
HAL Id: hal-01244774
https://hal.inria.fr/hal-01244774

Submitted on 18 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Interaction between Content Caching and
Request Assignment in Cellular Cache Networks

Kolar Purushothama Naveen, Laurent Massoulié, Emmanuel Baccelli, Aline
Carneiro Viana, Don Towsley

To cite this version:
Kolar Purushothama Naveen, Laurent Massoulié, Emmanuel Baccelli, Aline Carneiro Viana, Don
Towsley. On the Interaction between Content Caching and Request Assignment in Cellular Cache
Networks. AllThingsCellular ’15 - 5th Workshop on All Things Cellular: Operations, Applications
and Challenges , Aug 2015, Londres, United Kingdom. ACM, <10.1145/2785971.2785975>. <hal-
01244774>

https://hal.inria.fr/hal-01244774
https://hal.archives-ouvertes.fr

determine routing mechanisms and associated cache update
rules that together achieve a target trade-o↵ between cache-
miss probability and bandwidth loads.

Related Work: The problem of caching at femtocell base
stations or heterogeneous caches has been recently studied
in [10, 12, 18]. Authors in [12] address content placement at
the femtocell base stations to maximize the probability of
cache hit. A similar setup, but with mobile users, is studied
in [18]. In both these works, request routing is purely based
on content availability (so that cache hits are maximized),
while ignoring the bandwidth costs at the base stations. Fur-
ther, the authors focus on static content placement algo-
rithms. For instance, in [12] the content placement problem
is formulated as that of maximizing a monotone submodu-
lar function under matroid constraints; a static greedy al-
gorithm that is within a constant factor of the optimal is
proposed.

Borst et al. in [7] address the problem of content place-
ment and routing to optimize the total bandwidth cost, but
their formulation is limited to linear cost functions, in con-
trast to our work where we allow for general convex costs.
Moreover, the focus in [7] is again on designing static al-
gorithms. Similarly, there are other works in the literature
addressing the problem of static content placement so as to
optimize some linear system cost [4, 8, 13].

There is an extensive literature on online cache manage-
ment algorithms and in particular on LRU (Least Recently
Used) caches [5, 9, 11]. There is also an abundant literature
on dynamic request routing [6, 15], but very few work ad-
dress the design of online algorithms for both routing and
cache management, and the interaction between the two.
Notable exceptions are the works on cache networks [2, 3],
which focus on stabilizing queues of pending requests by
joint management of bandwidth and caches. In contrast we
instead focus on loss-based models and on the objective of
cost minimization rather than queue stabilization.

With a similar focus as ours, the authors in [14] study
the problem of cache replication and request forwarding in
CDNs comprising distributed caches, e.g., household set-
top boxes. However, the objective is again limited to lin-
ear tra�c costs. Moreover, they focus on scenarios with
many servers with identical characteristics. This is in con-
trast with our work as we consider a system with few poten-
tially heterogeneous caches; our limiting regime is instead
obtained by scaling the arrival rates and the chunk size.
There are other work in the literature, e.g., [16, 19], where
proportional placement strategies and matching algorithms
for routing requests to content available caches are studied.
These di↵er again from our present work by focusing on sce-
narios with many identical servers.

2. SYSTEM MODEL
Consider a system comprising a finite collection of base-

stations (BSs) S and locations L where a location ` 2 L
can be thought of as representing the set of all physical lo-
cations within the range of a subset of BSs. For instance,
in Figure 1 the alternating black and grey shaded horizontal
segments represents di↵erent locations. Thus, each location
is connected to a subset of the BSs. These interconnections
can be e↵ectively depicted as in Figure 2, where location `

is connected to BSs s and s

0 while `

0 is connected to s

0 and
s

00. Let A denote the adjacency matrix representing the in-
terconnections, i.e., A

`s

= 1 implies that location ` is within

{�

`

0
c

}

Location `

0

{r

s

0
`c

}

Location `

{r

s

0
`

0
c

}

{r

s

00
`

0
c

}

{�

`c

}
{r

s`c

}
BS s

BS s

0

BS s

00
storing {✓

s

00
c

}

storing {✓

s

0
c

}

storing {✓

sc

}

Figure 2: Illustration of the interconnections be-

tween BSs and locations.

the range of BS s; A

`s

= 0 otherwise. We assume a finite
set C of contents in the system with the size of each content
being one unit. We allow content chunking whereby a con-
tent can be completely reconstructed using k independently
coded packets of the content. Each BS s 2 S includes a
cache that can store up to M

s

units of contents (memory
constraints). We allow the BSs to store chunks of each con-
tent instead of complete copies. We assume that the chunks
stored at di↵erent servers are always independent so that it
only su�ces to download k chunks from any subset of BSs
to completely reconstruct the content.

