson process of intensity νi

and require a circuit of ci bit/s through links ri ⊂ {1, . . . , L}
during a random period of exponential duration of mean 1/µi.
Similarly, this is represented as a partially reversible network
of N queues with invariant measure

π(x) =

N
∏

i=1

ρxi

i

xi!
, x ∈ S,

on the state space:

S =

{

x : ∀l,
∑

i:l∈ri

xici ≤ Cl

}

,

where ρi
def
= νi/µi corresponds to the traffic intensity of type-

i calls in Erlangs. The blocking probability of type-i calls is
equal to the steady-state probability that for some l ∈ ri, link-l
occupancy is higher than Cl − ci, and is independent of all
traffic characteristics beyond the traffic intensities ρ1, . . . , ρN .

B. Connection-less networks

Single bottleneck: Consider a single link of C bit/s.
Data flows arrive as a Poisson process of intensity ν and
have independent, exponential sizes of mean σ bits. This is
represented as a single queue of arrival rate ν and service
rate C/σ, which is trivially a partially reversible network with
invariant measure:

π(x) = ρx, x ∈ N,

where ρ
def
= νσ/C corresponds to the link load, which is

assumed to be less than 1.
We measure user performance in terms of flow throughput,

defined as the ratio γ of the mean flow size to the mean flow
duration. By Little’s law, we get:

γ = C − A,

where A
def
= νσ corresponds to the traffic intensity in bit/s.

In view of Theorem 2, the flow throughput γ is insensitive to
the flow size distribution beyond the mean. It may be easily
verified as for the Erlang model that it is also insensitive to
the flow arrival process provided flows are generated within
sessions and sessions arrive as a Poisson process [2].

Access rates: Now assume flows are additionnally con-
strained by some fixed bit rate c ≤ C. This is represented as a
single queue of arrival rate ν and state-dependent service rate
µ(x) = min(xc, C)/σ. The invariant measure becomes:

π(x) =

(

C
c
ρ
)x

x!
, if xc ≤ C,

π(x) = ρπ(x − 1), otherwise.

The system is stable if and only if the link load ρ is less than 1.
The corresponding flow throughput can then be easily derived
and is insensitive to all traffic characteristics beyond the traffic
intensity.

Multirate systems: We now consider a multirate system
with N types of data flows. Data flows of type i arrive as
a Poisson process of intensity νi, have an exponential size of
mean σi bits and are constrained by some fixed bit rate ci ≤ C.
We assume that the link capacity C is shared according to
balanced fairness [8]. The corresponding model is a partially
reversible network of N queues with invariant measure:

π(x) =
N
∏

i=1

(

C
ci

ρi

)xi

xi!
, if x.c ≤ C,

π(x) =

N
∑

i=1

ρiπ(x − ei) otherwise,

where ρi
def
= νiσi/C corresponds to the link load due to the

type-i flows. The system is stable if and only if the total
link load

∑N

i=1
ρi is less than 1. Again, the corresponding

throughput of each type of flow can be easily derived and
is insensitive to all traffic characteristics beyond the traffic
intensities A1, . . . , AN , with Ai

def
= νiσi.

Networks: These results can be generalized to networks
with several links. Consider a network of L links. Link l has
a capacity of Cl bit/s. There are N types of flows. Flows of
type i arrive as a Poisson process of intensity νi, have an
exponential size of mean σi bits and go through links ri ⊂
{1, . . . , L}. We do not consider per-flow rate limits for the
sake of simplicity. Under balanced fairness, the traffic model
is a partially reversible network of N queues with invariant
measure:

π(x) = Φ(x)

N
∏

i=1

Axi

i ,

where Φ is the function recursively defined by Φ(0) = 1,

Φ(x) = max
l=1,...,L

1

Cl

∑

i:l∈ri

Φ(x − ei),

with Φ(x) = 0 if x 6∈ N
N , and Ai = νiσi corresponds to the

traffic intensity of type-i flows. The network is stable if and
only if the load of each link is less than 1:

∀l = 1, . . . , L,
∑

i:l∈ri

Ai

Cl

< 1.

The results are insensitive to all traffic characteristics beyond
the traffic intensities A1, . . . , AN .
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Admission control: Flows may be subject to admission
control if some minimum throughput must be guaranteed to
ongoing flows. The corresponding invariant measure is then
the restriction of the invariant measure without admission con-
trol to the set of admissible states. The results are insensitive to
all traffic characteristics beyond the traffic intensity provided
the session goes on in case of flow blocking, as for the above
considered reservation-based networks.

