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Operating Systems for Low-End Devices
In the Internet of Things: a Survey

Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes

~ Abstract—The Internet of Things (loT) is projected to soon Recently, the Internet Engineering Task Force (IETF) standard-
Interconngct tegs ?f bllllonS|0; ndeW.deVI_CeSI, én lgrgﬁ E@fa alsg ized a classi cation [3] of such devices in three subcategbries
connected to the Internet. loT devices include both high-en

devices which can use traditional go-to operating systems (OS) based on memory Capa&ty

such as Linux, and low-end devices which cannot, due to stringent Class Odevices have the smallest resources (0 kB
resource constraints, e.g. very limited memory, computational of RAM and << 100 kB Flash); e.g., a specialized mote
power, and power supply. However, large-scale loT software in a Wireless Sensor Network (WSN).

development, deployment, and maintenance requires an appro-
priate OS to build upon. In this paper, we thus analyse in detail
the specic requirements that an OS should satisfy to run on

Class ldevices have medium-level resourced(Q kB of
RAM and 100 kB Flash), allowing richer applications

low-end loT devices, and we survey applicable operating systems, and more advanced features than rudimentary motes, e.g.
focusing on candidates that could become an equivalent of Linux routing and secure communication protocols.
for such devices i.e. a one-size- ts-most, open source OS for low- Class 2devices have more resources, but are still very

end loT devices. constrained compared to high-end 10T devices and tradi-

tional Internet hosts.

. INTRODUCTION On Class 0 devices, extreme specialization and resource

The Internet of Things (loT) stems from the availabilityconstraints typically make the use of a proper OS unsuitable.
of a plethora of cheap, tiny, energy-ef cient communicating herefore, the software running on such hardware is typically
devices (a.k.athingg. Multiple standard communication pro-developed bare-metal, and very hardware-speci c.
tocols have been developed at different layers for the 0T |oT devices of Class 1 and above, however, are typically less
networking stack, with IPv6 typically being the narrow waisgpecialized. Software can alternatively transform such a device
at the network layer. The availability of such protocols enabl@sto an Internet router [9], host, or server, with a standard net-
heterogeneous devices to be interconnected, and reachalgek stack and reprogrammable/interchangeable applications
from the Internet. running on top of this stack [10]. Therefore, new business

From the hardware point of view, the Internet of Thingsnodels currently emerge based (partly) on portable, hardware-
is composed of heterogeneous hardware - even more thanniflependent software and applications running on loT devices
the traditional Internet. 10T devices can be classied in twef Class 1 and above. Consequently, several major companies
categories, based on their capability and performance. Tih&ve recently announced new OSs designed specically to
rst category consists ifhigh-end loT devicesvhich includes run on 10T devices, including Huawei [11], ARM [12], and
single-board computers such as the Rasberry Pi [1], ag@ogle [13]. Indeed, on such hardware, it is often desirable to
smartphones. High-end loT devices have enough resources Bagrovided with software primitives enabling easy hardware-
adequate characteristics to run software based on traditio@lependent code production. More generally, there is a need
Operating Systems (OSs) such as Linux or BSD. for Application Programming Interfaces (APIs) beyond bare-

The second category consistsiaw-end loT deviceswvhich  metal programming that can cater for the wide range of
are too resource-constrained to run these traditional O%sT use cases, to facilitate large-scale software development,
Popular examples of low-end loT devices include Arduino [“Heployment and maintenance. Such software primitives are
Econotag [3], Zolertia Z1 [4], IoT-LAB M3 nodes [5], Open-typically provided by an OS. In this paper, we will thus focus
Mote nodes [6], and TelosB motes [7], some of which aren OSs that are appropriate for Class 1 and Class 2 devices.
shown in Fig. 1. In this paper, we focus on such low-end 10T We note that, unfortunately, Moore's law is not expected
devices because they pose novel challenges for OS designgrselp in this context: it is anticipated that IoT devices
when it comes to handling the highly constrained hardwaygll get smaller, cheaper, and more energy-ef cient, instead

resources. of providing signi cantly more memory or CPU power [14].
. Therefore, in the foreseeable future, low-end l0T devices with
A. Low-End loT Devices a few kilobytes of memory, such as Class 1 and Class 2

Low-end loT devices are typically very constrained in termdevices, are likely to remain predominant in the IoT.

of resources including energy, CPU, and memory capacity.
INote that this classi cation is not to be confused with Electronic Product

0. Hahm and E. Baccelli work for INRIA, France. Code (EPC). It is based on IETF standard classication as specied in
H. Petersen works for Freie UniveigitBerlin, Germany. RFC 7228 [8]. The term€lass 0-2are used according to this classi cation
N. Tsiftes works for SICS, Sweden. throughout the paper.

20ther classi cations, e.g. based on energy capacities, are possible, but
available memory is most crucial for the OS design.



(a) Arduino Due. (b) Zolertia Re-Mote. (c) 10T-LAB-M3.

(d) Atmel SAM R21.

Fig. 1: Examples of low-end 10T devices.

B. Operating Systems for Low-End loT Devices OS for loT devices. Then, we overview the main OS design
oices and other non-technical factors in this context. Once
s background settled, we survey the OSs that are potentially
’rgalicable, with the goal of being exhaustive, but brief. Then,

propose a taxonomy for loT OSs, and we analyse in
re depth one OS per identi ed category, chosen for being
ominent within its category.

As previously mentioned, traditional operating systems suﬁﬂ
as Linux or BSD are not applicable on low-end loT device
because they cannot run on the limited resources provi
on such hardware. In consequence, the IoT is plagued w,
lack of interoperability between many incompatible vertica’rj“r’b
silo solutions. We argue that the 10T will not ful Il its potential
until a software big-bang happens, resulting in the emergencell. REQUIREMENTS FOR ANIOT OPERATING SYSTEM
of a couple of de facto standard OSs providing consistent APl this section we give an overview of the diverse require-
& SDK across heterogeneous IoT hardware platforms.  ments a generic OS for low-end 10T devices should aim to

In this paper, we will thus survey OSs that could becomgtisfy.
the de facto standard OS for low-end 10T devices. We note that
solutions providing the smallest possible memory footprint afe Small Memory Footprint

typically limited to a speci c use case, and are therefore unt Compared to other connected machines, loT devices are
for becoming the generic OS for IoT devices. In contrast, Wayuch more resource-constrained, especially in terms of mem-
will thus target one-size- ts-all (or at least one-size- ts-mostbry' One of the requirements for a generic OS for the loT
solutions that provide the best level of comfort while satisfying thus to t within such memory constraints. While PCs,
medium memory requirements in the order df0 kB of RAM  smartphones, tablets, or laptops provide Giga- or TeraBytes
or more, and 100 kB Flash or more; i.e., devices Gfass 1 of memory, 10T devices typically provide a few kilobytes of
and above, according to the IETF classi cation [3]. memory, i.e. a million times less. This observation holds both
By level of comfort, we mean interoperability with the restor volatile (RAM) and persistent (ROM) memory [3]. In order
of the Internet including (i) compatibility with IP protocolsto t within memory footprint constraints, loT application
from a network point of view, and (i) from a systems point ofjesigners must be provided with a set of optimized libraries
view, compatibility with standard programming tools, modelgpotentially cross-layer) providing common loT functionality,
and languages used on Internet hosts. In this paper, we fogug ef cient data structures.
on open source OSs, but we will also briey survey closed Identifying the right trade-off between (i) performance, (ii)
source alternatives. One reason for this focus is that sevesatonvenient API, and (iii) a small OS memory footprint, is a
of the most widespread OSs for low-end loT devices are opgon-trivial challenge. For example, in many cases the OS de-
source, and that they offer greater possibilities to examine thgigner has to identify the sweet spot between RAM and ROM
design and implementation at a thorough level, as is requiresage. Furthermore, balance must be found between sensible
for this survey. A number of additional reasons for focussingrogramming guidelines and coding conventions which must
on open source will also be mentioned later in the paper. be observed on one hand, and the high degree of modularity
The remainder of this paper is organized as follows. Firsind con gurability which is desired to t a wide range of use
we analyze the requirements which should be ful lled by anases on the other hand.



