Community mining with graph filters for correlation matrices

Pierre Borgnat 1, * Paulo Gonçalves 2 Nicolas Tremblay 1 Nathanaël Willaime-Angonin 3, 1
* Auteur correspondant
2 DANTE - Dynamic Networks : Temporal and Structural Capture Approach
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme, IXXI - Institut Rhône-Alpin des systèmes complexes
Abstract : Communities are an important type of structure in networks. Graph filters, such as wavelet filterbanks, have been used to detect such communities as groups of nodes more densely connected together than with the outsiders. When dealing with times series, it is possible to build a relational network based on the correlation matrix. However, in such a network, weights assigned to each edge have different properties than those of usual adjacency matrices. As a result, classical community detection methods based on modularity optimization are not consistent and the modularity needs to be redefined to take into account the structure of the correlation from random matrix theory. Here, we address how to detect communities from correlation matrices, by filtering global modes and random parts using properties that are specific to the distribution of correlation eigenval-ues. Based on a Louvain approach, an algorithm to detect multiscale communities is also developed, which yields a weighted hierarchy of communities. The implementation of the method using graph filters is also discussed.
Type de document :
Communication dans un congrès
Asilomar Conference on Signals, Systems, and Computers, Nov 2015, Monterey (CA), United States. 2015
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01245926
Contributeur : Paulo Gonçalves <>
Soumis le : vendredi 18 décembre 2015 - 09:48:42
Dernière modification le : jeudi 19 avril 2018 - 14:54:04
Document(s) archivé(s) le : samedi 29 avril 2017 - 21:01:09

Fichier

Asilomar15_corr_comm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01245926, version 2

Citation

Pierre Borgnat, Paulo Gonçalves, Nicolas Tremblay, Nathanaël Willaime-Angonin. Community mining with graph filters for correlation matrices. Asilomar Conference on Signals, Systems, and Computers, Nov 2015, Monterey (CA), United States. 2015. 〈hal-01245926v2〉

Partager

Métriques

Consultations de la notice

376

Téléchargements de fichiers

268