Load balancing: Flows may additionnally be routed to
less loaded links. Consider N parallel links of respective
capacities C1, . . . , CN . Flows arrive as a Poisson process of
intensity ν and have independent, exponential sizes of mean σ
bits. We denote by x the network state, where xi is the number
of ongoing flows on the i-th link. We assume the number of
flows on the i-th link cannot exceed some fixed value Mi.
New flows are routed to link i with probability qi(x), with
qi(x) = 0 if xi = Mi, and are blocked with probability:

p(x) = 1 −
N
∑

i=1

qi(x).

This is represented as a network of N queues on the state
space

S = {x : x1 ≤ M1, . . . , xN ≤ MN}

with external arrival rates νi(x) = νqi(x), null routing
probabilities and service rates µi = Ci/σ. Assume that flows
are blocked if and only if all links are fully occupied in the
sense that xi = Mi for all i. Partial reversibility imposes to
route flows to link i in proportion to Mi −xi in non-blocking
states [5]:

qi(x) =
Mi − xi

∑N

j=1
(Mj − xj)

.

The corresponding invariant measure is given by:

π(x) =

( ∑N

j=1
(Mj − xj)

M1 − x1, . . . , MN − xN

) N
∏

i=1

ρxi

i , x ∈ S,

where ρi
def
= νσ/Ci corresponds to the relative load of link

i. User performance can then be evaluated in terms of flow
blocking probability and flow throughput. It is insensitive to
all traffic characteristics beyond the traffic intensity.

VI. CONCLUSION

The insensitivity property is key to the derivation of simple
and robust engineering rules that do not require the knowledge
of fine traffic statistics. Since Erlang’s pioneer work, telephone
networks have been sized based on the prediction of the
demand only, and not on the distribution of holding times that
changes over the years. We believe the insensitive queueing
models described in the present paper are useful for sizing
current communication networks and could serve as guidelines
for the design of future traffic control schemes like congestion
control, admission control and load balancing.

The following appendices are devoted to the proof of
Theorem 2: partial reversibility is a necessary and sufficient
condition for insensitivity.

APPENDIX I
SUFFICIENT CONDITION

A partially reversible network is insensitive: We prove
the result for i.i.d. service requirements consisting of M ex-
ponential phases. Denote by αim the mean service requirement
of the m-th phase at queue i, m = 1, . . . , M , and by qim the
probability that a customer enters the (m+1)-th phase after the
completion of the m-th phase at queue i, m = 1, . . . , M − 1.
We assume that αim > 0 and qim > 0 for all i, m and define:

βi1 = αi1, βim = αim

m−1
∏

n=1

qin for all m = 2, . . . , M.

Service requirements are kept of unit mean so that:

∀i = 1, . . . , N,

M
∑

m=1

βim = 1. (9)

Let yim be the number of customers in m-th phase of
service at queue i. We denote by y the vector (y1, . . . , yM ),

where ym
def
= (y1m, . . . , yNm) gives the number of customers

in m-th phase of service in each queue. This describes the
state of a network of N × M queues, indexed by im with
i = 1, . . . , N , m = 1, . . . , M , with external arrival rates in
state y:

ν̃i1(y) = νi(y1 + . . . + yM ),

ν̃im(y) = 0 for m = 2, . . . , M,

routing probabilities:

p̃im,j1(y) = pij(y1 + . . . + yM )(1 − qim),

p̃im,jn(y) = 0 for n = 2, . . . , M,

with qiM
def
= 0, and service rates:

µ̃im(y) = µi(y1 + . . . + yM ) ×
1

αim

yim

yi1 + . . . + yiM

if yi1 + . . . + yiM > 0, µ̃im(y) = 0 otherwise.

The probability that a customer leaves the network in state y
after service completion at queue im is given by:

p̃im(y) = 1 −

N
∑

j=1

p̃im,j1(y),

that is
p̃im(y) = pi(y1 + . . . + yM )(1 − qim).

In view of the corresponding traffic equations, the arrival rates
are given by:

λ̃i1(y) = λi(y1 + . . . + yM ),

λ̃im(y) = λi(y1 + . . . + yM )

m−1
∏

n=1

qin, m = 2, . . . , M.