B. Support for Heterogeneous Hardware years with a single battery charge [27]. On a global level,

While the diversity of hardware and protocols used ifN€'9Y €f ciency is also required due to the sheer number of
today's Internet is relatively small from an architectural pel@T devices thatis expected to be deployed (tens of billions).
spective, the degree of heterogeneity explodes in the 19T hardware in genera—MCUSs, radio transceivers, sensors—
The large variety of use cases [15][19] led to the develfOvides features to operate in an energy ef cient manner.
opment of a large variety of hardware and communicatidiowever, there is no free lunch: this yields requirements on
technologies. 10T devices are based on various microcontroll@f software. Indeed, unless 10T software makes use of these
(MCU) architectures and families, including 8 bit (e.g. Inteleatures (e.g., putting devices into the deepest sleep mode as
8051/52, Atmel AVR), 16 bit (e.g. TI MSP430), 32 bit (ARM?,often as posgble), energy ef ciency is not agh|eyed. Therefore,
ARM Cortex-M, MIPS32, and even x86) architectures—64 bt K€y requirement for OSs for the loT is (i) to provide

architectures might also appear in the future. On top of th&f)€"dy saving options to upper layers, and (i) to make use

key system characteristics vary wildly: for example som%f these functions itself as much as possible, for example by

loT devices provide hundreds of kilobytes of RAM, but nd!Sing téchniques such as radio duty cycling, or by minimizing

persistent memory to store executable code (and thus genefdfenumber of periodic tasks that need to be executed. For
the need to load both codend data into RAM). One such instance, a periodic system timer that schedulers use for time

board is the still popular Redwire Econotag board, whicHiCing leads to a system that never goes to deep power-down
is based on an Freescale MC13224V [3], [20]. Other IoFiodes, and should thus be avoided if possible.

devices are very limited in terms of RAM, but equipped with

a lot of ROM, such as the STM32F100VC ARM Cortex-M3 - Real-Time Capabilities

MCU [21]. Similarly, loT devices can be equipped with a wide Precise timing, and timely execution are crucial in various
variety of communication technologies, as described below 6T use-cases e.g., smart health applications such as body
Subsection [I-C. Note that such heterogeneity may even ocerea networks (BAN) with pacemakers providing wireless
within a single deployment, whereby many different typesonitoring and control [28], [29], or in other scenarios
of devices take part in various tasks to achieve an overaltluding actuators and/or robots in industrial automation
goal [22], [23]. Thus, one of the requirements—and a keyontexts, or a Vehicular Ad-Hoc Network (VANET). An OS
challenge—for a generic OS for the IoT is to support thighat can ful Il timely execution requirements is called a Real-
heterogeneity in hardware architectures and communicatidime Operating System (RTOS), and is designed to guarantee
technologies. worst-case execution times and worst-case interrupt latencies.
Therefore, another requirement for a generic OS for the 10T is
to be an RTOS, which typically implies that kernel functions
have to operate with a deterministic run-time. The Japanese

~ The main point of having IoT devices, is that they caBpen standard for a real-time operating system, ITRON, is
interconnect, and communicate with one another or with thgypylar in this eld, though it aims mostly for consumer

Internet. loT devices are thus typically equipped with one (@ectronics [30].

more) network interfaces. Communication technigues used in

the IoT encompass not only a wide variety of low-power radig_ Security

technologies (e.g., IEEE 802.15.4, Bluetooth/BLE, DASH7, e

and EnOcean) but also various wired technologies (e.g., PLCON ©né hand, some IoT systems are part of critical infras-

Ethernet, or several bus systems). Contrary to WSN scentgp’_cture or industrial systems with life safety implications [31].

ios [24] [25], it is generally expected that IoT devices sean?" the .other ha_nd, since they are connected. to the Internet,
lessly integrate with the Internet; i.e., can communicate end-{8] devices are in general expected to meet high security and
end with other machines on the Internet [23]. The combinatidiy’vacy standards. Beyond the overar_chmg trust maljagement
of (i) having to support multiple link layer technologies an&harl]lenge, loT sedcurlty Challeng|e§ includes data :cntﬁgrlty,
(ii) having to communicate with other Internet hosts, led to tauthentication, and access control in various parts of the loT
use of network stacks based on IP protocols directly on IGfchitecture. Thus, a requirement (and challenge) for an OS for
devices [26]. A key requirement for a generic OS for the Io¥'€ 0T IS to provide the necessary mechanisms (cryptographic
is thus to support heterogeneous link layer technologies angéaf,'?S and security protocols) _Wh'le retaining e,X'b'I'ty and.
network stack based on IP protocols relevant for the IoT | sability. Last but not least, since software with a certain

Furthermore, as indicated by the evolution of Linux over tH&e9ree of complexity can never be expected to be 100%
years (which is an obvious example of future-proof desig ug-free, and security standards evolve (driven by various

it is also desirable that the OS can cater for multiple networkake holders such as industry, government, consumers etc.)
stacks and for continuous network stack evolution. It is crucial to provide mechanisms for software updates on

already-deployed loT devices—and to use open source as
much as possible [32].

C. Network Connectivity

D. Energy Ef ciency

Many loT devices will run on batteries or other con- Il. KEey DESIGN CHOICES
strained energy sources. For example, smart meters and othdrhe success and applicability of an OS for the loT are
home/building automation devices are required to work fam uenced by technical as well as political or organizational



factors. In this section, we will overview key technical OS
design alternatives, as well as relevant non-technical consid-
erations.

A. Technical Properties

Design choices concerning, e.g., the general OS model, the
scheduling strategy, or hardware abstraction, have a major
impact on the capabilities and exibility of the system. In this
section, we will overview such choices and how they affect
OS applicability for 10T use cases.

General Architecture and Modularity . The rst design
decision that has to be made for any OS is the choice of
the kernel type. This choice has a major impact on the
overall architecture of the system and its modularity. A generic
architecture for an IoT OS is depicted in Figure 2. One can
differentiate between aexokernelapproach, amicrokernel
approach, anonolithic approach, or a hybrid approach. The
main idea behind the exokernel approach is to put as few

abstractions as possible between the application and the hatg: 2: Typical components of an OS for low-end IoT devices,

ware, and to mostly focus on avoiding resource conicts anglcjyding a common low-power IPv6 protocol stack.
checking access levels. The microkernel approach aims for

more functionalities (minimalistic set of features) in the kernel,

while still requiring very little memory, and providing a lot of , . , .
space and exibility for the rest of the system, as well atask, wh|'le the different tasks have to yield themselves in the
robustness (since a crashing device driver will not affect tf@0Perative model.

stability of the whole system). However, due to the typical Memory Allocation. As described in Section I, memory
absence of an Memory Management Unit (MMU) on lowls usually a very scarce resource on loT devices. Hence, a
end 10T devices, buffer and stack over ows can still happePpPhisticated handling of memory is required. One important
and have severe impact on the system. Finally, the main iddizestion is whether memory is allocated in a static or dynamic
behind a monolithic approach is that all components of tHBanner, and this choice also affects other criteria of the
system are developed together, which may lead to a simph¥stem design. Static memory allocation typically requires
and overall more ef cient design. some over-provisioning and makes the system less exible

SynopsisOne has to choose between the more robust afichanging requirements during run-time. Dynamic memory
more exible microkernel or a less complex and more ef ciengllocation makes the system design more complicated for
monolithic kernel — or go for a hybrid approach. two main reasons. First, functions such mslloc() and

Scheduling Model Another crucial part of any OS is therelated functions are usually implemented in a time-wise non-
scheduler, which affects other important properties such dgterministic fashion in the standard C libraries and, thus, will
energy ef ciency, real-time capabilities, or the programmingreak any real-time guarantees. Hence, in order to make use
model. There are typically two types of schedulers: preempti¢é dynamic memory allocation for applications with real-time
schedulers, and non-preemptive (or cooperative) schedulég§luirements, the OS has to provide special implementations
An OS may provide different schedulers, that can be select deterministianalloc()  like TLSF [33]. Second, dynamic
at build time. A preemptive scheduler can interrupt any (noRemory allocation creates the need to handle out-of-memory
kernel) task at any given point to allow another task to executfuations and the like at runtime, which may be dif cult to
for a limited time. In a cooperative model, each thread @deal with. Additionally, heap-based malloc implementations
responsible to yield itself, because no other task, and in soffually induce memory fragmentation, which cause systems
cases not even the kernel, is able to interrupt a task. to run out of memory even faster.

