R. Mceliece, A public-key cryptosystem based on algebraic coding theory, DSN Prog. Rep., Jet Prop. Lab., California Inst. Technol, pp.114-116, 1978.

R. Misoczki, J. P. Tillich, N. Sendrier, and P. S. Barreto, MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes, 2013 IEEE International Symposium on Information Theory, pp.2069-2073, 2013.
DOI : 10.1109/ISIT.2013.6620590

URL : https://hal.archives-ouvertes.fr/hal-00870929

A. May and I. Ozerov, On Computing Nearest Neighbors with Applications to Decoding of Binary Linear Codes, Advances in Cryptology ? EUROCRYPT 2015, Part I, pp.203-228, 2015.
DOI : 10.1007/978-3-662-46800-5_9

E. Prange, The use of information sets in decoding cyclic codes, IEEE Transactions on Information Theory, vol.8, issue.5, pp.5-9, 1962.
DOI : 10.1109/TIT.1962.1057777

E. Berlekamp, R. Mceliece, and H. Van-tilborg, On the inherent intractability of certain coding problems (Corresp.), IEEE Transactions on Information Theory, vol.24, issue.3, 1978.
DOI : 10.1109/TIT.1978.1055873

M. Alekhnovich, More on average case vs approximation complexity, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pp.298-307, 2003.
DOI : 10.1109/SFCS.2003.1238204

P. Lee and E. Brickell, An observation on the security of McEliece's public-key cryptosystem Advances in Cryptology -EUROCRYPT '88, LNCS, vol.330, pp.275-280, 1988.

J. Stern, A method for finding codewords of small weight Coding theory and applications, LNCS, vol.388, pp.106-113, 1989.

I. Dumer, On minimum distance decoding of linear codes, Proc. 5th Joint Soviet-Swedish Int. Workshop Inform. Theory, pp.50-52, 1991.

A. Canteaut and F. Chabaud, A new algorithm for finding minimum-weight words in a linear code: application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511, IEEE Transactions on Information Theory, vol.44, issue.1, pp.367-378, 1998.
DOI : 10.1109/18.651067

M. Finiasz and N. Sendrier, Security bounds for the design of code-based cryptosystems Advances in Cryptology -ASIACRYPT, LNCS, vol.5912, pp.88-105, 2009.

D. Bernstein, T. Lange, and C. Peters, Smaller decoding exponents: Ball-collision decoding Advances in Cryptology -CRYPTO 2011, LNCS, vol.6841, pp.743-760, 2011.

A. May, A. Meurer, and E. Thomae, Decoding random linear codes

A. Becker, A. Joux, A. May, and A. Meurer, Decoding Random Binary Linear Codes in 2 n/20: How 1???+???1???=???0 Improves Information Set Decoding, Advances in Cryptology -EUROCRYPT 2012, pp.520-536, 2012.
DOI : 10.1007/978-3-642-29011-4_31

M. Alekhnovich, More on average case vs approximation complexity, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pp.755-786, 2011.
DOI : 10.1109/SFCS.2003.1238204