Requests for content c arrive at location ` according to a
Poisson process with rate �

(k)
`c

= k�

`c

, which can be thought
as the aggregate rate for c from of all users stationed at `.
The number of chunks of content c, available at server s,
restricts the rate at which s can serve incoming requests
for c (content-availability constraints). Content download
requests, if accepted, result in service at unit rate. In this
sense we consider a loss model (in contrast to a queuing
model).

The bandwidth availability at a server s 2 S is reflected
using a bandwidth-cost function, C

(k)
s

(r), which represents
the cost incurred by s for serving requests at a total rate
of r. We assume that C

(k)
s

, k � 1, can be expressed as
C

(k)
s

(r) = C

s

(r

k

), where C

s

, s 2 S, is strictly convex and
increasing. We refer to the above system as the k-th system.

To obtain a benchmark for performance comparison, we
consider a system where the caching and routing variables
are relaxed to be reals. Let ✓

sc

2 [0, 1] denote the fraction of
content c stored at BS s, and kr

s`c

the rate at which s serves
requests for c from `. Then, the memory constraint at BS
s 2 S is given by

∑

c

✓

sc

 M

s

. Next, since only a fraction
✓

sc

of a request for c can be served by s, we have the following
content availability (CA) constraints: kr

s`c

 A

`s

k�

`c

✓

sc

,
s 2 S, ` 2 L, c 2 C, where we have approximated the number
of ongoing requests (of content c at `) by the steady state
arrival rate, k�

`c

(assuming an average service time of one).
In order to obtain an unconstrained optimization formula-

tion, we replace the above hard memory and CA constraints
with strictly convex and increasing penalty functions, ̂

C

s

and C

s`c

, in the cost to be minimized1. ̂

C

s

(✓) denotes the
cost of storing ✓ units of contents at BS s. For the CA con-
straint, denoting x := kr

s`c

� k�

`c

✓

sc

, C

s`c

(x

k

) represents
the cost of respecting (x negative) the CA constraint, or

1Formulation directly involving the hard constraints is avail-
able in our technical report [17].

exceeding the constraint (x positive) by x units. Since the
BSs are physically constrained to always satisfy the CA con-
straints, a positive x represents the content cache-miss rate
from BS s for requests from ` for c. Thus, C

s`c

(x

k

) represents
the cost incurred for fetching the missed content rate from
the main data center at the backend. Another possibility is
to let C

s`c

(x

k

) = b max(x

k

, 0) for some b > 0, which can be
interpreted as a cost of b per cache miss.

We now define the total cost incurred as,

C({✓

sc

}, {r

s`c

}) =
∑

s

C

s

(

∑

`c

A

`s

r

s`c

)

+

∑

s

̂

C

s

(

∑

c

✓

sc

)

+
∑

s`c

A

`s

C

s`c

(

r

s`c

� �

`c

✓

sc

)

(1)

and propose the following optimization problem:
Total Cost (TC):

Minimize: C({✓

sc

}, {r

s`c

}) (2a)

Over: ✓

sc

2 [0, 1], s 2 S, c 2 C (2b)

r

s`c

� 0, s 2 S, ` 2 L, c 2 C (2c)

Subject to:
∑

s

A

`s

r

s`c

= �

`c

, ` 2 L, c 2 C. (2d)

The equality constraint (2d) is used to ensure that all in-
coming requests are handled by the BSs. In Section 3, we
propose an online algorithm to solve this optimization prob-
lem. We show that our algorithm converges to the optimal
solution of (2) as the scale of the system in terms of arrival
rate and number of chunks per content (i.e., k) increases.

3. ONLINE ALGORITHM
The main objective of this section is to propose an al-

gorithm for assigning incoming requests to BSs based on
their current “prices”; the key idea is that these prices re-
flect both the load as well as the content availability at the
respective BSs (which is in contrast to the common practice
of assigning requests purely based on either load or con-
tent availability). Due to space constraints, we only briefly
mention about the optimality and stability properties of our
algorithm; theoretical details and proofs are available in our
technical report [17].