In many cases a preemptive scheduler requires a periodidynopsis:Static memory allocation introduces some mem-
timer tick, sometimes called systick in order to assign time ory overhead due to over-provisioning and results in less
slices to each task. This requirement usually prevents the I€Kible systems, while dynamic memory allocation leads to
device to enter the deepest power-save mode, since at least®ri@ore complex system and may conict with real-time
hardware timer needs to stay active. Additionally, the MCtgquirements.
enters full active mode at easlystick Time-sliced scheduling  Network Buffer Management. A central component of an
is often used for OSs with a User Interface (Ul) to mimi¢oT OS is the network stack where chunks of memory, e.g.,
a parallelized execution of multiple tasks. For 10T OSs thisackets, has to be shared between the layers. Two possible
is mostly unnecessary because they do not have a direct us#utions to achieve this are copying of memamefncpy() )
and, thus, do not require a Ul. or passing of pointers between the several layers. While the

SynopsisA preemptive scheduler assigns CPU time to eactst solution is expensive from a resource point of view, the



latter generates the question who is responsible to allocate tlewices, e.g., sensors, actuators, transceivers, the model may
memory. Delegating this task to the upper layers, make thiso abstract from the underlying hardware in general. A
application development more complex and less conveniehardware abstraction layer can provide a well-de ned interface
Leaving this task for the lower layers, such as the device drives, CPU, memory, and interrupt handling in order to make
make the system less exible. A possible approach to solp®rting to new platforms a straightforward task.
this conict is the design of a central memory manager as Synopsis:A well-de ned hardware abstraction layer and
proposed for TinyOS or RIOT [34], [35]. driver model can signi cantly improve the system design, but
SynopsisMemory for packet handling in the network stackntroduces a certain amount of overhead—either in terms of
may be allocated by each layer or passed as a referetines of code or in terms of runtime overhead.
between the layers. Debugging Tools As mentioned before, the choice of
Programming Model. The programming modelde nes programming languages also predetermines the possible tools
how an application developer can model the program. The use, including the ones for debugging. Well-established
typical programming models the domain of loT OSs can betoolchains such as the one around the GNU Compiler Col-
divided into event-driven systems and multi-threaded systenection (GCC) usually include corresponding debugging tools,
In an event-driven system which is, for example, widely usealg., the GNU Debugger (GDB). However, in order to run a
for WSN OSs, every task has to be triggered by an (externf)e debugging system, the target board has to provide an ade-
event, such as an interrupt. This approach is often accomparedte interface, such as JTAG or Spy-Bi-Wire. Unfortunately,
by a simple event loop (instead of a more complex schedulegt every loT device provides such an interface, and therefore
and a shared-stack model. A programming model based ather debugging facilities are needed.
multi-threading gives the developer the opportunity to run eachA common auxiliary tool is the use agbrintf() and
task in its own thread context, and communicate between tthe like for simple debugging over a serial interface, e.g., a
tasks by using an Inter Process Communication (IPC) APLLUSART. In some cases, even a simple LED blinking algorithm
Synopsis: Event-driven systems can be more memoryean sometimes be found as a primitive debugging substitute.
ef cient, while multi-threading systems eases the applicatidh one lacks access to the devices, as is often the case with
design. deployed loT networks, it is necessary to provide other means
Programming Languages The main choice for the pro- for accessing debug information. For instance, this can be
gramming language of an OS is to decide between (i) aghieved through periodic diagnostic messages sent over the
standard programming language, typically ANSI C or C++etwork, or through logs written on external ash memaory.
and (ii) an OS-speci c language or dialect. On the one hand, Synopsis:Using standard programming languages in gen-
providing OS-speci c language features allows performanceral allows for using standard debugging tools, but hardware
or safety-relevant enhancements that low level languages likaitations may pose the need for other, simpler debugging
C do not support. On the other hand, they prevent the usefaf€ilities via serial output or even LED blinking.
well-established and mature development tools. The speci-Feature Set An OS can be split into kernel and higher
cation of standards for programming languages, most notaldyel functionalities. Typically the kernel provides a scheduler,
the ANSI speci cations for C and C++, meant a signi canta model for tasks, mutual exclusion (mutex) and other forms
boost for the evolution of software in general and for OSs iof synchronization, and timers. In case the OS supports multi-
particular. Despite its age (and the rise of newer programmittyyeading, the API will usually also comprise functions for
languages), the C programming language is still the mds&tC. On higher layers, system libraries can be found, such as a
important and most widely used programming language (alosgell, logging, cryptographic functions, or network stacks. Due
with Assembler) when it comes to OS programming, ano typically missing MMUs on loT devices, such applications
to lower level parts such as scheduling or device driverand application libraries will usually run in the same address
However, more sophisticated languages with a bigger featwgace as kernel operations and can therefore decrease the
set may be available on top of that, at higher levels, to easgstem's stability.
application programming. In addition to network protocols, features in higher layers
SynopsisStandard programming languages simplify portahat are of particular interest in an OS for low-end 10T devices
bility and enable the use of well-known development toolinclude over-the-air updates, dynamic loading and linking, or
OS-speci ¢ languages and language extensions can increbisearies for lightweight encryption and decryption.
the system performance and safety. SynopsisThe overall feature set of an OS may be described
Driver Model and Hardware Abstraction Layer. loT by the size of its API.
systems will interact with the environment in many ways, Testing. As for all software systems, testing plays a crucial
either in a passive way by sensing through all kind of semsle for the development of IoT OSs. In particular, for highly
sors or actively through actuators such as motors or lightinigstributed development work ows, as can often be found in
systems. Consequently, MCUs for these systems are usudliyger open source projects, deploying a continuous integra-
equipped with a variety of different peripheral devices, likéon (Cl) environment is inevitable [36]. This CI will usually
ADCs/DACs, interfaces like SPI?C, CAN bus, or serial lines, include build and integration tests as well as unit and regres-
and GPIOs. Thus, a exible and reasonably convenient driveion tests. The speci ¢ challenges of testing for 10T systems
interface is crucial for an 1oT OS. arise from the distributed nature of these systems, and the fact
In addition to the driver model for connecting externahat they are deeply embedded and often very constrained. A



