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Abstract. Haplotype assembly is the computational problem of reconstruct-
ing the two parental copies, called haplotypes, of each chromosome starting
from sequencing reads, called fragments, possibly affected by sequencing er-
rors. Minimum Error Correction (MEC) is a prominent computational prob-
lem for haplotype assembly and, given a set of fragments, aims at reconstruct-
ing the two haplotypes by applying the minimum number of base corrections.
By using novel combinatorial properties of MEC instances, we are able to
provide new results on the fixed-parameter tractability and approximability
of MEC. In particular, we show that MEC is in FPT when parameterized by
the number of corrections, and, on “gapless” instances, it is in FPT also when
parameterized by the length of the fragments, whereas the result known in
literature forces the reconstruction of complementary haplotypes. Then, we
show that MEC cannot be approximated within any constant factor while it
is approximable within factor O(lognm) where nm is the size of the input. Fi-
nally, we provide a practical 2-approximation algorithm for the Binary MEC,
a variant of MEC that has been applied in the framework of clustering binary
data.

1 Introduction

The genome of diploid organisms, as humans, is composed of two parental copies,
called haplotypes, for each chromosome. The most frequent form of genetic variations
between the two haplotypes of the same chromosome are the Single Nucleotide Poly-
morphisms (SNPs). Haplotype analysis is of fundamental importance for a variety of
applications including medical diagnostic and drug design [3, 4, 18].

The task of the haplotyping problem is the reconstruction of each pair of hap-
lotypes. However, large scale direct experimental reconstruction from the collected
samples is not yet cost-effective. One of the computational approaches that have
been proposed, haplotype assembly, considers the high-throughput sequencing reads
(also called fragments) that have to be bipartitioned in order to reconstruct the two
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haplotypes. Since for most of the SNP positions only two nucleotides are seen, the
haplotypes can be represented as binary vectors. The fragments obtained from se-
quencing may not cover some positions of the haplotypes. These uncovered positions
are called holes, whereas a sequence of holes within a fragment is called gap. How-
ever, the presence of sequencing and (possible) mapping errors makes the haplotype
assembly problem a challenging task. In literature, different combinatorial formula-
tions of the problem have been proposed [1,7,17,18]. Among them, Minimum Error
Correction (MEC) [18] has been proved particularly successful in the reconstruction
of accurate haplotypes [5,13,20]. However, MEC is a computationally hard problem.
Indeed, MEC is APX-hard even if the fragments have at least one gap [6] and remains
NP-hard even if the fragments do not contain gaps (Gapless MEC ) [6]. Instead, the
computational complexity of MEC on instances without holes – called Binary MEC
– is still unknown. Many successful approaches for coping with the computational
intractability of MEC are based on the parameterized complexity framework. In
particular, MEC is in FPT when parameterized by the “coverage” [20], that is the
maximum number of fragments with non-hole values on a SNP position. Moreover,
MEC is in FPT also when parameterized by the length of the fragments [13], but
only under the all-heterozygous assumption, that forces to reconstruct complemen-
tary haplotypes.

Despite the significant amount of work present in the literature, some important
questions related to the fixed-parameter tractability and approximability of MEC
are still open. Two significant open problems are whether there exists a constant
approximation algorithm for MEC and whether MEC is in FPT when parameter-
ized by parameters of classical or practical interest, such as the total number of
corrections or the length of the fragments. Indeed, removing the dependency on the
all-heterozygous assumption from [13] does not appear straightforward and, hence,
fixed-parameter tractability of MEC when parameterized by the fragment length is
still an open problem.

The binary restriction of MEC where the fragments do not contain holes is par-
ticularly interesting from a mathematical point of view, and is the variant of the
well-known Hamming k-Median Clustering Problem [6, 16], when k = 2. This clus-
tering problem asks for k representative “consensus” (also called “median”) strings
with the goal of minimizing the distance between each input string and its closest
consensus string. Hamming 2-Median Clustering is well studied from the approxi-
mation viewpoint, and a Polynomial Time Approximation Scheme (PTAS) has been
proposed, both in a randomized [19] and deterministic form [14].