Let ⇥
sc

(t) denote the number of chunks of content c stored
at BS s at time t, and G

slc

(t) the total number of chunks
of content c served (possibly for more than one request)
from s to ` at time t. Thus, ⇥

sc

(t)/k is the fraction of
content c stored at s at time t, and R

slc

(t) := G

slc

(t)/k

is the rate at which s serves requests for c from `. The
chunk service times are i.i.d (independent and identically
distributed) exponential random variables with unit rate.

Cache Updates: Updating a BS’s cache for a content
involves either adding new chunks or removing some existing
chunks. In the k-th system, let k⌫

sc

denote the rate at which
BS s updates the cache for content c. Suppose BS s initiates
a cache update for c at time t. Then, the number of chunks
that are added or removed is proportional to

�⇥
sc

(t) = �Q

s

(t) +
∑

`

A

`s

�

`c

P

s`c

(t), (3)

where (using F

0 to denote the derivative of F),

Q

s

(t) := ̂

C

0
s

(

∑

c

⇥
sc

(t)
k

)

(4)

P

s`c

(t) := C

0
s`c

(

R

s`c

(t)
k

� �

`c

⇥
sc

(t)
k

)

. (5)

Formally, ⇥
sc

(t) is updated as follows: ⇥
sc

(t+) = ⇥
sc

(t)
+[✏�⇥

sc

(t)], where t

+ denotes the time instant just after t,
✏ > 0 is a constant, and the notation [x] represents the inte-
ger closest to x. We refer to Q

s

(t) and P

s`c

(t), respectively,
as the memory price and the content availability (CA) price
(w.r.t (`, c)) of BS s at time t.

Remark: For the sake of analysis, we assume that the
caches are updated instantaneously at the update instants,
although in practice a small time is required to download
new chunks from a backend data center. We further assume
that the backend data center always supplies a new batch of
independently coded chunks, so that it is possible to recon-
struct a content by downloading k chunks from any subset
of BSs, without worrying about chunks being dependent.

Note that �⇥
sc

(t) is simply the negative of the gradient
(w.r.t ✓

sc

) of the cost function in (1). Thus, our cache up-
date strategy is essentially the gradient descent algorithm.
The novelty of our work appears next, where we propose
a request assignment strategy that couples the update in-
stants of {R

s`c

(t)} variables with the request arrival times.
Further, incoming requests are assigned to download chunks
from a (state dependent) selected subset of BSs, thus always
increasing the current R

s`c

(t) values of the selected BSs.
This di↵ers from the gradient descent algorithm where, de-
pending on the gradient, an update could also recommend
decreasing the value of some rate variables. We formally
discuss our request assignment strategy next.

Request Assignments: Suppose a request for content
c arrives at location ` at time t. Then, the decision as to
how many chunks should be downloaded from di↵erent BSs
is based on the “prices” associated with the BSs connected
to `. Formally, for each (`, c), we define the price of BS s

(such that A

`s

= 1) at time t as,

⇧
s`c

(t) = P

s

(t) + P

s`c

(t) (6)

where, P

s`c

(t) is the CA price (recall (5)) and

P

s

(t) := C

0
s

(

∑

`

0
c

0

A

`

0
s

R

s`

0
c

0 (t)
k

)

represents the bandwidth price of BS s.
Remark: Although the price depends on various caching

and routing variables, its calculation in practice can be based
on, for instance, an estimate of the current load at a BS to
compute its bandwidth price; The content availability price
can be simplified to reflect the cost of fetching the unavail-
able chunks from the backend data center. We will study
the performance of such a light-weight scheme in Section 4.

Now, given the BS prices, let S
`c

(t) denote the set of all
minimum price BSs reachable from `, i.e.,

S
`c

(t) = argmin
s

{

⇧
s`c

(t) : A

`s

= 1
}

. (7)

Our request assignment strategy centers on downloading suf-
ficient chunks of c from the BSs in S

`c

(t) to construct the
content at `. However, if there are an insu�cient number
of chunks at these BSs, signals in the form of dummy chunk
assignments are issued to increase their CA price and thus
trigger future replication of content c chunks at these BSs.
Formal details follow, where we have chosen to distribute
the dummy chunks equally among all the BSs in S

`c

(t) (see
(8a) and (8a)); however, note that any other dummy chunk

assignment would work equally well, as long as the total
number of chunks allocated (actual+dummy) is k.

