Canard solutions in planar piecewise linear systems with three zones

Abstract : In this work, we analyze the existence and stability of canard solutions in a class of planar piecewise linear systems with three zones, using a singular perturbation theory approach. To this aim, we follow the analysis of the classical canard phenomenon in smooth planar slow–fast systems and adapt it to the piecewise-linear framework. We first prove the existence of an intersection between repelling and attracting slow manifolds, which defines a maximal canard, in a non-generic system of the class having a continuum of periodic orbits. Then, we perturb this situation and we prove the persistence of the maximal canard solution, as well as the existence of a family of canard limit cycles in this class of systems. Similarities and differences between the piecewise linear case and the smooth one are highlighted.
Type de document :
Article dans une revue
Dynamical Systems, Taylor & Francis, 2015, pp.25. 〈10.1080/14689367.2015.1079304〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01244978
Contributeur : Mathieu Desroches <>
Soumis le : mercredi 16 décembre 2015 - 15:02:59
Dernière modification le : mardi 17 avril 2018 - 11:34:03

Identifiants

Citation

Soledad Fernández-García, Mathieu Desroches, Martin Krupa, Antonio Teruel. Canard solutions in planar piecewise linear systems with three zones. Dynamical Systems, Taylor & Francis, 2015, pp.25. 〈10.1080/14689367.2015.1079304〉. 〈hal-01244978〉

Partager

Métriques

Consultations de la notice

241