In this work, we present advances in the characterization of the fixed-parameter
tractability and the approximability of MEC problem in the general, gapless, and
binary cases. We first show that MEC is not in APX, i.e., it is not approximable
within constant factor. However, we also show that a reduction previously known [8]
can be adapted to prove that MEC is approximable within factor O(log nm) (where
n is the number of fragments and m is the number of SNPs) and that MEC is in
FPT when parameterized by the total number of corrections.

Furthermore, by inspecting novel combinatorial properties of gapless instances,
we show that Gapless MEC is in FPT when parameterized by the length of the
fragments and that Binary MEC can be approximated within factor 2. Although
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Binary MEC is known to admit a PTAS, the 2-approximation algorithm we give is
more practical and intuitive than the previous approximation results.

2 Preliminary Definitions

In this section, we introduce some basic notions and the formal definition of the MEC
problem. In the rest of the work, we indicate, as usual, the value of a vector s at
position t as s[t].

A fragment matrix is a matrix M composed of n rows and m columns such
that each entry contains a value in {0, 1,−}. Each row of M represents a fragment
and, formally, is a vector belonging to {0, 1,−}m. Symmetrically, each column ofM
corresponds to a SNP position and is a vector belonging to {0, 1,−}n. We denote by
fi the i-th row of M and by pj the j-th column of M. As a consequence, the entry
of M at the i-th row and j-th column is denoted by fi[j] or pj [i]. The length `i of
a fragment fi is defined as the number of elements in fi between the rightmost and
the leftmost non-hole elements (included) and we denote by ` the maximum length
over all the fragments in M. Moreover, we say that a column pj covers a row fi if
pj [i] ∈ {0, 1}. A column pj is heterozygous if it contains both 0’s and 1’s, otherwise is
homozygous. A hole is an entry fi[j] ofM equal to the symbol −. A gap in a fragment
fi is a maximal subvector of holes in fi surrounded by non-hole entries (that is, there
exist two positions j1 and j2 with j1+1 < j2 such that fi[j1], fi[j2] 6= − and fi[t] = −
for all t with j1 < t < j2). A fragment matrix is gapless if no fragment contains a
gap.

Two rows fi1 and fi2 are in conflict when there exists a position j, with 1 ≤ j ≤ m,
such that fi1 [j] 6= fi2 [j], and fi1 [j], fi2 [j] 6= −. Otherwise, we say that fi1 and fi2 are
in agreement. A collection F of fragments is in agreement if any pair of fragments
f1, f2 in F are in agreement. A fragment matrix M is conflict free if there exists a
bipartition (F1,F2) of its fragments such that both F1 and F2 are in agreement.

When a fragment matrix M is conflict free, all the fragments in each part of
the bipartition can be merged in order to reconstruct a haplotype, intended as a
fragment without holes. Unfortunately, a fragment matrix M is not always conflict
free. The Minimum Error Correction problem deals precisely with this issue by asking
for a minimum set of corrections that make a fragment matrix conflict free, where a
correction of a given fragment fi at position j, with fi[j] 6= −, is the flip of the value
fi[j], replacing a 0 with a 1 or a 1 with a 0.

Problem 1 (Minimum Error Correction (MEC) problem).
Input: a matrix M of n rows and m columns.
Output: a conflict free matrix M′ obtained from M with the minimum number of
corrections.

Gapless MEC is the restriction of MEC where the input fragment matrix M
is gapless, while Binary MEC is the restriction of (Gapless) MEC where the input
fragment matrix M does not contain holes (that is, when M is a binary matrix).

Given a conflict free fragment matrix M, any heterozygous column pj encodes
a bipartition of the fragments covered by pj indicating which one belongs to one
haplotype and which one belongs to other. Instead, any homozygous column pj gives
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no information on how the covered fragments have to be partitioned, and it is “in
accordance” with any other bipartition or heterozygous column. More formally, we
say that two columns pj1 , pj2 of a fragment matrix are in accordance if (1) at least
one of pj1 , pj2 is homozygous or (2) pj1 , pj2 are both heterozygous and are identical
or complementary on the fragments covered by both.