Since the original network of N queues is partially reversible,
the new network of N ×M queues is partially reversible with
invariant measure π̃ given by:

π̃(y) = π(y1 + . . . + yM )

×

N
∏

i=1

(yi1 + . . . + yiM )!

yi1! . . . yiM !
βyi1

i1 . . . βyiM

iM
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on the state space:

S̃ = {y : y1 + . . . + yM ∈ S}.

Denoting by fim the N × M -dimensional unit vector with 1
in component im and 0 elsewhere, we indeed have that for all
y ∈ N

N×M :

π̃(y)λ̃im(y) =

π̃(y + fim)µ̃im(y + fim)p̃im(y + fim), ∀i, m,

and

π̃(y + fim)µ̃im(y + fim)p̃im,jn(y + fim)

= π̃(y + fjn)µ̃jn(y + fjn)p̃jn,im(y + fjn), ∀i, m, j, n.

The insensitivity property then follows from the fact that:
∑

y:y1+...+yM=x

π̃(y) =

π(x)
∑

y:y1+...+yM=x

N
∏

i=1

(yi1 + . . . + yiM )!

yi1! . . . yiM !
βyi1

i1 . . . βyiM

iM ,

which is equal to π(x) for all states x ∈ S in view of (9).

APPENDIX II
NECESSARY CONDITION

An insensitive network is partially reversible: We now
consider a queueing network as described in §III-A, whose
associated Markov process {X(t)}t≥0 is irreducible on some
state space S. We do not assume that the communication
classes of the Markov chain {Rn(x)}n≥0 are closed in all
states x. In particular, the traffic equations may have no
solution. We prove that the insensitivity property implies the
existence of a solution to the traffic equations. Moreover, the
adjoint process is reversible.

The proof is by induction on N . The property holds for
N = 1. Since S ⊂ N, the Markov process {X(t)}t≥0 is
indeed reversible and coincides with the adjoint process. Now
assume that it holds for any network of N−1 queues, for some
N ≥ 2, and consider an insensitive network of N queues.
Assume that the corresponding Markov process {X(t)}t≥0 is
irreducible on some state space S. The balance equations in
any state x ∈ S are:

π(x)

(

ν(x) +
N
∑

i=1

µi(x)

)

=
N
∑

i=1

π(x − ei)νi(x − ei)

+
N
∑

i,j=1

π(x + ej − ei)µj(x + ej − ei)pji(x + ej − ei),

where we use the convention that π(x) = 0 if x 6∈ N
N .

We now consider i.i.d. service requirements at queue N
equal to 0 with probability 1−α and exponentially distributed
of mean 1/α with probability α, for some constant α such
that 0 < α < 1. Note that the mean service requirement
remains equal to 1. This corresponds to a new network
with i.i.d. exponential service requirements of unit mean but
external arrival rates:

ν
(α)

i (x) = νi(x) + (1 − α)νN (x)
pNi(x + eN )

1 − (1 − α)pNN (x + eN )

for all i = 1, . . . , N − 1,

ν
(α)

N (x) =
ανN (x)

1 − (1 − α)pNN (x + eN)
,

routing probabilities:

p
(α)

ij (x) = pij(x)

+ (1 − α)piN (x)
pNi(x + eN − ei)

1 − (1 − α)pNN (x + eN − ei)

for all i = 1, . . . , N , j = 1, . . . , N − 1,

p
(α)

iN (x) = αpiN (x)

+ (1 − α)piN (x)
αpNN (x + eN − ei)

1 − (1 − α)pNN (x + eN − ei)

for all i = 1, . . . , N , and service rates:

µ
(α)

i (x) = µi(x), i = 1, . . . , N − 1, µ
(α)

N (x) = αµN (x).

By assumption, π is an invariant measure for that network
for all α, 0 < α < 1. We let α tend to 0. If pNN(x+eN ) < 1,
the limiting external arrival rates are given by:

ν̃i(x) = νi(x) + νN (x)
pNi(x + eN )

1 − pNN(x + eN)

for all i = 1, . . . , N − 1,

ν̃N (x) = 0.

Now if pNN (x + eN ) = 1, we have pNi(x + eN) = 0 for all
i = 1, . . . , N − 1 so that the limiting external arrival rates are
given by:

ν̃i(x) = νi(x), i = 1, . . . , N.