widely used approach to deal with the hardware-related padt sight, due to constraints that are only partly apparent.
of the testing, such as the testing of device drivers, is to uBetypical indicator for thoroughly documented code (but not
hardware emulation tools, e.g., MSPSim or Emul8 [37], [38hecessarily the most meaningful measure) is the percentage of
Network emulators and simulators such as Cooja or ns-2/nsd®cumentation per lines of code.
that allow for the integration of OS code, are of great help in Synopsisin order to make the best use of an OS and ease
this context [39]. application design, a complete and comprehensible documen-
Synopsis: The distributed nature and constraints of theation is required.
hardware makes thorough testing a challenging, but crucialMaturity of the Code. Even more dif cult to measure than
task. the quality of documentation is the maturity of software. A
very rough indicator is the age of the project combined with
the number of contributors and users. While certi cation is
in many cases mainly a legal safeguard, the actual robustness
The applicability of a technically t OS—in particular for and correctness of a system is much more dif cult to assess.
commercial usage—is also in uenced by aspects such as thésynopsis:In many cases thorough testing and wide de-
license, maintainability, the work ow, or the provider of theployment in commercial applications is a better indicator for
OS. In this section we overview such non-technical aspectshe maturity of an OS than the mere age of the project or
(Open) Standards A crucial characteristic for any OS iscerti cations.
its ability to provide applications portability across hardware License of the Code In general, one can distinguish
platforms and architectures—ideally, without any addition@etween three license categories: (i) non-free, (ii) permissive
effort. Standardized APIs (such as POSIX, speci ed by IEEGpen source, and (iii) copyleft licenses. If an OS is released
and the Open Group) were also developed to simplify sofinder a non-free license, the OS is either only available as
ware porting between several OSs. However, on low-end I®lnary data, or customers are charged extra fees to obtain
devices, implementing a standard APl designed for genetak source code, which hampers bug xes and improvements
purpose operating systems such as Linux may be dif culy third parties by limiting the number of contributors [32].
because of software size constraints (and in fact, even on PEsimissive licenses, e.g. BSD, MIT, or Apache License, give
few OSs can claim full POSIX compliance). For seamlesfevelopers and users a high degree of freedom, and are often
software porting between multiple OSs, additional support fafiore easily accepted by industry than copyleft licenses—
programming language standards such as ANSI C99 or C++dlfhough for some companies, quite the contrary is true.
should nevertheless be provided. Finally, standards are mopossible downside of permissive licences is the potential
only important on the system level, but unavoidable on thgagmentation of the community and code base, which often
network level. For standards at the network level, experienggads to a situation where not all features are accessible—or at
shows that the use of open-access speci cations, such as thiesgt not within one repository. By contrast, copyleft licenses
standardized by the Internet Engineering Task Force (IET&)ch as GPL (with or without linking exception) and LGPL,
for instance, is preferable by default over other approachesre less easily accepted by some industry branches, but can
Synopsis:The use of standards improves portability antbad to a much more integrative community and a common
interoperability. code base, as can be seen with the outstanding example of
Certi cation . For some use cases, in particular for criticalinux.
systems in applications such as building automation, crucialSynopsis: Open source—particularly copyleft licenses—
properties of the system include real-time capabilities, roaay not always be the rst choice of industry, but offers
bustness, or determinism. In these cases, certi cation througfitances for higher code quality and more secure code due
independent institutions becomes an inevitable requiremeatthe increased numbers of contributors and reviewers.
for the OS. A typical and widely established example for Provider of the OS. The code of the OS may be provided
such a certi cation is the IEC 61508 standard, which is tin different forms and by differing entities (depending on
tled "Functional Safety of Electrical/Electronic/Programmablthe chosen license type). It might be either provided by the
Electronic Safety-related Systems”. Additional certi cationsendor that actually develops the software, or by a third
that are relevant for OSs on loT devices are the IPv6 Forunparty, which may also provide commercial support. In case
"IPv6 Ready” logo program, and the recently started IPS6f open source solutions, the code is often provided by the
Alliance compliance and certi cation program. developer community itself through repositories of version
Synopsis:Especially for the deployment in industrial anccontrol systems such as Git, Subversion, or Mercurial. The
safety-critical applications, certi cation of the entire softwareommunity typically provides best-effort support via online
running on an loT system might be mandatory. forums, open issue trackers, and mailing lists for these type of
Documentation Complete and easy-to-understand docyrojects. This support is crucial in practice and it is thus highly
mentation is important for any piece of software. For an O®commended to prefer an open source project with a currently
this requirement becomes even more important as the OSagive community, over an open source project with no active
the foundation of every other piece of software running ctcommunity, or with a formerly active community. Note that
the system. Furthermore, need for thorough documentatiors@mnetimes, professional software consulting is offered not
exacerbated for embedded software, as such software oftendrag for commercial OSs, but also for free open source OSs.
to make compromises for reasons that are dif cult to grasp atSynopsisThe way of distribution and degree of support for

B. Non-Technical Properties



an OS is highly dependent on its license. with closed source applications (only the kernel has to remain
open source). Although it does not provide its own network

IV. CANDIDATE OSEOR THEIOT stack, third-party network stacks can be used for Internet
connectivity. FreeRTOS is developed since 2002, and is so

In this sggnon, we briey review OSs that.represent th r one of the most used open source RTOSs for constrained
most promising approaches towards a generic 10T OS. T des

goal in this section is exhaustiveness rather than in-dept %) 'finyOS [50]: Together with Contiki, TinyOS is the

a_nalysis (which is the focus of the next section). We wi ost prominent OS for WSN applications, targeting very

. ; . E6nstrained 8 bit and 16 bit platforms and is known for its

OSs, and (iii) ot_her software .I|brar|es or mlddleware fpr thgophisticated design. TinyOS and nesC evolved language prim-

loT. If not mentloned otherW|'se, all OSs are wntten.m thﬁives and programming abstractions to prevent as many bugs

c programming Iangugge, while some hardware-speci ¢ party possible through software structure and enhance memory

may be implemented in assembly language. ef ciency by reducing the actual linked code to a minimum.
However, the rather complex design in combination with a

A. Open Source OSs customized programming language makes it hard to learn,
mﬁd it is thus lacking a bigger developer community [51]. It

follows an event-driven approach, where seve@inponents

1) Contiki [40], [41]: Contiki was originally developed as° modulescan be virtually wired, as described fwpn gu-

an OS for WSNs running on very memory-constrained g-gifitions according the requirements. It is written in a dialect
MCUs, but now also runs on 16-bit MCUs and modern Iof! the C programming language, calledsC Its source code
devices based on the ARM 32-bit MCUs. It is based on an 2vailable online under the BSD license on GitHulhe
event-driven, cooperative scheduling approach, with suppB}F'”ded,BLlp network stack implements the 6LoOWPAN stack.
for lightweight pseudo-threading. While being written in thd YOS S developed since 2000, and is so far one of the most
C programming language, some parts of the OS make MHsed open source OSs for constrained nodes, with Contiki.
of macro-based abstractions (e.g., Protothreads [42]), and i) OPENWSN [47]:OpenWSN comprises a 6TISCH net-
effect require developers to consider certain restrictions as¥g'K Stack, a basic scheduler, anddaard Support Package
what type of language features they can use. Contiki code(RSP)i.e., a simple hardware abstraction, making it possible to
available under BSD license on GitHubnd other platforms, 4N OPENWSN on a dozen loT hardware platforms. As such,

while a large variety of forks are developed independent penWSN is more of a network_stack than a full- ed_ged OS.
(including many closed source versions of the OS). Conti penWSN code is available online under the BSD license on

features several network stacks, including the popular u

This section lists the predominant open source OSs target
for 10T devices.

