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Abstract

In modern mobile telecommunications, shadow fading has to be modeled by a two-dimensional (2D) correlated
random variable since shadow fading may present both cross-correlation and spatial correlation due to the presence
of similar obstacles during the propagation. In this paper, 2D correlated random shadowing is generated based on the
multi-resolution frequency domain ParFlow (MR-FDPF) model. The MR-FDPF model is a 2D deterministic radio
propagation model, so a 2D deterministic shadowing can be firstly extracted from it. Then, a 2D correlated random
shadowing can be generated by considering the extracted 2D deterministic shadowing to be a realization of it.
Moreover, based on the generated 2D correlated random shadowing, a complete 2D semi-deterministic path loss
model can be proposed. The proposed methodology of this paper can be implemented into system-level simulators
where it will be very useful due to its ability to generate realistic shadow fading.

Keywords: Correlated shadowing; Indoor radio propagation; Large scale propagation; Semi-deterministic model;
Small scale fading

1 Introduction
The exponential growth of mobile traffic in the past two
decades has set a formidable challenge to the wireless
system capacity, thus the heterogeneous networks were
proposed to offload a part of traffic to small cells, e.g.,
Femtocells. Before actual deployments, the design of such
small cell networks and also WiFi networks is usually
through network planning and optimization tools. The
efficiency of the network planning and optimization tools
depends strongly on the accuracy of the used radio prop-
agation models or channel models. Hence, a careful selec-
tion of radio propagation models or channel models is
necessary for an efficient and valid network design.
This paper focuses mainly on the shadow fading model-

ing. Many channel measurements have confirmed that the
probability density function (PDF) of the shadow fading in
logarithmic scale can be approximated by a Gaussian (nor-
mal) distribution with zero mean and certain standard
deviation [1, 2]. Then in linear scale, this is a lognormal
distribution. For this reason, shadow fading is also usually
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called the lognormal fading. However, measurements
have also shown that shadow fading presents both the
cross-correlation and the spatial correlation [3–7]. Thus,
a totally independent one-dimensional lognormal shadow
fading fails to well represent the shadow fading for real
systems and a two-dimensional (2D) shadow fadingmodel
is preferred. Extensive research has been conducted on
how to accurately model the shadow fading, e.g., how
to model the cross-correlation and spatial correlation
existing in the realistic shadow fading [3, 4, 7] and
how to include them into the 2D shadow fading models
[8–12]. For instance, in [3], Saunders et al. proposes a
cross-correlation model for the shadow fading. In [7],
Gudmundson proposes a spatial correlation model for the
shadow fading in mobile radio channels by measurement
data fitting. This model now is widely accepted by many
researchers and it is almost regarded as a standard spa-
tial correlation model to be included into the proposed 2D
shadow fading models [8–12]. However, Gudmundson’s
spatial correlation model is proposed mainly for large to
moderate cell sizes. For small cell sizes, e.g., Femtocells, it
suffers from a low level of accuracy.
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The main concern of this paper is the shadow fading
modeling of small cells. Since the commonly used correla-
tion models do not work very well for small cells, we pro-
pose in this paper to calculate the cross-correlation and
spatial correlation from the site-specific multi-resolution
frequency domain ParFlow (MR-FDPF) model [13–15],
i.e., no need to make any assumptions about the cross-
correlation and spatial correlation models. Then, the
calculated site-specific cross-correlation and spatial cor-
relation are included into the proposed 2D correlated
random shadowing model by applying the method of
Fraile et al. in [8]. The MR-FDPF model is a deterministic
site-specific radio propagation model, so it possesses the
property of a high level of accuracy. For the same reason,
the MR-FDPF model also suffers from a high computa-
tional load. Thus, theMR-FDPFmodel is normally limited
to simulate the small cell scenarios, such as the indoor
radio propagation scenarios.
Based on the generated 2D correlated random shadow