As stated in the following property, that can be easily proved by induction, pair-
wise column accordance on gapless matrices is a necessary and sufficient condition
for being conflict free.

Property 2. Let M be a gapless fragment matrix. Then, M is conflict free if and
only if each pair of columns is in accordance.

Such a property is particularly important when designing exact algorithms for
Gapless MEC, as it allows to test only for pairwise column accordance in order to
ensure that the matrix is conflict free. In fact, the fixed-parameter algorithm for
Gapless MEC that we present in Sect. 4 is based on this property. Furthermore,
notice that if we relax the requirement thatM is gapless, then the property does not
hold. Consider, for example, the fragment matrix M composed of three fragments
f1 = 01−, f2 = −01, and f3 = 1− 0. The three columns are pairwise in accordance,
but the matrix is not conflict free (and, in fact, f3 contains a gap).

Given two columns pj1 , pj2 of a fragment matrixM, we define their (generalized)
Hamming distance dH(pj1 , pj2) as |{i | {pj1 [i], pj2 [i]} = {0, 1}}| while their correction
distance d(pj1 , pj2) as the minimum between dH(pj1 , pj2) and dH(pj1 , pj2) (where
p is the complement of p on non-hole entries). Notice that the correction distance
is non-negative and symmetric, but does not satisfy the triangle inequality, hence,
despite the name, is not a metric. We also define the homozygous distance H(pj)
as the minimum between the number of 0’s and 1’s contained in pj . Intuitively, the
correction distance is the cost of making a column equal or complementary to another
column, while the homozygous distance is the cost of making a column homozygous.

A solution of MEC over a fragment matrix M is a bipartition of its fragments,
that can be encoded as a binary vector O. It is easy to see that the cost of that
solution is: costM(O) =

∑m
j=1 min(d(O, pj), H(pj)).

3 Inapproximability of MEC

In this section, we show that MEC is not in APX, that is MEC cannot be approxi-
mated within constant factor. We achieve this result by introducing an L-reduction
from the Edge Bipartization problem to MEC.

The Edge Bipartization problem is defined as follows.

Problem 3 (Edge Bipartization (EB) problem [9]).
Input: an undirected graph G = (V,E).
Output: E′ ⊆ E of minimum size such that G′ = (V,E \ E′) is bipartite.

Now, we present the details of the reduction. Given an undirected graph G =
(V,E), we build the associated fragment matrix M(G) (with |V | rows and |E|
columns) by setting, at each column pj associated with edge ej = (u, v) ∈ E,
fu[j] = 0, fv[j] = 1, and fz[j] = − for z 6= u, v. Notice that, by construction, there
exists a conflict in M(G) between fragments fu and fv if and only if (u, v) ∈ E.
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Lemma 4. Let G = (V,E) be an undirected graph and M(G) be the associated
fragment matrix. Given a solution E′ of EB over G, we can compute a solution of
MEC overM(G) with |E′| corrections. Symmetrically, given a solution of MEC over
M(G) with h corrections, we can compute a solution E′ of EB over G of size at most
h.

Proof. (⇒) Let E′ be a set of edges such that (V1 ]V2, E \E′) is bipartite, where V1
and V2 are the parts of the bipartition. Build a matrixM′(G) fromM(G) by flipping,
for each ej = (u, v) ∈ E′, the entry fu[j]. Clearly, M′(G) is obtained from M(G)
with |E′| corrections and it does not contain conflicts induced by edges in E′. Let
(F1,F2) be the bipartition of fragments ofM′(G) such that Fi := {fu | vu ∈ Vi} (for
i ∈ {1, 2}). Each Fi is in agreement because it does not contain a pair of fragments
associated with the endpoints of an edge of E \ E′. Hence, M′(G) is conflict free.