Let n denote the number of BSs in S
`c

(t) (i.e., n = |S
`c

(t)|).
Now, arrange the BSs in S

`c

(t) in any arbitrary order, for
instance, e.g., in increasing order of the BS IDs (assum-
ing that each BS is given a unique integer ID). Suppose
(s1, s2, · · · , s

n

) is such an arrangement, then BS s

i

is as-

signed to serve �
si`c

(t) = �(1)
si`c

(t) + �(2)
si`c

(t) chunks (ac-
tual+dummy, resp.) of content c, where (using bxc to de-
note the largest integer smaller than x), for i = 1, · · · , n,

�(1)
si`c

(t) = min
{

k �
i�1
∑

j=1

�(1)
sj `c

(t), ⇥
sic

(t)
}

,

�(2)
si`c

(t) =

k �
∑

n

j=1 �(1)
sj `c

(t)

n

, i = 1, · · · , n � 1

�(2)
sn`c

(t) = k �
n

∑

j=1

�(1)
sj `c

(t) �
n�1
∑

j=1

�(2)
sj `c

(t).

No chunks are downloaded from the BSs not in S
`c

(t), i.e.,
we have �

s`c

(t) = 0 for s /2 S
`c

(t).

Thus, �(1)
si`c

(t) is the actual number of chunks that s

i

can

serve, while
∑

n

j=1 �(2)
sj `c

(t) represents the total number of

chunks that are not present in the caches, i.e., results in
cache misses. Although, physically it is not possible for s

i

to serve �(2)
si`c

(t) number of additional chunks, we proceed
to allocate these as dummy chunks served by s

i

. As men-
tioned earlier, the idea is to increase the CA price P

si`c

(t)
(recall (5)), so that more chunks of c will be replicated by s

during its subsequent cache updates (see (3)). Practically,
the dummy chunks are downloaded from the backend data
center.

Finally, the associated rate variables are updated accord-
ing to the following expression: R

s`c

(t+) = R

s`c

(t)+�
s`c

(t).
Theoretical Guarantees: Using mean field approxima-

tion and Lyapunov function techniques, we show that our
online algorithm is optimal and stable in a limiting fluid
regime that is obtained by scaling k, i.e., the arrival rates
and the number of chunks per content; formal details are
available in our technical report [17]). From a practical
standpoint, our theoretical results imply that for a large
system2 the performance of the online algorithm is expected
to converge in time to a close-to-optimal performance.

4. SIMULATION EXPERIMENTS
We first consider a simple setting comprising 2 locations

and 3 BSs; the content catalog size is |C| = 10. After demon-
strating the e�cacy of the joint-price based request assign-
ment schemes for this setting, we present results for a larger
system.

We assume that BSs 1 and 3 are femtocells serving loca-
tions 1 and 2, respectively, while BS 2 is a common cellular
BS connected to both the locations (recall Figure 2). Thus,
the requests arriving at a location can be assigned either
to the respective femtocell or to the cellular BS. The total

2Note that large here refers to a system with large arrival
rates and content chunking. It does not imply a large net-
work in terms of number of BSs and locations; all our anal-
ysis holds for a network of any finite size.

4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Average Bandwidth Cost

C
a
c
h

e
−

m
is

s
 P

ro
b

a
b

il
it

y

Optimal

Online Algorithm

Load−only Signaling

Content−only Signaling

Joint Signaling

b

Figure 3: Performance curves.

(unscaled) content request rate from each location is 1, i.e.,
∑

c

�

`c

= 1 for ` = 1, 2. The content popularity at each
location follows a Zipf distribution with parameter 0.8, i.e.,
the probability that an incoming request is for the i-th most
popular content is proportional to 1/i

0.8. In order to ob-
tain a scenario where the same content can have di↵erent
popularities at di↵erent locations, we randomly shu✏e the
distributions for the two locations. The (unscaled) cache
update rate of each BS for each content is 1, i.e., ⌫

sc

= 1.
The various costs (recall (1)) used in the simulations are

as follows:
• Bandwidth cost: C

s

(r) = exp(2(r � R

s

)), where R1 =
R3 = 0.5 and R2 = 0.1; thus, the cellular BS is costlier than
the femtocell BSs.
• Memory cost: ̂

C

s

(✓) = exp(5(✓ � M

s

)) where M1 = M3 =
2 while M2 = 8; thus, the cellular BS has more memory
compared with the femtocells.
• Content availability (CA) cost: C

s`c

(x) = exp(bx); we are
particularly interested in studying the e↵ect of b on perfor-
mance. A large value of b, which yields a steep cost func-
tion, results in a system where cache misses are costlier than
bandwidth. Thus, b can be used to trade o↵ bandwidth cost
and cache-miss probability. We refer to b as the cache-miss
exponent.