fading, a complete 2D semi-deterministic path loss model
can be proposed. The reason why we propose a 2D semi-
deterministic path loss model is that the high level of
accuracy of a pure deterministic model can not guarantee
a high level of realism for real systems. As stated above,
as a deterministic model, the MR-FDPF model possesses
a high level of accuracy if the propagation scenario is well
modeled firstly. However, the most difficult thing is how
to model the propagation scenario perfectly. In reality,
modeling the propagation scenario with 100 % accuracy is
almost an impossible task. For instance, sometimes there
can be some moving people or moving objects present in
real propagation scenarios. But these moving people or
moving objects are difficult to be modeled in simulations.
Besides, the positions of walls and furniture in the prop-
agation scenarios cannot be drawn with 100 % accuracy
in the simulations. However, the minor inaccuracy of the
scenario modeling may result in large prediction error due
to the change of directions of multipath signals which are
very crucial for the final multipath signal addition. There-
fore, the high level of accuracy of deterministic models

depends strongly on the accuracy of the scenario model-
ing. Since the accuracy of the scenario modeling cannot
be always guaranteed first, the high level of accuracy of
deterministic models does not mean that they are realis-
tic. In this paper, we propose the 2D semi-deterministic
path loss model aiming at improving the level of realism.
In this model, the mean path loss is modeled determinis-
tically, whereas the shadow fading and small-scale fading
are modeled statistically.
The rest of the paper is organized as follows. Section 2

gives an introduction of the MR-FDPF model including
its calibration and accuracy analysis. Then in Section 3,
we discuss first how to extract the 2D deterministic shad-
owing from the MR-FDPF model. Based on the extracted
2D deterministic shadowing, the 2D correlated random
shadowing can be generated. In Section 4, a complete 2D
semi-deterministic path loss model is proposed, followed
by the simulation and experimental evaluation in Section
5. Finally, conclusion is drawn in Section 6.

2 TheMR-FDPFmodel
TheMR-FDPF model is a deterministic radio propagation
model. In this model, the simulated scenarios should be
firstly discretized into a 2D grid-based structure and then
it is assumed that the electric field corresponding to each
grid point can be divided into four directive flows: the
west, east, north, and south flow as shown in Fig. 1. The
inward flows bring energy into the grid while the outward
flows radiate energy out. In the conventional ParFlow
model [16–18] which is a time-domain solver, the inward
flows and outward flows are updated alternately according
to a local scattering equation determined by the property
of material of the grid. After a sufficient number of itera-
tions in time domain, these flows will finally reach a steady
state and then the steady-state radio coverage can be com-
puted. However, in the MR-FDPF model, the steady-state
radio coverage problem is solved directly in the frequency
domain. Moreover, in the frequency domain, the MR-
FDPF model introduces a multi-resolution structure and
a preprocessing phase to reduce the computational load.

Fig. 1 The inward flows and outward flows associated with each grid
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A calibration process is usually considered to be imper-
ative for any radio wave propagation model since the
properties of materials in the simulated scenarios are
never exactly known. For the MR-FDPF model, the effect
of materials in the simulated scenarios to the electromag-
netic waves depends on two parameters: the refraction
index nr and the normalized absorption coefficient ar .
Hence, the two parameters of the materials in the sim-
ulated scenarios need to be calibrated in the calibration
process. It is noted that the absorption coefficient of the
air aair plays an important role in the MR-FDPF model
since it modifies the 2D free space path loss model from
PL(d) ∝ d to PL(d) ∝ d · a−d/�r

air , while a realistic 3D free
space path loss model is PL(d) ∝ d2, where d is the Tx-Rx
(transmitter and receiver) separation distance and �r is
the discretization space step. The approximation between
PL(d) ∝ d · a−d/�r

air and PL(d) ∝ d2 can be effective over a
finite range after an appropriate choice of the aair [19].
The calibration process of theMR-FDPFmodel is imple-

mented in two steps. The first step is to estimate the
constant offset as follows

�� = 1
K

K∑
k=1

(�mes (k) − �sim (k)) (1)

where �mes (k) and �sim (k) are the mean powers from
measurements and simulations, respectively, and K is the
total number of samples. A constant offset always exists
because of the numerical sources used in the MR-FDPF
model, compared to the real transmitters in reality. The
second step of the calibration process is to estimate the
normalized absorption coefficient of air aair, the refraction
index and normalized absorption coefficient of materials
(nmat, amat) by minimizing the cost-function Q defined by
the root mean square error (RMSE) between measure-
ments and predictions

Q = RMSE =
√√√√ 1

K

K∑
k=1

∣∣�mes (k) − �pred (k)
∣∣2 (2)

where

�pred (k) = �sim (k) + �� (3)

are the mean powers from predictions. The minimization
process is based on the direct search algorithm “DIRECT”
by Jones et al. in [20]. A more detailed description about
the calibration process of the MR-FDPF model can be
found in [21].
In the following, we calibrate the MR-FDPF model with

two sets of measurement data so that we can observe
which level of accuracy theMR-FDPFmodel can normally
achieve. The set of channel measurement conducted at
Stanford University has been chosen, and specifically it
corresponds to the “I2I stationary” scenario measurement
therein [22].