ﬁthubﬁ. The main focus of OpenWSN is the 6 TiSCH network

stack, with support for IPv6, 6LOWPAN, RPL, and CoAPStaCk' including an implementation of the IEEE 802.15.4e
and the Rime stack, which provides a set of distributddAC amendment [26]. OpenWSN s developed since 2010,
programming abstractions. Contiki is developed since 200% & 9rowing, world-wide open source community.

and is so far one of the most used open source OSs fof) NUIX [52]: The nuttX OS aims for full POSIX and
constrained nodes. ANSI compliance and supports MCUs ranging from 8 bit up

2) RIOT [43]-[45]: RIOT was developed with the partic-to 32 bit architectures. NuttX can be built as a microkernel as

ular requirements of IoT in mind and aims for a developeY‘-’e” as a monolithic version. It is highly modular and features

friendly programing model and API, e.g. similar to what iéeal—time capabilities as well as a tickless scheduler. The
experienced on Linux. RIOT is a microkernel-based RTOOUICe code is available under BSD license on Sourceforge

with multi-threading support, using an architecture inherite-Bhe int_egrate_d network TtaCk includels support_fo(rj lPV|4 aréd
from FireKernel [46]. While the OS is written in C (ANSI99),Iliar:’fevg(t)o;’ar'ous upper layer protocols. NuttX is develope

applications and libraries can also be implemented in C+%!
bp P 7) eCos [53]: Theembedded con gurable operating system

The source code is available on GitHubnder LGPLv2.1. 5 q bi bedded hard
RIOT features several network stacks, including its own m(gCos) supports 16, 32, and 64 bit embedded hardware. eCos

plementation of the full 6LOWPAN stack (thgnrc stack), a code is available under a custom license based on GPL with
port of the 6TISCH stack OpenWSN [47], and a port of thgnking exception (acknowledged by FSF). While the open
information centric networking stack CCN-lite [48]. RIOT jgSource version of eCos seems rather inactive, the commercial

developed as such since 2012, by a growing, world-wide Opgﬁrsion (eCosPro by eCosCentric) is under active develop-
source community. ment. eCos does not provide an own network stack per se, but

3) FreeRTOS [49]: FreeRTOS is a popular RTOS whichSuPports third-party network stacks (IwlP and the FreeBSD

has been ported to many MCUs. Its preemptive microkerr@?twork stack). The source code is available in a Mercurial

has support for multi-threading. It is now developed by Regerositor}?. eCos is developed since 2002, but parts of the

Time Engineers Ltd. and its code is available on the proje%?de'base are older.
page under a modied GPL that allows commercial usagessee https:/github.com/tinyos/tinyos-main
6see https://github.com/openwsn-berkeley/openwsn-fw
3see https://github.com/contiki-os/contiki “see http://git.code.sf.net/p/nuttx/git
4see https://github.com/RIOT-OS/RIOT 8see http://hg-pub.ecoscentric.com/ecos/
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8) mbedOS [12]:ARM recently released a technology pre-
view release (labeled 15.11) of their upcoming OS for low-end
loT devices, called mbed OS. Based on this preview, mbedOS
focuses exclusively on 32 bit ARM embedded architecture,
and supports a small number of platforms (5 so far, though designed for ARM Cortex-M platforms which comes
we can expect many more in the near future). Among the along with a full- edged IDE, developed since 2009.
experimental features show-cased in the preview are a (closed- ERIKA Enterprise[62] is an RTOS targeted for auto-
source) 6LOWPAN implementation that claims to implement  motive embedded systems. It supports 8, 16, and 32 bit

ChibiOS/RT[60] is an RTOS is developed since 2007
under a modi ed GPL with linking exception and aims
for high performance on 8, 16, and 32 bit MCUs.

CooCox Co0Od61] is a free and open RTOS specially

the Thread 1.0speci cation, several interface de nitions, a
port of PolarSSL, and support for Bluetooth Low Energy.

mbed is developed since 2009, but had so far focused on

providing a hardware abstraction layer rather than an OS.
9) L4 microkernel family [54], [55]: L4 OSs follow a strict

MCUs, has support for multi-core systems and is licensed
under GPL v2 with linking exception.

MansOS[63] is another WSN OS that aims for easy
developing and debugging and supports currently 8 bit
AVR and 16 bit MSP430 MCUs.

NanoQplug64] developed at ETRI targets WSN Class 0
devices and provides multi-threading and a memory pro-
tection mechanism.

nanoRK[65] is an RTOS for WSNs with a focus on
resource reservation for tasks, developed since 2005 for
MSP430 platforms.

Nut/OS [66] emerged from an RTOS called
Liquorice [67], Nut/OS focusses on constrained
devices with wired (Ethernet) connections.

RTEMS [68] is an open RTOS with focus on open
standard APIs, multiprocessor support, and hard real-time
guarantees.

There are other open source OSs from the domain of
WSNSs, such asSOS[69], MANTIS OS[70], [71], Lo-

microkernel design and were originally created to overcome
the poor performance of earlier microkernel-based OSs in
the mid-1990s. Later implementations have been designed
for platform independence, improved security, isolation, and
robustness. A well-known representative of this family is selL4,
developed in 2006 by the NICTA group with a particular focus
on security, reliability, and formal veri cation [56]. However,
most L4 microkernel based OSs do not match the constraints
of Class 1 devices. An exception is the F9 microkernel that
targets particular ARM Cortex-M3/M4 based devices. While
many members of this family are licensed under GPL or BSD
license, not all of them are open source.

10) uClinux [57]: This is a port of the Linux 2.x kernel
for CPUs without an MMU and with a much smaller memory i ) ) :
footprint than Linux. While uClinux benets from the rich rien [72] or LiteOS[73], but they are mostly inactive and
feature set of Linux (including APIs, a full TCP/IP stack, and ~ Never targeted loT scenarios.
excellent le system support), it has the drawback of memory A detailed tabular overview of the open source OS listed
requirements that do not t low-end loT devices, such as Clagdove is given in Table |. On the other hand, Table II
1 devices [8], which are the focus of this survey. The sours&@mmarizes why OSs like Contiki, FreeRTOS, or RIOT are a
code is available on SourcefofgeiClinux is developed since good match to most of the requirements derived in Section Il
1998. while other approaches such as uClinux, Arduino and Android

11) Android [58] and Brillo [59]: This mobile OS An- fail to fulll them.
droid, developed by Google, is a variant of Linux, targeting
mostly smartphones and tablets, but has also been usedinClosed Source OSs

cars, watches, TVs, and other consumer electronics. Thqn addition to the aforementioned open source OSs, sev-

ncept ible through online stores wher I - .
concept ofapps accessible ough oniine stores Where US€ig,; cjosed-source OSs have characteristics suitable for 10T
can purchase and download application software, boosted the . . ; . e
) . L omain. Albeit being proprietary, some vendors offer limited
evolution of smartphones. While the core of Android is open : )
access to their source code for customers, registered users, or

source—as required by Linux’ GPL—many of the deVICecademic institutes. These OSs, however, are often originally
drivers and hardware support is proprietary closed source coge

Similarly to other Linux-based systems, Android is unable esigned for other domams_, and typlc_ally lack  important
. . eatures such as energy-saving mechanisms or recently stan-
run on low-end 0T devices such as Class 1 devices.

: dardized 10T protocols. Still, some of the closed-source OSs
In 2015, Google announced Brillo [

. ' X ] a shmmed-d_ow%an be adapted to run on Class 0 and Class 1 devices, and we
version of Android that will be able to run on loT deV|ce§he list some of the more relevant examples below:

offering a few tens of megabytes of memory. Hence, Brillq 1) ThreadX [74]: ThreadX is an RTOS developed by

requires considerably less hardware resources than Andr%ipress Logic, Incwhich has recently been acquired by

Because it is still a variant of Linux, however, it cannot b%RM (and migjht bécome the core of mbed OS 3.0) [75]
used on the Iowtend loT devices that are the fo_cus of t!"ﬁweadx is based on a microkernel RTOS (sometimes referred
survey, and we will therefore not expound its technical detalll% as a picokernel) which supports multi-threading and uses
12) Other open source OFor sake of completeness, wey preemptive scheduler. The kernel provides two techniques

mention below other open source OSs. However, since th@y eliminate priority inversion: (i) priority inheritance that

are not as prominent, we describe them in less detail. elevates the priority level of a task while executing a critical
section and (ii) preemption threshold that disable preemption