(⇐) LetM′(G) be a conflict free matrix obtained fromM(G) with h corrections
and let C ′ be the subset of columns of M′(G) that contain exactly one correction.
Consider the set E′ := {ej ∈ E | pj ∈ C ′}. Clearly, |E′| ≤ h. Since M′(G) is conflict
free, there exists a bipartition (F1,F2) of the fragments such that both F1,F2 are
in agreement. Build sets V1, V2 such that Vi := {vu | fu ∈ Fi} (with i ∈ {1, 2}). We
claim that (V1 ] V2, E \ E′) is bipartite. Suppose to the contrary that there exists
an edge ej = (u, v) ∈ E \ E′ such that u, v ∈ Vi, i ∈ {1, 2}. Then, fu[j] = fv[j] in
M′(G), which implies that exactly one of fu[j] and fv[j] has been corrected (since
fu[j] 6= fv[j] in M(G)). As a consequence, we have that ej ∈ E′, contradicting the
assumption.

Khot [15] proved that, under the Unique Games Conjecture, EB is not in APX.
Since Lemma 4 proves that MEC is L-reducible to EB, we have the following result.

Theorem 5. Under the Unique Games Conjecture [15], MEC is not in APX.

The inapproximability result given in Theorem 5 nicely complements an approx-
imation (and fixed-parameter tractable) result that can be easily inferred by a re-
duction presented in [8]. In [8], MEC is reduced to the Maximum Bipartite Induced
Subgraph problem (MBIS). Given a vertex-weighted graph G, MBIS asks for a max-
imum weight subset of vertices of G that induces a bipartite graph. The reduction
defines a graph, called fragment graph, whose nodes is the union of two sets: a set of
nodes, called fragment nodes, one for each fragment, and a set of nodes, called entry
nodes, one for each entry of the matrix. In order to avoid the removal of fragments
nodes, they are assigned a sufficiently large weight.

The reduction can be easily reworked in order to prove approximation and fixed-
parameter tractability results for MEC. More precisely, MEC is now reduced to the
Graph Bipartization (GB) problem, a problem related to MBIS. Given an unweighted
graph G, GB asks for the minimum number of vertex removals so that the resulting
graph is bipartite. The reduction given in [8] can be modified by defining a new
version of the fragment graph (see Fig. 1), where each (weighted) fragment node is
substituted with a sufficiently large set of fragment nodes. From the construction of
the fragment graph, it follows that a fragment matrix M is conflict free if and only
if the corresponding fragment graph is bipartite and that a solution of MEC with k
corrections corresponds to a solution of GB that removes k vertices.
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p1 p2 p3 p4
f1 1 0 - 1
f2 - 1 0 0
f3 0 - 1 1

. . .

. . .

. . .

v1,1 v1,2 v1,4

v11 v121

v2,2 v2,3 v2,4

v13 v123

v3,1 v3,3 v3,4

v12 v122

Fig. 1. A 3×4 fragment matrix (left) and the associated fragment graph (right). Fragment-
nodes are in black, while entry-nodes are in white.

Since GB can be approximated within factor O(log |V |) [10] and is in FPT when
parameterized by the number of removed vertices [11,21], we have that:

Theorem 6. (1) MEC can be approximated in polynomial time within factor O(log nm)
where n is the number of fragments and m is the number of SNP positions.
(2) MEC is in FPT when parameterized by the total number of corrections.

4 Gapless MEC is in FPT when parameterized by the
fragment length

In this section, we introduce a fixed-parameter tractable algorithm for Gapless MEC
when parameterized by the maximum length ` of the fragments. The algorithm is
based on a dynamic programming approach and aims at finding a specific tripartition
for the columns of a gapless fragment matrix M. Due to space constraints, proofs
of the lemmas of this section are moved to the appendix. In this section, we assume
w.l.o.g. that M is a gapless fragment matrix and the fragments of M are sorted by
starting position.

Firstly, we show a result that directly derives from Property 2. The following
proposition stresses the relationship between a bipartition of the fragments and a
tripartition of the columns in a gapless fragment matrix M that is conflict free.