Performance of the online algorithm: In Figure 3
we first plot the optimal performance curve, obtained by
directly solving the problem in (2) for di↵erent values of b

(curve labeled ’Optimal’). As highlighted in the figure, the
cache-miss exponent b increases from left to right along all
the curves. Also shown in the figure is the performance of the
online algorithm, described in Section 3, for a system with
k = 10 chunks per content. Although the online algorithm is
proven to converge to the optimal performance as k ! 1, it
is interesting to observe that its performance is comparable
with the optimal already for k = 10.

Before proceeding further, let us briefly discuss the trade-
o↵ curves. Note that, as b increases the cache-miss prob-
ability improves, however at the expense of an increased
bandwidth cost. This is because, for a larger b, the cellular
BS o↵ers a lower price for the incoming requests as it holds
more contents. Thus, most of the requests are forwarded to
the cellular BS, increasing its (and the overall) bandwidth

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Bandwidth Cost

C
a
c
h

e
−

m
is

s
 P

ro
b

a
b

il
it

y

Load−only Signaling

Content−only Signaling

Joint Signaling
τ=0

τ=10

τ=1 b

τ=100

τ=∞

Figure 4: Performance of the light-weight schemes

for a large network.

cost. In contrast, when b is small, bandwidth cost is the
key component in deciding the BSs’ prices. Since femtocells
are less expensive in this regard, more requests are now for-
warded to the femtocells, resulting in more cache misses as
they only hold few contents.

Drawbacks of the online algorithm: The implemen-
tation of the online algorithm however requires the BSs to
maintain routing variables in the form of number of chunks
of each content downloaded by requests from each location.
This would require identifying each chunk with its request’s
location, which is not possible in practice when the number
of ongoing requests are large. Further, estimates of the re-
quest arrival rates, �

`c

, are required by the BSs to compute
their content availability prices. Finally, the cache update
in the online algorithm is server-driven requiring the BSs to
update their caches regularly. This would result in unneces-
sary updates whenever the request rate is less.

A light-weight signaling scheme: In view of the above
drawbacks, we modify the online algorithm to obtain a light-
weight signaling scheme for request assignments. We refer to
it as the joint-price scheme since, as in the online algorithm,
the request assignment here is based jointly on the content
and bandwidth availability. The bandwidth price, as before,
remains to be the same convex increase function of the cur-
rent load on the BS; thus, by using the congestion signals
from the BS, it is possible to estimate the bandwidth cost
at a location. However, for the content availability price,
we now simply use the cost of fetching unavailable chunks if
an insu�cient number of chunks of the requested content is
available at the BS. Formally, the content availability price
of BS s for request c (from any location) at time t is given
by b(k � ⇥

sc

(t))/k, where ⇥
sc

(t) is the number of chunks of
content c at BS s at time t and b now actually represents
the cost of fetching the unavailable fraction of content c.
Thus, as with the online algorithm, a larger b implies that
the cache misses are costly.

We use the above joint price signaling scheme in conjunc-
tion with the LRU (Least Recently Used) cache eviction al-
gorithm [5, 9], which is a request driven cache management
strategy. Under LRU, cache replacements are initiated by
incoming requests that do not find the desired content in

the cache (a cache-miss event). As a consequence, the least
recently used content is removed from the cache to free mem-
ory for storing the new content. Since we deal with contents
at the chunk level, we have implemented a variation of LRU,
referred to as the CLRU (Chunk LRU) strategy. In CLRU,
the incoming request at a cache for m chunks of a content
triggers the relocation of such m chunks to the head of the
cache queue to be served. The placement of extra cached
chunks at the cache (i.e., if more than m chunks are cached)
remain unchanged. In the opposite case, if chunks are miss-
ing (i.e., if less than the requested m chunks are cached)
and the cache is full, new chunks of the content are down-
loaded and placed at the head of the queue by removing
least recently used chunks at the tail of the queue.