9see http://sourceforge.net/projects/uclinux/ les/ of threads below a speci ed priority. Additional features such
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as a network stack, USB support, a le system, or a GUI cahreading and IPC capabilities. In comparison to pC/OS-Il, the
be purchased as separate products. version released in 2009, pC/OS-1ll comprises some enhanced
2) QNX [76]: Originally developed by Quantum Softwarefeatures such as unlimited number of tasks and priorities.
Systems in 1982, QNX was acquired by Research in Mé&dditional software packages such as a GUI, a le system,
tion (RIM) in 2010. It was one of the rst commercially or a TCP/IP network stack are also provided by Micrium, and
successful microkernel-based RTOSs and provides a UNIXan be integrated into pC/OS-IIl.
like API. QNX's powerful IPC served as inspiration for many 10) p-velOSity [85]: p-velOSity is a royalty-free RTOS
subsequent OSs, such as RIOT. The current version, calteloped by Green Hills Software (GHS). Well integrated
QNX Neutring supports numerous architectures, but none ofto Green Hills' IDE (called MULTI), p-velOSity is written
them matching the requirements of Class 1 devices. in MISRA-compliant ANSI C and based on a microkernel.
3) VxWorks [77]: Developed initially in 1987 by Wind Similarly to other commercial loT OSs, additional required
River (which is now owned by Intel), VxWorks is a monofeatures (e.g., a network stack) are provided separately. Note
lithic kernel that mostly supports ARM platforms and Intehowever that a 6LoWPAN stack is not available.
platforms, including the new Quark SoC. VxWorks supports 11) Windows CE [36]: Windows CE is a version of the
IPv6 and other loT features, but lacks support for a 6LoWPAWindows OS for constrained devices, and has been developed
stack, and cannot t on constrained 0T devices as de ned by Microsoft since 1996. Windows CE is real-time capable and
RFC 7228 [8] which are the focus of this survey. has a rich feature set. However, it requires ROM and RAM in
4) Wind River Rocket [78]Another OS developed by Wind the order of megabytes, and therefore targets devices that are
River is Rocket which targets particular loT scenarios. So fdgss resource-constrained than low-end loT devices, which are
Rocket supports a single hardware platform: Intel's Galilethe focus of this survey.
Gen 2 board which offers several megabytes of RAM and 12) LiteOS Huawei [37]:In 2015, Huawei announced [11]
ROM. The OS is tightly bound to using Wind River's cloucthat they will release LiteOS, an operating system for loT
platform Helix. devices. The announcement claimed Huawei's LiteOS will t
5) PikeOS [79]: PikeOS is developed since 1991 by avithin 10 kBytes of memory, and will be the most lightweight
company called SYSGO AG (now owned by Thales). PikeOST operating system. For now the code is not available [37]
is a microkernel-based RTOS, which provides safety amghd it is unclear if the OS will indeed be open source, hence
security, and acts as a hypervisor for other OSs. Originallye list it in the present category. Furthermore the technical
called P4, PikeOS is a descendent of the L4 microkerngharacteristics of this OS are unknown, and in particular, it is
family. PikeOS provides multiple APIs, can host various gueghclear how it relates to the open source OS called LiteOS
OSs, and is certi ed according to several relevant standards] which we mentioned in the previous section.
including IEC 61508 or EN 50128.
6) embOS [80]: embOS is developed b$egger Micro-
controller Systemsa company providing development anoc' Other Software
programming tools as well as software for embedded devicesFor the sake of completeness, we also summarize in this
embOS is an acrtos written in ANSI C, featuring a prioritysection a collection of other pieces of software that are
based, tickless, preemptive scheduler, and targeting vari@@netimes mentioned as potential contenders, but in fact are
constrained 8 bhit, 16 bit, and 32 bit MCUs. A network stacRot full- edged OSs, or are not applicable on Class 1 devices.
(including ZigBee), USB support, a GUI, and a le system 1) Arduino [88]: Originating from a university project,
are available as separate add-on products. Arduino is an open source hardware and software company.
7) Nucleus RTOS [81]Nucleus is an RTOS developed byBundled with an IDE targeting people unfamiliar with pro-
Mentor Graphics, an electronic design automation compagyamming, it enables easy prototyping. Good support for
which acquired the former provider of Nucleus, Acceleratdtbardware features is achieved by the fact that Arduino provides
Technology, in 2002. Nucleus enables C++ programming, tieth platforms and software. Arduino does not, however, pro-
POSIX-compliant, and compatible with the Micro ITRONvide a real scheduler, support for threading, or any higher layer
interface. Nucleus has a rich feature set, including an fBnctionality, thus making it suitable primarily for simpler
network stack, and can be scaled down to tens of kilobyipplications.
but it is not among the RTOSs with the smallest memory 2) Espruino [89]: Espruino provides several embedded
footprints, however. platforms and an open source software environment. The
8) Sciopta [82]: Sciopta is an RTOS provided by SCIOPTAsoftware part is a very ef cient interpreter for JavaScript that
Systems AG, with a focus on safety-critical applications. Ilt:akes it feasible to run JavaScript code on constrained devices
microkernel (with a direct message passing IPC) and scheduleth less than 100 kB of RAM. However, similar to Arduino,
are written in assembler. The supported architectures comptise Espruino does not aim to replace a full-featured OS, but
ARM7, ARM9, ARM Cortex-M, ARM Cortex-A, and Pow- rather to provide a scripting framework for hobbyists and
erPC. SCIOPTA Systems also offers additional modules fanakers. It does not provide basic OS functionality such as
e.g. a FAT le system or an IP-based network stack. a scheduler or thread management. Due to the nature of a
9) pC/OS-Il and pC/OS-I [83], [84]: pC/OS-1I and scripting language, it is furthermore not capable of ful lling
HC/OS-11I are two versions of an RTOS provided by Micriuntreal-time guarantees or t on low-end 0T devices, but rather
Inc.. These RTOSs are based on a microkernel with multlevices such as Tessel [90].



11

3) node OS [91]: Node OS is a toolset written entirelyC. Pure RTOSs
in Javascript. Although its name suggests it is an OS, nodean RTOS focuses primarily on the goal of ful lling real-
OS is rather a middleware than an OS itself. It does ngfe guarantees, in an industrial/commercial context. In this
operate directly on the hardware, but runs on top of the Linggntext, formal veri cation, certi cation, and standardization
kernel. The requirement for Linux, coupled with the overheagle usually of crucial importance. To allow model checking
of .]avascript, make Node OS inappropriate for low-end lodnq formal veri cation, the programming model used in such
devices such as Class 1 devices. OSs typically imposes strict constraints for developers. These
restrictions often makes the OS rather in exible and porting to
other hardware platforms may become rather dif cult. Oper-
ating systems for 10T devices that fall in this category include
In the following, we will focus on open source OSs. Thé&reeRTOS, eCos, RTEMS, ThreadX, and a collection of other
reasons for this are (i) security and trustworthiness throughmmercial products (generally closed source). FreeRTOS
transparency of code running on loT devices, and (ii) the to the best of our knowledge the most prominent open
anticipated need to spread development costs between multgserce RTOS for loT devices, due to its wider use in various
parties (similarly to Linux). The open source OSs surveyeghvironments.
in Section IV can be categorized by their architectural con-
cept into three main categories: (i) event-driven OSs, multi- VI. CASE STUDIES

threading OSs, and (jii) pure RTOSs. Although there is somegyr case studies cover a representative OS from each of the

overlap between these categories, they will de ne the majAree categories described above. Each case study describes

characteristic of an OS. This section will describe in morgyncisely the different properties of the operating systems, as
details the characteristics of each category, and identify thged in Section III.

most prominent, representative OS for each category, which
we will then study in more depth in Section VI. A. Case Study: Contiki

Contiki was originally developed by Adam Dunkels in 2003
A. Event-driven OSs as an OS around the ulP stack, targeting resource-constrained

. L embedded systems. Over time, Contiki evolved into a more
This is the most common approach for OSs initially d&seneral OS that is used in areas such as the 10T, wireless

v_eloped to 'Farget the domain 9f WSNS’_SUCh as _Contiki 9Ensor networks, and even retro computing. It supports a wide
TinyOS for instance. The key idea of this model is that ajl\ye of resource-constrained devices, including 8-bit AVR

processing on the system is triggered by an (external) eveRitorms, 16- and 20-bit MSP430 platforms, and 32-bit ARM
typically signaled by an interrupt. As a consequence the ke”?%rtex M3 platforms.