Proposition 7. Given a gapless fragment matrix M, the following assertions are
equivalent:

1. M is conflict free.
2. There exists a bipartition (F1,F2) of the fragments, where both F1 and F2 are in

agreement.
3. There exists a tripartition T = (L,H,R) of the columns such that each column

in H is homozygous, each column in L ∪R is heterozygous, dH(pj1 , pj2) = 0 for
all the columns pj1 , pj2 ∈ L (pj1 , pj2 ∈ R, resp.) and dH(pj1 , pj2) = 0 for each
column pj1 ∈ L and each column pj2 ∈ R.

Based on Proposition 7, we introduce an algorithm for Gapless MEC that builds
a tripartition of the columns ofM in order to find a conflict free matrixM′ obtained
from M with the minimum number of corrections. Notice that in the rest of this
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fi

A(i)

fb

fq

r

Fig. 2. The set A(i) of active columns for a fragment fi.

section we implicitly refer only to tripartitions built as reported in the third assertion
of Proposition 7.

The algorithm iteratively proceeds row-wise and, at each step, computes a tri-
partition for the columns considered so far. In particular, the key observation that
allows to bound the exponential complexity of the algorithm to the parameter ` is
that we can build any tripartition for all the columns in M by adding only a subset
of columns, called active columns, for each row. This subset contains the columns
covering the current fragment and the columns covering both previous and succes-
sive fragments. Indeed, we need to remember the tripartition established by previous
fragments for columns that are covered by successive fragments. More formally, we
define the set active columns for a fragment fi as:

A(i) = {pj | (pj [i] 6= −) ∨ (∃x, y with x < i < y | pj [x], pj [y] 6= −)}

Fig. 2 represents the active columns A(i) of a fragment fi. The cardinality of A(i) is
bounded by `. In fact, considering a row fi, notice that `i ≤ ` and no column pk, to
the left of fi, is in A(i). Assume that r is the number of columns pj to the right of
fi, such that there are fb, fq with b < i < q and pj [b], pj [q] 6= −. Since the r columns
must be contained in A(b) for a fragment fb with a starting position preceding the
one of fi, it holds that `i + r ≤ `b ≤ `. It clearly follows that |A(i)| = `i + r ≤ `.

Considering two rows fi1 and fi2 , with i1 < i2, a tripartition for all the columns
in A(i1) ∪ A(i2) can be computed whether there is a tripartition T1 for A(i1) and a
tripartition T2 for A(i2), such that T1 and T2 are “in accordance”, that is partitioning
the shared columns in the same way. For this reason, we say that a tripartition
T2 = (L2, H2, R2) for A(i2) extends another tripartition T1 = (L1, H1, R1) for A(i1)
if and only if L1 ∩ A(i2) ⊆ L2, H1 ∩ A(i2) ⊆ H2, and R1 ∩ A(i2) ⊆ R2.

At each step i, the algorithm computes a tripartition T for A(i) extending a
tripartition T ′ for A(i − 1). Since, A(i − 1) also contains all the columns pj with
pj [i− 1] = − such that there exists y < i− 1 with pj [y] 6= − and pj [i] 6= −, it follows
that T even extends any tripartition computed at the previous steps extended by T ′.
As a consequence, we prove the following implication.

Lemma 8. If there exists a conflict free matrix M′′ obtained from M on the first
i − 1 rows that induces a tripartition T ′ for the columns in A(i − 1), and if T is
a tripartition for the columns in A(i) extending T ′, then there exists a conflict free
matrix M′ obtained from M on the first i rows that induces the tripartition T for
the columns in A(i).
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At each step i and for each tripartition T = (L,H,R) for A(i), the algorithm
chooses the tripartition T ′ extended by T for A(i − 1) that induces the minimum
cost (recursive step) and computes the minimum number of corrections to add on
the current fragment fi in order to tripartite all the columns in A(i) according to T
(local contribution). In particular, the algorithm considers the minimum number of
corrections on fi such that pj [i] = 1 or pj [i] = 0 for all pj in L and, on the contrary,
pj [i] = 0 or pj [i] = 1 for all pj in R. At the same time, the minimum number of
corrections on the fragment fi is computed for each column pj in H such that pj on
the first i rows can be optimally transformed into a homozygous column. Therefore,
we define D[i, T ] as the minimum number of corrections to obtain a conflict free
matrix M′ from M on the first i rows that induces a tripartition T for A(i). The
algorithm proceeds row-wise computing the value D[i, T ] for each fragment fi and
for each tripartition T for A(i) by the following recursive equation:

D[i, T ] = ∆(i, T ) + min
T ′ extended by T

D[i− 1, T ′] (1)

where T ′ is a tripartition for A(i−1). In the recursion, we consider only the triparti-
tions T ′ extended by T , since the shared columns have to be partitioned in the same
way. In conclusion, the local contribution is defined as:

∆(i, T ) = O(i,H) + min

{
E0(i, L) + E1(i, R)

E1(i, L) + E0(i, R)
where T = (L,H,R) (2)

such that Ex(i, F ) is the cost of correcting equal to x the columns in F for fragment fi,
that is Ex(i, F ) = |{j | j ∈ F ∧ pj [i] /∈ {x,−}}|, and O(i,H) is the minimum number
of corrections to apply on fragment fi such that the columns in H, considered on
the first i rows, can be turned into homozygous columns with minimum cost. Denote
by #x

i,j the number of values equal to x in {pj [1], . . . , pj [i]}. The minimum between

#0
i,j and #1

i,j states the minimum number of corrections necessary to turn a column
pj on the first i rows into a homozygous column. Since O(i,H) refers only to the
corrections on fragment fi, we can compute O(i,H) as:

O(i,H) =
∑
j∈H


1 pj [i] = 0 and #0

i,j ≤ #1
i,j

1 pj [i] = 1 and #1
i,j ≤ #0

i,j

0 otherwise

(3)

Given a set of columns F , it is easy to see that
∑

i∈{1,...,n}O(i, F ) =
∑

pj∈F H(pj).

The base case of the recurrence is D[1, T ] = ∆(1, T ) for each tripartition T for
A(1). The algorithm returns the optimum corresponding to minT D[n, T ] where T is
a tripartition for A(n). Furthermore, an optimal tripartition for all the columns can
be computed by backtracking.

The algorithm computes all the values D[i, T ] for each tripartition T of the
columns in A(i) and for each i in {1, . . . , n}. It follows that there are O(3` · n)
entries and, therefore, the space complexity is equal to O(3` ·n). Given a tripartition
T , we need O(3`) time to enumerate all the tripartitions T ′ extended by T because
we have to tripartite all the columns in |A(i − 1) \ A(i)| with A(i − 1) ≤ ` and,
consequently, |A(i−1)\A(i)| ≤ `. Since ∆(i, T ) can be computed in O(`) time, each
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entry D[i, T ] can be computed in O(3` · `). It follows that the total running time
of the algorithm is O(32` · ` · n). Notice that storing partial information during the
computation we can decrease the complexity to O(3` · ` · n).

We now show the correctness of the algorithm.

Lemma 9. Consider a gapless fragment matrix M.

1. If D[i, T ] = h, then there exists a conflict free matrix M′ obtained from M on
the first i rows with h corrections that induces a tripartition T for the columns
in A(i).

2. If M′ is a conflict free matrix obtained from M on the first i rows with h cor-
rections that induces a tripartition T for the columns in A(i), then D[i, T ] ≤ h.

From the analysis of the time complexity and the correctness of the algorithm, it
directly follows that:

Theorem 10. Gapless MEC is in FPT when parameterized by the length of the
fragments.