The scenario was a typical 16× 34m office environment
made of 30 cubicles and 7 small separated rooms. Eight
transmitters and 8 receivers were distributed in the office
as illustrated in Fig. 2. All of them were equipped with
omnidirectional antennas and were fixed in their locations
during themeasurement. Fourmaterials weremainly used
in the office, i.e., concrete for themain walls, plaster for the
internal walls, glass for the external glass wall, and wood
for the cubicles located in the central part of the office.
In this channel measurement, 8 × 8 multiple-input

multiple-output (MIMO) channels at a center frequency
of 2.45 GHz were measured simultaneously with a RUSK
MEDAV channel sounder [23]. For the measurement data,
totally 120 time blocks covering a time duration of 32 s
and 220 frequency bins covering a bandwidth of 70 MHz
were recorded.
In the following, we calibrate the MR-FDPF model in

two cases. The first case is to calibrate the MR-FDPF
model with all the available measurement data, while the
second case is to calibrate it with only a part of the avail-
able measurement data. Intuitively, the prediction per-
formance of the MR-FDPF model calibrated with all the
measurement data should be better than that calibrated
with only a part of the measurement data since more
measurement data are used.

2.1 Calibration with the measurement data from the links
between all Txs and all Rxs

This calibration is performed with the measurement data
from all the 64 links, i.e., the links between all the 8 Txs
and all the 8 Rxs. The measurement data used to perform
the calibration are taken only from the center frequency
of 2.45 GHz but are averaged along the time axis, i.e.,
averaged over the 120 time blocks.
The parameter values of materials obtained from the

calibration process are listed in Table 1.
Then, these parameter values are configured to run the

MR-FDPF simulation at 2.45 GHz with 0 dBm transmit
power. The simulation step is 2 cm. The radio coverage

Fig. 2 The measurement scenario
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Table 1 Parameter values of materials optimized from
calibration A

nmat amat

Air 1.0 0.9999335

Absorbant 1.0 0.96879673

Wood 4.002058 0.9999999

Plaster 1.5 0.9999999

Concrete 5.4 0.9999999

Glass 2.1042523 0.9999999

map of Tx1 simulated with the MR-FDPF model is shown
in Fig. 3 as an example.
The obtained offset and the RMSE computed from

the 64 links compared to the measurement data are:
offset = −60.3912 dB; RMSE = 4.6618 dB;

2.2 Calibration with the measurement data from the links
between only Tx1 and all Rxs

This calibration is performed with the measurement data
from 8 links, i.e., the links between the Tx1 and all the 8
Rxs. The same as above, the measurement data used to
perform the calibration are taken only from the center fre-
quency of 2.45 GHz but are averaged over the 120 time
blocks.
The obtained parameter values of materials from the

calibration process are listed in Table 2.
Similarly, these parameters are also configured to run

theMR-FDPF simulations at 2.45GHz. Thus, we can com-
pute the offset and the RMSE between the simulation and
measurement as follows:

• The offset and the RMSE computed only from the 8
links are: offset = −62.1031 dB; RMSE = 4.3858 dB;

• The offset and the RMSE computed from all the 64
links are: offset = −60.2297 dB; RMSE = 8.5705 dB;

Comparing the two RMSEs computed both from the 64
links in the above two different cases A and B, it is obvi-
ous that we obtain a smaller RMSE when all the simulated
points are calibrated with themeasurement data than only
a part of them are calibrated, which is consistent with our
intuition.