Performance of joint-price scheme: In Figure 3 we
have depicted the performance of the joint-price signaling
scheme. Also shown in the figure are the performance of
two heuristic policies (commonly used in practice) where the
request assignment is purely based on bandwidth availability
or content availability signals (points ’Load-only Signaling’
and ’Content-only Signaling’, respectively). The joint-price
scheme provides a favorable trade o↵ between bandwidth
cost and cache-miss probability, encompassing the heuristic
policies as its extreme end points.

Although the joint-price scheme su↵ers some degradation
in performance when compared with the online algorithm,
it is useful to emphasize that the simplicity of the former
scheme would render it more favorite than the latter when it
comes to considerations for practical implementation. More-
over, the performance degradation is less for low to moder-
ate values of cache-miss cost b, which is typically the case in
practice.

Large network: Motivated by the observations made in
the previous section, we proceed to study the performance of
the joint-price scheme for a large network. We now consider
a content catalog of size 1000. The number of locations
are increased to 10. It will be useful to think of a location
` 2 {1, 2, · · · , 10} as the segment [0, `] on the real line (recall
Figure 1 for illustration). A cellular base station is located
at the center (i.e., at 5) so that, as in the earlier case, it
can cover all the locations. However, we now increase the
number of (small-size) femtocells to 9, which are located at
positions 1, 2, · · · , 9; each small-size femtocell has a range of
1. Thus, each location (except the end locations) is served
by two adjacent femtocells. To model the heterogeneity in
the femtocell base stations, we introduce 5 moderate-size
femtocells. The moderate femtocells have a larger range of 2
and are located at 3, 4, · · · , 7. Note that, the inner locations
are covered by more femtocells (small+moderate) than the
outer ones.

Small-size femtocells have smaller caches (of size 10) com-
pared to moderate-size femtocells (whose cache capacity is
100), and the latter’s capacity is smaller than the cellular
BS which can store up to M

s

= 800 contents. Bandwidth
cost increases as we move from the small to moderate fem-
tocell and to cellular BS; recalling the cost functions from
the previous section, the respective values of R

s

are 5, 2.5
and 1.

In Figure 4 we first plot the performance achieved by the
joint-price signaling scheme along with the performance of
the two heuristic schemes. Again, we observe that the joint-
price scheme can achieve a large range of performance values,
which is in contrast to the heuristic schemes whose perfor-

mance is fixed at either optimizing bandwidth cost or cache-
miss probability, without regarding for the other metric.

In the thus far implemented joint-price schemes, we have
been assigning requests to download chunks strictly from the
set of min-priced servers. We now relax this strict consid-
eration by regarding any BS, whose price is within a toler-
ance value of ⌧ from the minimum price, as eligible to serve
chunks for an incoming request (provided as before the el-
igible BSs are connected to the request’s location); chunks
are however downloaded by sorting the eligible BSs in the
increasing order of their prices. In Figure 4 we have depicted
the performance of the joint-price scheme for di↵erent val-
ues of ⌧ , where the earlier strict min-price approach now
corresponds to ⌧ = 0; the case where all connected BSs (ir-
respective of their prices) are eligible corresponds to ⌧ = 1.

We observe that as ⌧ increases the trade-o↵ curves shift
downwards, implying that it is possible to achieve a lower
cache-miss probability for a given target bandwidth cost.
However, the range of trade-o↵ that is possible reduces as ⌧

increases. For instance, using ⌧ = 100 it is not possible to
reduce the bandwidth cost to less than 40; In fact, ⌧ = 1
case achieves the lowest cache-miss probability, however at
the expense of being constrained to operate at a higher range
of bandwidth cost. This shift in performance is because, as
⌧ increases, more BSs become eligible to serve a request
so that the cache-miss probability decreases; however, more
BSs are now loaded, resulting in a bandwidth scarce system.
Thus, further trade-o↵ in performance can be achieved by
suitably choosing the value of ⌧ .

In summary, the joint-price scheme, in conjunction with
the CLRU policy for cache management, can be a practical
candidate for request assignments in futuristic cellular net-
works where a dense deployment of heterogeneous femtocell
base-stations are expected. The cache-miss cost b, along
with the tolerance value ⌧ , can be used to serve as “tunable
knobs” to trade-o↵ one metric for the other.