5 A 2-approximation algorithm for Binary MEC

In this section we present a 2-approximation algorithm for Binary MEC, that is the
restriction of MEC where the fragment matrix does not contain holes. The approx-
imation algorithm is based on the observation that heterozygous columns in binary
matrices naturally encode bipartitions of the fragments and that, by Property 2, if
the columns of a gapless fragment matrix are pairwise in accordance then the ma-
trix is conflict free. In particular, Algorithm 1 builds a feasible solution SOL[t] for
each t in {1, . . . ,m} assuming that pt is the closest column to an (unknown) opti-
mal bipartition O of the fragments. Each solution SOL[t] corrects columns pj′ with
H(pj′) ≤ d(pt, pj′) into homozygous columns (equal to 1 or 0 depending on best
choice), whereas it corrects the remaining columns pj′′ with d(pt, pj′′) < H(pj′′) into
heterozygous columns equal (or complementary, depending on the best choice) to
pt. It is easy to see that SOL[t] for each t in {1, . . . ,m} is a feasible solution (by
Property 2) and that its cost is exactly costM(pt).

Algorithm 1 A 2-approximation algorithm for Binary MEC

Require: A n×m binary matrix M
for t = 1 to m do . Assume that pt is the column “closest” to O

for j = 1 to m do
if H(pj) ≤ d(pt, pj) then

Set pj homozygous in SOL[t]
else

Set pj equal/complementary to pt in SOL[t]
return arg minSOL[t] costM(pt)

Algorithm 1 is a 2-approximation algorithm for Binary MEC.
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Lemma 11. Given a fragment matrix M without holes, if OPT is the optimum for
Binary MEC on input M, then Algorithm 1 returns a feasible solution with cost
OPT ′ such that OPT ′ ≤ 2 ·OPT .

Proof. Assume that pO is the column ofM closest to an optimal bipartition O, that is
d(O, pO) ≤ d(O, pj) for each j in {1, . . . ,m} and assume that dH(O, pO) ≤ dH(O, pO)
(if dH(O, pO) < dH(O, pO) we can substitute O with O since they encode the same
bipartition). Clearly, one such a column exists and dH(O, pO) ≤ d(O, pj) for each j
in {1, . . . ,m}. We show that, under this assumption, d(pO, pj) ≤ 2d(O, pj). By the
triangle inequality, dH(pO, pj) ≤ dH(pO, O) + dH(O, pj). Hence, since dH(pO, O) ≤
d(O, pj) ≤ dH(O, pj), we have dH(pO, pj) ≤ 2dH(O, pj). Similarly, we can prove that
dH(pO, pj) ≤ 2dH(O, pj). As a consequence we have that d(pO, pj) ≤ 2dH(O, pj) and
that d(pO, pj) ≤ 2dH(O, pj), which then imply d(pO, pj) ≤ 2d(O, pj). Clearly, since
d(pO, pj) ≤ 2d(O, pj), we also have that min(d(pO, pj), H(pj)) ≤ 2 min(d(O, pj), H(pj)).

Since Algorithm 1 considers all the columns as possible closest column to the
unknown optimal bipartition O, we have that the cost of the returned solution is
OPT ′ ≤ costM(pO) ≤ 2 min(d(O, pj), H(pj)) = 2OPT .

The running time of Algorithm 1 is O(m2n) and, due to its simplicity, it is a more
direct and practical approach than the PTAS algorithms known in literature [14,19].

6 Conclusions

Minimum Error Correction is a prominent combinatorial problem for haplotype as-
sembly. Investigating the approximation complexity and the fixed-parameter tractabil-
ity of MEC has proven useful to develop practical haplotype assembly tools [2,13,20].
Despite in this paper we addressed some issues that were left open, some other the-
oretical questions still need an answer.

In this work, we showed that, under the Unique Games Conjecture, MEC is not
approximable within any constant factor. However, the approximation complexity of
Gapless MEC and the computational complexity of Binary MEC are still unknown.
It would be interesting to explore whether Property 2, that we used in this paper for
achieving a direct 2-approximation algorithm for Binary MEC and a FPT algorithm
for Gapless MEC, is also useful for answering to these open questions. Similarly,
the design of practical FPT algorithms for the general MEC parameterized by the
fragment length is an interesting research direction.

