Inverse Reduced-Order Modeling

Patrick Héas 1 Cédric Herzet 2
1 ASPI - Applications of interacting particle systems to statistics
IRMAR - Institut de Recherche Mathématique de Rennes, Inria Rennes – Bretagne Atlantique
2 FLUMINANCE - Fluid Flow Analysis, Description and Control from Image Sequences
IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture, Inria Rennes – Bretagne Atlantique
Abstract : We propose a general probabilistic formulation of reduced-order modeling in the case the system state is hidden and characterized by some uncertainty. The objective is to integrate noisy and incomplete observations in the process of building a reduced-order model. We call this problematic inverse reduced-order modeling. This problematic arises in many scientific domains where there exists a need of accurate low-order descriptions of highly-complex phenomena, which can not be directly and/or deterministically observed. Among others, it concerns geophysical studies dealing with image data, which are important for the characterization of global warming or the prediction of natural disasters.
Type de document :
Communication dans un congrès
Reduced Basis, POD and PGD Model Reduction Techniques, Nov 2015, Cachan, France
Liste complète des métadonnées

https://hal.inria.fr/hal-01245051
Contributeur : Cedric Herzet <>
Soumis le : jeudi 17 décembre 2015 - 14:41:47
Dernière modification le : jeudi 11 janvier 2018 - 06:24:24

Identifiants

  • HAL Id : hal-01245051, version 1

Citation

Patrick Héas, Cédric Herzet. Inverse Reduced-Order Modeling. Reduced Basis, POD and PGD Model Reduction Techniques, Nov 2015, Cachan, France. 〈hal-01245051〉

Partager

Métriques

Consultations de la notice

362

Téléchargements de fichiers

35