3 Generation of the 2D correlated random
shadowing

In this section, we talk about how to generate the 2D
correlated random shadowing based on the MR-FDPF
model.
As is known, when expressed in dB, the instantaneous

path loss can be expressed as the sum of the mean path
loss, the shadow fading, and the small-scale fading as
follows

PL(d) = L(d) + Xσ + F (4)

where PL(d), L(d), Xσ , and F denote the instantaneous
path loss, the mean path loss, the shadow fading, and the
small-scale fading, respectively. The mean path loss L(d)

and the shadow fading Xσ characterize the signal varia-
tions over large distances, so they are usually called the
large-scale propagation characteristics. On the contrary,
the F is called the small-scale fading since it characterizes
the rapid signal fluctuations over very short distances, e.g.,
over several wavelengths.

3.1 Extraction of the 2D deterministic shadowing from
the MR-FDPFmodel

In (4), the term L(d) is considered to be deterministic and
thus it can be described in a deterministic manner. Typ-
ically, the mean path loss L(d) is log dependent on the
Tx-Rx separation distance d as follows

L(d) = L0 + 10n · log10(d) (5)

Fig. 3 Radio coverage map of Tx1 simulated with the MR-FDPF model at 2.45 GHz plotted in dBm
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Table 2 Parameter values of materials optimized from
calibration B

nmat amat

Air 1.0 0.9999997

Absorbant 1.0 0.96879673

Wood 2.3888888 0.9999999

Plaster 1.5 0.9999999

Concrete 5.4 0.9999999

Glass 2.0438957 0.9999999

where L0 is a constant which accounts for system losses
and n is the path loss exponent depending on the specific
propagation environment. For instance, n = 2 for the free
space propagation. The mean path loss is the main factor
which determines the coverage area of a transmitter.
The shadow fading Xσ is normally a Gaussian dis-

tributed random variable (in dB) with zero mean and
standard deviation σX [2].
At last, the small-scale fading F in linear scale is typically

either a Rayleigh random variable (for NLOS propaga-
tion) or a Rician random variable (for LOS propagation).
However, for real propagation scenarios, it is sometimes
very difficult to tell whether it is a pure NLOS or a LOS
propagation. Thus, here we would like to model the small-
scale fading by the Nakagami-m fading which includes
the Rayleigh fading and Rice fading as special cases [24].

Moreover, recently the Nakagami-m fading has received
more and more attention because it gives the best fit to
manymeasurement data, such as land-mobile and indoor-
mobile multipath propagation [2, 25].
As stated above, the small-scale fading represents the

rapid signal fluctuations over short distances, so they can
be removed by averaging over local areas. After remov-
ing the small-scale fading, we obtain the local mean path
loss. The local mean path loss includes the mean path loss
and the shadow fading as shown in Fig. 4. Since we already
know that the mean path loss is log dependent on the Tx-
Rx separation distance d according to (5), we can obtain
the mean path loss by using the Matlab curve fitting tool.
And finally, the shadow fading can be easily obtained by
subtracting the mean path loss from the local mean path
loss. The above procedures can be applied to the simu-
lation results of the MR-FDPF model in order to obtain
the large-scale propagation characteristics, which is one
of our previous works published in [26].
Since the simulation results provided by the MR-FDPF

model are deterministic, the extracted shadow fading
from the MR-FDPF model is also deterministic.

3.2 Generation of the 2D correlated random shadowing
Since the MR-FDPF model is a 2D deterministic radio
propagation model and it takes the specific propagation
environment into account, the extracted shadow fading
from theMR-FDPFmodel is a 2D correlated deterministic

Fig. 4 The local mean path loss includes the mean path loss and the shadow fading
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shadow fading. However, for real systems, shadow fading
should only be modeled statistically due to the difficulty
in modeling the randomly moving people and moving
objects present in real environments. Thus, a random
shadow fading is considered to be more realistic and more
accurate than a deterministic shadow fading. In fact, in
modern mobile telecommunications, shadow fading has
to be modeled to be 2D correlated random shadowing
since shadow fading may present both cross-correlation
and spatial correlation due to the presence of similar
obstacles during the propagation. For instance, nearby
receivers are probable to experience very similar shadow
fadings, i.e., their shadow fadings are correlated.
Now, we detail how to generate the 2D correlated ran-

dom shadowing model based on the 2D correlated deter-
ministic shadow fading provided by the MR-FDPF model.
It is based on the method of Fraile et al. in [8]. Assume
that there are totally I transmitters in the simulated sce-
nario. The MR-FDPF model can provide a deterministic
shadow fading map for each of these transmitters, e.g.,
shadow fading map �i for transmitter i. For each point
(x, y) (i.e., where the virtual receiver is) in the simulated
scenario, the shadow fading experienced by signals trans-
mitted from I transmitters can be modeled by I + 1 inde-
pendent Gaussian random variables {G0,G1 · · ·GI} which
have zero mean and the same standard deviation σX . To
make sure that the generated shadow fading exhibits the
same cross-correlation as presented in real systems, the
shadow fading can be generated as follows:

Xij
σ = √

ρij · G0 + √
1 − ρij · Gi (6)

where Xij
σ is the generated shadow fading for transmit-

ter i while taking into account its cross-correlation from
transmitter j, with i, j ∈ {1, 2 · · · I}.
From the above, it is easy to know that

E

(
Xij

σ

)
= 0 (7)

S

(
Xij

σ

)
= σX (8)

where E (·) and S (·) denote the expectation and the stan-
dard deviation. Thus, it guarantees that the generated
shadow fading is still a Gaussian random variable with
zero mean and standard deviation equal to σX . Mean-
while, it also guarantees that the cross-correlation of
shadow fadings between any pair of transmitters

(
i, j

)
is

equal to

Rij (0) =
E

[
Xij

σ · Xji
σ

]
√
E

[(
Xij

σ

)2] · E
[(

Xji
σ

)2] = ρij (9)

Thus, in this approach, the common component G0
is used to model the receiver-position-dependent cross-
correlation of shadow fadings from different transmitters.
Since the same procedure above can be repeated at

each point (x, y) in the simulated scenario to generate the
cross-correlated shadow fading, the generated 2D cross-
correlated shadow fading map can be rewritten as:

Xij
σ (x, y) =

√
ρij (x, y) ·G0 (x, y) +

√
1 − ρij (x, y) ·Gi (x, y)

(10)

Although the above generated 2D shadow fadings are
cross-correlated, there is not any spatial correlation inside
(the correlation of the shadow fadings is zero when their
positions are different). In order to generate the spatial
correlation, a 2D filter can be applied to the 2D cross-
correlated shadow fading map.
The impulse response of the 2D filter is denoted by

h(x, y). The input of the 2D filter is supposed to be
the above generated 2D cross-correlated shadow fading
map, i.e., a(x, y) = Xij

σ (x, y). The output b(x, y) is the
expected shadow fading map which presents both the
cross-correlation and the spatial correlation. As we know,
if the impulse response h(x, y) of the 2D filter is known,
the output b(x, y) can be easily obtained by a 2D convo-
lution between the input a(x, y) and the impulse response
h(x, y). Thus, the main task we should do here is to try to
obtain the impulse response h(x, y) of the 2D filter.
According to the theory of random processes and linear

systems, the power spectral density of b(x, y) is related to
the power spectral density of a(x, y) according to

Sbb(fx, fy) = Saa(fx, fy) · ∣∣H(fx, fy)
∣∣2 (11)

where Sbb(fx, fy), Saa(fx, fy) are the power spectral density
of b(x, y) and that of a(x, y), respectively. H(fx, fy) is the
system transfer function of the 2D filter. Since the input
a(x, y) = Xij

σ (x, y) is a white shadow fading map, its auto-
correlation function Raa (�x,�y) is non-zero only at the
position (0, 0). Thus, its power spectral density is flat

Saa
(
fx, fy

) = σ 2
a (12)

After a simple mathematical derivation, we can find
σ 2
a = σ 2

X . Therefore, the system transfer function can be
obtained by

H
(
fx, fy

) =
√
Sbb

(
fx, fy

)
/ σ 2

a (13)

Then, the impulse response h(x, y) can be easily
obtained by performing a 2D inverse Fourier transform to
the system transfer function.
When provided with the shadow fading map extracted

from the MR-FDPF model, the power spectral density
Sbb(fx, fy) can be obtained directly by applying a
2D Fourier transform to the autocorrelation function
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Rbb (�x,�y). Here, the deterministic shadow fading map
provided by the MR-FDPF model is considered to be one
realization of the random process of b(x, y).