is roughly equivalent to an in nite loop handling all occurring  ~gntiki has a monolithicarchitecture, in which there is
events within the same context. Such an event handler typically., e system and a set of processes that are combined

runs to completion. While this approach is efcient in termgy, 5 gingle system image during compilation. At runtime,
of memory consumption and low complexity, it impoSes somg nrocesses share the same memory space and privileges
substanyal constraints to the programmer e.g., not all prografdén the core system. Thecheduling modelemployed by
are'eas[ly expressgd as a nite 's"[ate' machine [40]. OSs thafiyi i cooperative thread scheduling, which requires that
fall in this category include Contiki, TinyOS, and OpenWSNe g viki processes explicitly yield control back to the scheduler.
Because of its wider deployment and use (to the best of 4t nemory allocation, Contiki is designed primarily for
knowledge), Contiki is arguably a good representative of thig,sic allocation. It has a few libraries that simplify memory

category of OS. management, such asemband mmem However, we are also
aware of third-party dynamic allocation modules for Contiki,
. . which implement the standard @alloc API.
B. Mult-Threading OSs There are two different network stacks that can be used to
Multi-threading is the traditional approach for most moderanable Contiki devices witmetwork connectivity: the ulP
OSs (e.g. Linux), whereby each thread runs in its own costack, which was rst developed as a standalone stack and
text and manages its own stack. With this approach, somas merged into Contiki after version 0.9; and the more light-
scheduling has to perform context switching between theeight Rime stack, which is oriented toward sensor network
threads. Each process is handled in its own thread and canajplications. ulP supports multiple protocols, such as 6LoW-
general, be interrupted at any point. Stack memory can usud®N, IPv4, IPv6, IPv6 neighbor discovery, IPv6 multicasting,
not be shared between threads. Hence, a multi-threading RBL, TCP, and UDP. Thenetwork buffer management
usually introduces some memory overhead due to stack ovisr-made through a separate module called Queuebuf, which
provisioning and runtime overhead due to context switchingllocates packet buffers from a static pool of memory.
Operating systems that fall in this category include RIOT, The programming model is based orProtothreads which
nuttX, eCos, or ChibiOS. Because of its stronger focus on 1a3 a sort of light-weight, cooperative threading concept similar
requirements (to the best of our knowledge), RIOT is arguaby continuations [42]. The maiprogramming languagesup-
a good representative of this category of OS. ported by Contiki is C, but there exist runtime environments

V. CATEGORIZATION OFOS RELEVANT FOR |OT
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name category MCU w/o < 32kB 6LOWPAN RTOS HAL energy-ef cient

MMU RAM scheduler MAC layers
Contiki event-driven 3 3 3 8 3 3
RIOT multi- 3 3 3 3 3 g @
threading
FreeRTOS RTOS 3 3 8" 3 8 8¢
uClinux multi- 3 8 3 8 3 8
threading
Android multi- 8 8 8 8 3 8
threading
Arduino other 3 3 8 8 3 d 8

TABLE II: Key features of representatives of several categor&sfull support, 8) no support. The table compares the OS
for support of MCUs without MMU, MCUs with less than 100 kB of RAM, a 6LoWPAN network stack, a real-time capable
scheduler, a hardware abstraction layer (HAL), and energy-ef cient MAC layers.

aso far only as part of the OpenWSN stack, more implementations are planned

bavailable from third parties

Cavailable from third parties

dlimited portability
that enable development in languages such as Java [92] ahdof the code, but there are also less used experimental parts
Python [93]. Contiki provides Aardware abstraction layer, of Contiki. The latter are primarily applications or libraries,
in which hardware-speci ¢ functionality is put in separatevhich may have been developed as part of research projects.
components, and each supported Contiki platform implememtsiltiple real-world deployments are based on Contiki, and
a common API for using that hardware. For instance, clockis,is widely used in commercial IoT products, as well as in
radio drivers, and sensors each have their own API thatdsademic research on WSN and other types of constrained
implemented differently depending on the platform. wireless multi-hop networks. Along with TinyOS, Contiki has

The debugging facilities available to Contiki develop- become one of the most well-known and widely used OSs for
ers consist primarily of the Cooja/MSPsim simulator, whicMVSN.
combines network simulation with cycle-accurate emulation Contiki is developed by a large community of professional
of the hardware platforms. This simulator contains standa@ié@velopers, researchers, and hobbyists. The development is
debugging features such as setting breakpoints, reading frorganized around a GitHub repository, through which anyone
and writing to speci ¢ memory addresses, and single-steppiggn submitpull requestscontaining code contributions. All
through instructions. Contiki also conveniently supports hargource code in Contiki must have a 3-clause Biignse
ware used on several open testbeds, e.g., loT-LAB [5] a@d another license with similar terms. The source code is
Indriya [94]. maintained by a merge team, which review incoming code

Beside the networking capabilities and the core system furf@ntributions from the Contiki community, and make larger
tionality, Contiki has an ampleature set It provides features decisions such as architectural changes and release cycles. A
such as a She”, ale system, a database management Sysﬂélliﬁ:lber of source code forks exist, in which new features are
runtime dynamic |inking, Cryptography libraries, and a ne.developed by independent teams, or in which Companies main-
grained power tracing tool. To enhance the quality of all the&&in their own versions of Contiki, possibly with support for
features, Contiki provides certatesting facilities, including their own hardware. Furthermore, because Contiki has many
unit testing, regression testing, and full system integratiGt¥ademic users, research projects are frequently developed for
testing. Contiki code contributions are automatically testeégPeci ¢ versions of Contiki. An active of cial mailing list for
with a test suite using Travis CI [95]. the project is the main source of support for most users.

A number ofstandards—primarily related to networking—
are supported by Contiki. For instance, Contiki implement. Case Study: RIOT
several IETF standards for low-power IPv6 networking, in- RIOT development was launched in 2013, based on a
cluding 6LoWPAN and RPL. Contiki has also gotten its corgicrokernel architecture inherited from FireKernel [46], a
IPv6 functionalitycerti ed in the IPv6 Ready Logo Program,microkernel initially developed for WSN scenarios with real-
attaining a silver certi cation. Thelocumentation of Contiki time requirements. RIOT development has so far focused on
is of varying detail for different parts of the system. Thevidening loT hardware support (8, 16, 32 bit MCUs), ef cient
source code is documented using the open-source Doxygedss-platform code, and the development and maintenance of
tool, and other things such as tutorials and high-level technicgveral networks stacks.
descriptions are provided through a project Wiki. RIOT is based on a microkerneirchitecture with full

