A. Becker, A. Joux, A. May, and A. Meurer, Decoding Random Binary Linear Codes in 2 n/20: How 1???+???1???=???0 Improves Information Set Decoding, Advances in Cryptology -EUROCRYPT 2012, pp.520-536
DOI : 10.1007/978-3-642-29011-4_31

I. Dumer, On minimum distance decoding of linear codes, Proc. 5th Joint Soviet-Swedish Int. Workshop Inform. Theory, pp.50-52, 1991.

A. May, A. Meurer, and E. Thomae, Decoding random linear codes iñiñ O(2 0.054n ), Advances in Cryptology - ASIACRYPT 2011, pp.107-124, 2011.

R. J. Mceliece, A public-key cryptosystem based on algebraic coding theory, DSN Prog. Rep., Jet Prop. Lab., California Inst. Technol, pp.114-116, 1978.

R. Misoczki, J. Tillich, N. Sendrier, and P. S. Barreto, MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes, 2013 IEEE International Symposium on Information Theory, pp.2069-2073, 2013.
DOI : 10.1109/ISIT.2013.6620590

URL : https://hal.archives-ouvertes.fr/hal-00870929

E. Prange, The use of information sets in decoding cyclic codes, IEEE Transactions on Information Theory, vol.8, issue.5, pp.5-9, 1962.
DOI : 10.1109/TIT.1962.1057777

J. Stern, A method for finding codewords of small weight, Coding theory and applications, pp.106-113, 1989.
DOI : 10.1007/BFb0019850