4 A complete 2D semi-deterministic path loss
model

Based on the generated 2D correlated random shadowing
above, a complete 2D semi-deterministic path loss model
can be structured as follows

PLij (x, y) = L (d) + b (x, y) + F (x, y) (14)

where PLij (x, y) is the 2D path loss at position (x, y) of
the transmitter i while taking into account the cross-
correlation of the shadow fading from the transmitter j,
and d =

√
(x − xi)2 + (y − yi)2 is the distance to the

transmitter i at position of (xi, yi), L (d) is the mean path
loss, b (x, y) is the generated 2D correlated random shad-
owing, and F (x, y) is the small-scale fading which can
be determined by the m parameter of the Nakagami-m
fading.
Specifically, the above mean path loss L (d), shadow

fading b (x, y), and the small-scale fading F (x, y) can be
determined as follows:

• The mean path loss L (d) is deterministic and it can
be determined from the MR-FDPF model as detailed
in Section 3.1.

• The shadow fading b (x, y) can be generated as
detailed in Section 3.2 which is a 2D correlated
random shadowing.• The small-scale fading F (x, y) is a Nakagami-m
distributed random variable in linear scale. Since here
F (x, y) is in dB, a variable transformation
F = 10 · log10α2 is needed (α is Nakagami-m

distributed). Therefore, the probability density
function of F is finally

PF(F) = ln 10 · 10F/ 20 · mm · (
10F/ 20

)2m−1

10 · �m	(m)

· exp
(

−m · 10F/ 10
�

)
(15)

where m is the estimated m parameter of the
Nakagami-m fading and � = E

(
10F/ 10

)
.

This 2D semi-deterministic path loss model is com-
plete because it takes into account both the large-scale
fading and the small-scale fading. Moreover, it also takes
into account the cross-correlation and the spatial correla-
tion of the shadow fading. We call it a semi-deterministic
model because it is mainly based on the deterministic
MR-FDPF model, but it also introduces a random part to
model the randomness of realistic radio channels.

5 Simulation and experimental evaluation
In order to verify the proposed approach, we still choose
the Stanford’s office scenario to perform the MR-FDPF
simulation which has been detailed in Section 2. The MR-
FDPF simulation is performed with the material parame-
ter values listed in Table 1. It is simulated at the frequency
of 2.45 GHz and with the transmit power of 0 dBm. The
simulation step is 2 cm. An example of the radio cover-
age map simulated with the MR-FDPF model has been
presented in Fig. 3.
As described previously, the small-scale fading can be

modeled by the Nakagami-m fading and it can be removed
by doing averaging over local areas. Moreover, the sever-
ity of the small-scale fading can be indicated by the
m parameter of the Nakagami-m fading which can be
efficiently estimated by the Greenwood’s method [27].

Fig. 5 The estimatedm parameter map of the Nakagami-m fading with goodness of fit test
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Fig. 6 The extracted local mean path loss and the fitted mean path loss from the MR-FDPF model

Figure 5 shows the estimated m parameter map which is
obtained by doing exactly the same processes as in our
previous work [28], e.g., each m parameter is obtained
over a local area with dimensions 23 × 23 pixels and its
estimation performance has been verified by conducting
the Kolmogorov-Smirnov goodness of fit test. For more
details, readers can refer to [28].
After averaging out the small-scale fading over local

areas, we obtain the local mean path loss from the MR-
FDPF simulation as shown in Fig. 6 by the blue crosses. In
this figure, the local mean path loss is obtained from all the

8 transmitters and all the local areas in the scenario. Thus,
by using the Matlab curve fitting tool, we obtain the fitted
mean path loss for the whole scenario from simulation as
shown in Fig. 6. It is

Lsim (d) = 49.05 + 10 × 1.653 · log10 (d) (16)

On the other hand, the fitted mean path loss from the
Standord’s channel measurement is [26]

Lmeas (d) = 47.25 + 10 × 1.442 · log10 (d) (17)

Comparing them two, we can see that the obtained L0
and path loss exponent n from the simulation and mea-