5. CONCLUSION
We proposed an optimization framework to study the prob-

lem of cost minimization in cellular cache networks. Towards
this direction, we proposed an online algorithm for caching
and request assignments which is shown to be optimal and
stable in a limiting regime that is obtained by scaling the
arrival rates and the content chunking. Based on the online
algorithm, we proposed a light-weight joint-price scheme for
request assignment that can be used in conjunction with the
LRU cache management strategy. Through simulations we
found that our joint-price based request assignment strategy
outperforms the common practices of routing purely based
on either load or content availability. Our proposed joint-
price routing mechanisms are thus an appealing candidate
combining sound theoretical guarantees with good experi-
mental performance while being simple to implement.

6. REFERENCES
[1] Cisco Visual Networking Index: Global Mobile Data

Tra�c Forecast Update, 2014-2019. February 2015.
[2] N. Abedini and S. Shakkottai. Content Caching and

Scheduling in Wireless Networks With Elastic and
Inelastic Tra�c. IEEE/ACM Transactions on
Networking, 2013.

[3] M. Amble, P. Parag, S. Shakkottai, and L. Ying.
Content-Aware Caching and Tra�c Management in
Content Distribution Networks. In INFOCOM ’11.

[4] I. Baev, R. Rajaraman, and C. Swamy. Approximation
Algorithms for Data Placement Problems. SIAM J.
Comput., 38(4):1411–1429, August 2008.

[5] G. Bianchi, A. Detti, A. Caponi, and
N. Blefari Melazzi. Check Before Storing: What is the
Performance Price of Content Integrity Verification in
LRU Caching? SIGCOMM CCR, July 2013.

[6] T. Bonald, M. Jonckheere, and A. Proutiére.
Insensitive Load Balancing. In ACM SIGMETRICS
/PERFORMANCE ’04.

[7] S. Borst, V. Gupta, and A. Walid. Distributed
Caching Algorithms for Content Distribution
Networks. In INFOCOM ’10.

[8] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li. Collaborative
Hierarchical Caching with Dynamic Request Routing
for Massive Content Distribution. In INFOCOM ’12.

[9] A. Dan and D. Towsley. An Approximate Analysis of
the LRU and FIFO Bu↵er Replacement Schemes. In
ACM SIGMETRICS ’90.

[10] M. Dehghan, A. Seetharam, B. Jiang, T. He,
T. Salonidis, J. Kurose, D. Towsley, and
R. Sitaraman. On the Complexity of Optimal Routing
and Content Caching in Heterogeneous Networks. In
to appear at INFOCOM 2015.

[11] C. Fricker, P. Robert, and J. Roberts. A Versatile and
Accurate Approximation for LRU Cache Performance.
In Proceedings of the 24th International Teletra�c
Congress, ITC ’12.

[12] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch,
and G. Caire. FemtoCaching: Wireless Video Content
Delivery Through Distributed Caching Helpers. In
INFOCOM ’12.

[13] E. Jaho, M. Karaliopoulos, and I. Stavrakakis. Social
Similarity Favors Cooperation: The Distributed
Content Replication Case. IEEE Transactions on
Parallel and Distributed Systems, March 2013.

[14] W. Jiang, S. Ioannidis, L. Massoulié, and F. Picconi.
Orchestrating Massively Distributed CDNs. In ACM
CoNEXT ’12.

[15] M. Jonckheere and J. Virtamo. Optimal Insensitive
Routing and Bandwidth Sharing in Simple Data
Networks. In ACM SIGMETRICS ’05.

[16] M. Leconte, M. Lelarge, and L. Massoulié. Bipartite
Graph Structures for E�cient Balancing of
Heterogeneous Loads. In ACM SIGMETRICS/
PERFORMANCE ’12.

[17] K. P. Naveen, L. Massoulie, E. Baccelli,
A. Carneiro Viana, and D. Towsley. On the
Interaction between Content Caching and Request
Assignment in Cellular Cache Networks. Research
Report RR-8707, INRIA Saclay, March 2015.

[18] K. Poularakis and L. Tassiulas. Exploiting User
Mobility for Wireless Content Delivery. In IEEE
International Symposium on Information Theory
Proceedings, ISIT ’13.

[19] B. Tan and L. Massoulié. Optimal Content Placement
for Peer-to-Peer Video-on-Demand Systems.
IEEE/ACM Transactions on Networking, April 2013.

	Introduction
	System Model
	Online Algorithm
	Simulation Experiments
	Conclusion