Today, the core parts of Contiki have reached a mgitu- multi-threading. Since multi-threading typically introduces
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run-time as well as memory overhead, particular efforts wereOn the system side, RIOT focusses on implemensitagn-
put into designing ef cient context switching, IPC (blockingdard interfaces like POSIX. For the networking part, RIOT
and non-blocking), and a small thread control block (TCBjocusses on open standard protocols speci ed by bodies such
As a result, context switching in RIOT is achieved in a smadls IETF, IRTF, W3C, OMA and the like. As an open source
number of CPU cycles (e.g., less than 100 CPU cycles pmject stemming mostly from academia so far, qesti ca-
an ARM platform when triggered from interrupt context}ion efforts have been conducted on the code base, to date.
and the TCB is reduced to 46 bytes on 32 bit platform®&IOT is driven by an open source community which strives
for instance. RIOT provides a ticklessheduler that works to provide a comprehensidocumentation, both on the API
without any periodic events. Whenever there are no pendileyel as well as on the architectural level. While the inter-
tasks, RIOT will switch to thadle thread, which can use theface and inline documentation of the code itself has already
deepest possible sleep mode, depending on peripheral devarseved a good standard (using Doxygen), example code and
in use. Only interrupts (external or kernel-generated) wakégh-level descriptions are currently being overhauled by the
up the system from idle state. RIOT supports both dynameommunity. Core parts of RIOT have been used for years
and staticmemory allocation. However, only static methodsby a community of users and developers — so far mostly
are used within the kernel, which enables RIOT to ful llacademics, but recently also industry is using RIOT, primarily
deterministicrequirements, by enforcing constant periods fdor more convenient prototyping. For instance, the kernel can
kernel tasks (e.g., scheduler run, inter-process communicatiba,considerednature, as only minor bugs have been revealed
timer operations). during the last years. Other parts of RIOT (for example the
Several stacks are available in RIOT to suppwetwork network stack) are comparably younger and still subject to
connectivity. The gnrc network stack is based on standarghanges, e.g. as a result of co-evolving with new 0T protocol
IP protocols, supporting 6LOWPAN, IPv6, RPL (non-storingtandards, as they appear. However, the use of standard and
and storing mode), UDP, and CoAP, implemented in a modeneric interfaces (such as POSIX socketsi@tapi[35]) are
ular fashion, leveraging generic, well-de ned interfaces argtabilizing the usage of the code base.
IPC [35]. Other network stacks include for examplN- The source code is openly available altknsed under
lite, implementing the Information Centric Networking (ICN)LGPL. RIOT's master branch on GitHub is currentiyain-
paradigm, an@penWSNimplementing the full 6TISCH [26], tained by several tens of developers that are in charge of
[47] protocol suite, each available via BSD-like packageseviewing and merging external contributions that are provided
The default network stack of RIOT ignrc, within which throughpull requestsA lively of cial mailing list is also used
packets, headers, and other networking meta data is storedbyrthe community to discuss various technical and community-
a centralizedhetwork buffer structure, whereby only pointersrelated matters.
are being passed between the layers. Beside several network
stacks, RIOT provides a wide range of diverfmatures
such as a shell, various crypto libraries, or sophisticated dzﬁa Case Study: FreeRTOS
structures. Originally developed by Richard Barry in 2002, FreeRTOS
The programming model in RIOT follows a classical is how maintained and distributed by Real Time Engineers
multi-threading concept with a memory-passing IPC betwedtd. FreeRTOS is deployed in various industrial/commercial
threads. Its kernel is written in C (with minor parts beingnvironments, and is the base of several research projects.
implemented in assembler). However, both C and C++ am contrast to many other RTOSs, FreeRTOS is designed to
available asprogramming language for applications and be small, simple, portable, and easy to use. Therefore, it is
application libraries. RIOT has a well de netiardware supported by a largeommunity and has been ported to a
abstraction layer for peripheral interfaces as well as forbig number of MCUs, including hardware available on open
networking, sensor, and actuator devices. Leveraging the feestbeds (e.g. 10T-LAB [5]). There are several forks of the
that RIOT is written in ANSI C, well-known, establishedFreeRTOS code-base available: for instance, SafeRTOS (fo-
debugging tools can be used, such as GDB, Valgrind etcusing on safety) and OpenRTOS (removing all all references
RIOT also provides a way to run instances of the OS &g GPL).
processes on Linux or Mac OS, which allows both easy FreeRTOS itself implements a fairly simpéchitecture,
debugging of embedded code, and virtual network emulatias it comprises of only four C les and is more a threading
using eithernativenetto emulate a single ethernet link, orlibrary than a full- edged operating system. The only provided
the desvirt framework [96] for more complex topologies.functionalities are thread handling, mutexes, semaphores, and
Furthermore, Cooja can also be used to simulate platforsisftware timers. In the default con guration FreeRTOS uses
supported by this simulator. RIOT provides a set of unitteséspreemptive, priority based round-rolscheduler, which is
and applications for smoke and regresdiesting. Continuous triggered by a periodic timer tick interrupt. Since version 7.3.0
integration testing is performed on the web-based servifeleased October 31 2012) the scheduler further supports
platform Travis. Additionally, a distributed test frameworla tickless mode. In order to fulll real-time guarantees, it
was designed, in order to conduct the tests on all supporisdensured that FreeRTOS uses only deterministic operations
platforms [36]. Tests can also be carried out on a humber fodm inside a critical section or interrupt. In FreeRTOS,
open testbeds supported by RIOT e.g., I0oT-LAB [97] [5] ogueues are used for IPC which support blocking and non-
DES-Testbed [98]. blocking insert (using deep copy), as well as remove functions.



14

FreeRTOS de nes ve different memory allocation schemesnd security. We note that, in order to benet fully from the
(i) allocate only, (ii) allocate and free with a simplistic, fasadvantages of open source in terms of trustworthiness, it is
algorithm, (iii) wrapping C librarymalloc()  andfree() also necessary to use open source toolchains to produce and
for thread safety, (iv) a more complex but fast allocate ardkploy binaries on 10T devices (and to rule out dependency
free algorithm with memory coalescence, and (v) a momn untrusted third-party servers/cloud services to produce and
advanced version of (iv) that allows to span the heap owveeploy these binaries). In the long run, the collaborative nature
several memory sections. of most open source development increases the probability that
FreeRTOS itself does not provide amgtworking capabili- bugs are found and ts better the needs of SMEs. According
ties. However, many additional tools and libraries are availabte recent studies [103], such companies will be driving loT
in the FreeRTOS ecosystem (mostly through third-partieginovation in the near future, but are more likely than bigger
Most notable Real Time Engineers Ltd. offers an of ciacompanies to need loT software development and maintenance
FreeRTOS+TCPadd-on supporting an Ethernet-based IPvdosts sharing.
stack with support for UDP, TCP and supporting protocols. In this survey, we have identi ed three categories of OSs,
Furthermore ports of third-party embedded network stacks aihin which some have the potential to become the equivalent
IwlP [99] or older versions of Nanostack [100] are availablgo Linux in the IoT. Multi-threaded OSs are technically closest
The networkbuffer managementdepends on the stack usedto Linux, and within this category, RIOT is currently the most
The of cial FreeRTOS+TCRor example can be con gured to prominent open source OS. Event-driven OSs use a different
use a statically pre-allocated buffer or to allocate buffer spapeogramming paradigm to t on devices with even less re-
dynamically on-demand. sources, and within this category, Contiki is currently the most
FreeRTOS supports a multi-threadipgpgramming model prominent open source OS. RTOSs focus on guarantees for
with statically instantiated tasks. Tipgogramming language worst-case execution times and worst-case interrupt latency.
used for the OS itself is C, which enables users to integrdte this category, FreeRTOS is currently the most prominent
it seamlessly also in any C++ application. As stated abowpen source OS.
the feature setof the basic system is limited to scheduling, Our conclusions are that there are a plethora of different OSs
threading and SW timers. FreeRTOS does not de ne a portalfte the 10T, allowing users to select an OS that ts their criteria
driver model or MCU peripheral abstraction interfaces. best. Our survey has covered many of the trade-offs being
Instead it works together with vendor supplied board suppartade by system designers regarding the requirements and
packages. Faiesting anddebuggingthe system also dependsconstraints of current loT applications and hardware platforms.
on third-party solutions, though the design of the OS makés the 10T eld is developing at a rapid pace, however, the
it possible to be integrated in most existing developmental word is yet to be made regarding what type of architecture
processes. and capabilities an ideal OS for the 10T should have.
In order to comply with regulations and requirements of in-
dustrial use cases, FreeRTOS emphasizes on strict coding staficknowledgements —The authors wish to thank Simon
dards, quality management, agdrti cation . Consequently, Dugquennoy, Thiemo Voigt, and Bjn Lichtblau for their useful
FreeRTOS has become part of various formal veri catiofomments and suggestions. This work was partly nanced by
efforts [ ], [ ] SafeRTOS has been certi ed bwv’ ANR within SAFEST (ANR- 11'SECU'004), by SSF, and by
SUD as IEC 61508 compliant and against the EN 62304 atydNNOVA.
FDA 540(k) regulatory requirements. Real Time Engineers
Ltd. provides extensivalocumentation in terms of books, REFERENCES
trainings, and commercial support. The codédensedunder _ _
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