Fig. 7 The extracted deterministic shadowing from the MR-FDPF model
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Fig. 8 The autocorrelation function of the extracted 2D deterministic shadowing from the MR-FDPF model

surement are comparable, which demonstrates that the
MR-FDPF simulation result is accurate.
When we have both the local mean path loss and the

mean path loss, we can easily obtain the deterministic shad-
owing from the MR-FDPF model by just subtracting the

mean path loss from the local mean path loss. Figure 7
shows the 2D deterministic shadowing from the MR-
FDPF model. From this figure, we can see that the 2D
deterministic shadowing from the MR-FDPF model is
correlated. This is reasonable since theMR-FDPFmodel is

Fig. 9 The power spectral density of the extracted 2D deterministic shadowing from the MR-FDPF model
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Fig. 10 The generated 2D random shadowing with cross-correlation

a site-specific model, i.e., it takes into account for instance,
the walls, the furniture, and so on in the propagation
environments.
Although it is obvious in Fig. 7 that the 2D determinis-

tic shadowing from the MR-FDPF model is correlated, we
want to know how much it is correlated. Thus, we check
the 2D autocorrelation function of the extracted deter-
ministic shadowing from the MR-FDPF model which is
presented in Fig. 8. Since the autocorrelation function and
the power spectral density are a Fourier transform pair, we
can easily obtain the power spectral density by applying

a 2D Fourier transform to the autocorrelation function as
shown in Fig. 9.
Now in the following part, the generated 2D ran-

dom shadowing results are presented. In Fig. 10, we
present the generated 2D random shadowing of Tx1
which has taken into account the cross-correlation from
Tx2 as an example. It is generated according to (10).
We can also check its autocorrelation function as shown
in Fig. 11. As is seen, since the generated 2D random
shadowing here has only taken into account the cross-
correlation but not yet the spatial correlation, the auto-

Fig. 11 The autocorrelation function of the generated 2D random shadowing with cross-correlation
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Fig. 12 The generated 2D random shadowing with both the cross-correlation and the spatial correlation

correlation function is almost non-zero only at the
center.
The generated 2D random shadowing with both the

cross-correlation and the spatial correlation is presented
in Fig. 12. From this figure, we can easily see that there

is a spatial correlation inside the generated 2D random
shadowing. Although it is obvious that there exists a
spatial correlation in Fig. 12, it tells nothing about how
the spatial correlation is, especially how the spatial cor-
relation matches that of the deterministic shadowing

Fig. 13 The autocorrelation function comparison of the extracted 2D deterministic shadowing from the MR-FDPF model and the generated 2D
correlated random shadowing
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Fig. 14 The generated 2D semi-deterministic path loss for Tx1

extracted from the MR-FDPF model. Hence, we com-
pare the autocorrelation function of the generated 2D
correlated random shadowing to that of the determin-
istic shadowing extracted from the MR-FDPF model in
Fig. 13. From this figure, we can see that although the
autocorrelation functions do notmatch each other exactly,
they show some similarities.
At the end of this section, we present the result of

the generated 2D semi-deterministic path loss. Here in
Fig. 14, we show the generated 2D semi-deterministic path
loss for Tx1 as an example. It is obtained according to (14),
where L (d) = 49.05 + 10 × 1.653 · log10(d), Xij

σ (x, y) is
the above generated 2D correlated random shadowing and
F (x, y) is generated according to (15).

6 Conclusions
In this paper, the generation of a realistic shadow
fading for small cells is mainly addressed. Since a one-
dimensional lognormal shadow fading cannot well rep-
resent the shadow fading for real systems, for instance,
it can not model the cross-correlation and the spatial
correlation presented in the realistic shadow fading, a
2D correlated random shadowing is generated in this
paper. It is generated based on the extracted deter-
ministic shadowing from the MR-FDPF model which
is considered to be one realization of the 2D corre-
lated random shadowing. Since the deterministic MR-
FDPF model is a site-specific model, the extracted
deterministic shadowing from it is efficient, which has
been also been verified by comparison to the channel
measurement.
Basedon thegenerated 2D correlated random shadowing,

a complete 2D semi-deterministic path loss model is also pro-
posed at the end. This 2D path loss model is complete
because it takes into account not only the large-scale

fading and the small-scale fading but also the cross-
correlation and the spatial correlation of the shadow
fading.
The methodology proposed in this paper can be

implemented into system-level simulators and it will be
very useful for them due to its ability to generate realistic
shadow fading.
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