Similarly, consider the routing probabilities from queue i. If
pNN(x + eN − ei) < 1, the limiting routing probabilities are
given by:

p̃ij(x) = pij(x) + piN (x)
pNj(x + eN − ei)

1 − pNN(x + eN − ei)

for all i = 1, . . . , N , j = 1, . . . , N − 1,

p̃iN (x) = 0, i = 1, . . . , N.

Now if pNN (x+eN −ei) = 1, we have pNj(x+eN −ei) = 0
for j = 1, . . . , N − 1 so that the limiting routing probabilities
are given by:

p̃ij(x) = pij(x), j = 1, . . . , N.

Finally, the limiting service rates are given by:

µ̃i(x) = µi(x), i = 1, . . . , N − 1, µ̃N (x) = 0.

Now assume that for some state x ∈ S, ν̃N (x) > 0 or
p̃iN (x) > 0 for some i = 1, . . . , N − 1. In the latter case, we
must have µ̃i(x) > 0 in view of the convention that µi(x) = 0
implies pii(x) = 1 (see §III-A). Since µ̃N (x) = 0 in all states
x, π is the invariant measure of a network with a positive
probability flow into queue N and a null probability flow out
of queue N , which is a contradiction. Thus for all x ∈ S,
ν̃N (x) = 0 and p̃iN (x) = 0 for all i = 1, . . . , N − 1. In
particular, if pNN (x + eN ) = 1 for some x ∈ N

N , then
νN (x) = 0 and piN (x + ei) = 0 for all i = 1, . . . , N − 1.
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The limiting balance equations in state x are:

π(x)

N−1
∑

i=1

(ν̃i(x) + µi(x)) =

N−1
∑

i=1

π(x − ei)ν̃i(x − ei)

+

N−1
∑

i,j=1

π(x + ei − ej)µi(x + ei − ej)p̃ij(x + ei − ej)

+

N−1
∑

i=1

π(x + ei)µi(x + ei)p̃i(x + ei).

with

p̃i(x)
def
= 1 −

N−1
∑

j=1

p̃ij(x), i = 1, . . . , N − 1.

These equations are the balance equations of a Markov process
{X̃(t)}t≥0 describing the state of a network of N −1 queues.
We apply the inductive assumption to this insensitive network.
If the Markov process {X̃(t)}t≥0 is reducible, we consider
its restriction to each of its communication classes. Since
π(x) > 0 for all x ∈ S, the Markov process {X̃(t)}t≥0

has no transient state so that the restriction to each of its
communication classes is irreducible.

By induction, the Markov chain {R̃n(y)}n≥0 describing the
path of an arbitrary customer in this network of N −1 queues
when the other customers are frozen in state y has closed
communicating classes for all y ∈ N

N−1 and the adjoint
Markov process is reversible. Since pNN(x+eN) = 1 implies
νN (x) = 0 and piN (x + ei) = 0 for all i = 1, . . . , N − 1, the
Markov chain {Rn(x)}n≥0 describing the path of an arbitrary
customer in the original network of N queues when the other
customers are frozen in state x also has closed communicating
classes for all x ∈ N

N . We denote by λ1(x), . . . , λN (x)
the corresponding arrival rates. We verify from the traffic
equations (7) that λ1(x), . . . , λN−1(x) are solutions of the
traffic equations associated with the network of N −1 queues:

λi(x) = ν̃i(x) +

N−1
∑

j=1

λj(x)p̃ji(x + ej).

Thus the transition rates of the adjoint Markov process as-
sociated with the network of N − 1 queues are equal to the
corresponding transition rates q̄ of the adjoint Markov process
associated with the original network of N queues. Since the
former is reversible, we deduce that for all states x, y ∈ S,
x 6= y, such that xN = yN ,

π(x)q̄(x, y) = π(y)q̄(y, x). (10)

Since node N does not play any particular role, this equality
is satisfied for all states x, y ∈ S, x 6= y, such that xi = yi

for some i = 1, . . . , N . If N ≥ 3, we have q̄(x, y) = 0 for all
states x, y ∈ S such that xi 6= yi for all i = 1, . . . , N . This is
also true for N = 2 except if p12(x + e1) = p21(x + e2) = 1
for some x ∈ N

2. But the state space S then reduces to the
two states x+e1, x+e2 and the Markov process {X(t)}t≥0 is
reversible and coincides with the adjoint process. In all cases,
equation (10) is satisfied for all states x, y ∈ S, x 6= y. The
adjoint Markov process associated with the original network
of N queues is reversible.
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