Recent advances in sequencing technologies are radically changing the character-
istics of the produced data. For example, long gapless reads with sequencing errors
uniformly distributed will likely be common in the near future. The design of FPT
algorithms that exploit these characteristics is another important research direction.
Furthermore, the drop of sequencing costs allows large-scale studies of rare diseases.
In fact, they are usually caused by rare mutations that can only be reliably discovered
by sequencing many related individuals. As a consequence, we expect an increasing
interest in the study of new formulations extending MEC on structured populations,
as well as in a further investigation of those presented in [12].
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On the Tractability and Approximability of MEC 11

References

1. Aguiar, D., Istrail, S.: HapCompass: A fast cycle basis algorithm for accurate haplotype
assembly of sequence data. J. of Computational Biology 19(6), 577–590 (2012)

2. Bansal, V., Bafna, V.: HapCUT: an efficient and accurate algorithm for the haplotype
assembly problem. Bioinformatics 24(16), i153–i159 (2008)

3. Bonizzoni, P., Della Vedova, G., Dondi, R., Li, J.: The haplotyping problem: An overview
of computational models and solutions. J. Comput. Sci. Technol. 18(6), 675–688 (2003)

4. Browning, B., Browning, S.: Haplotypic analysis of wellcome trust case control consor-
tium data. Human Genetics 123(3), 273–280 (2008)

5. Chen, Z.Z., Deng, F., Wang, L.: Exact algorithms for haplotype assembly from whole-
genome sequence data. Bioinformatics 29(16), 1938–45 (2013)

6. Cilibrasi, R., van Iersel, L., Kelk, S., Tromp, J.: The complexity of the single individual
SNP haplotyping problem. Algorithmica 49(1), 13–36 (2007)

7. Duitama, J., Huebsch, T., McEwen, G., Suk, E., Hoehe, M.R.: ReFHap: a reliable and
fast algorithm for single individual haplotyping. In: BCB. pp. 160–169. ACM (2010)

8. Fouilhoux, P., Mahjoub, A.: Solving VLSI design and DNA sequencing problems using
bipartization of graphs. Computational Optimization and Applications 51(2), 749–781
(2012)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman (1979)

10. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut the-
orems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)
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Appendix

Proofs of the lemmas

Lemma 8. If there exists a conflict free matrix M′′ obtained from M on the first
i − 1 rows that induces a tripartition T ′ for the columns in A(i − 1), and if T is
a tripartition for the columns in A(i) extending T ′, then there exists a conflict free
matrix M′ obtained from M on the first i rows that induces the tripartition T for
the columns in A(i).

Proof. By definition, pj [i] 6= − and pj [y] = − for each column pj ∈ A(i)\A(i−1) and
for each y < i. By assumption T extends T ′, hence build M′ such that the columns
covered by the first i−1 rows are tripartitioned as inM′′ and the remaining columns
only covered by fi are tripartitioned according to T . By construction, M′ induces
the tripartition T for A(i). Since M′′ is conflict free, it follows that M′ is conflict
free by Proposition 7.

Lemma 9. Consider a gapless fragment matrix M.

1. If D[i, T ] = h, then there exists a conflict free matrix M′ obtained from M on
the first i rows with h corrections that induces a tripartition T for the columns
in A(i).

2. If M′ is a conflict free matrix obtained from M on the first i rows with h cor-
rections that induces a tripartition T for the columns in A(i), then D[i, T ] ≤ h.

Proof. We prove the lemma by induction on the number n of rows of M. Both the
statements obviously hold for i = 1. Assume that lemma holds for i − 1, we show
that both the statements hold for i.

(1) By Eq. (1), there exists a tripartition T ′ for A(i− 1) such that T extends T ′

and D[i, T ] = h = ∆(i, T ) + D[i − 1, T ′]. Assuming D[i − 1, T ′] = h′, by induction
there exists a conflict free matrix M′′ obtained from M on the first i− 1 rows with
h′ corrections that induces a tripartition T ′ for A(i − 1). By Proposition 8, there
exists a conflict free matrix M′ obtained from M on the first i rows that induces
a tripartition T for A(i). Since T extends T ′, by construction we can add ∆(i, T )
corrections on fragment fi in order to build M′ starting from M′′. It follows that
M′ is obtained from M with ∆(i, T ) + h′ = h corrections.

(2) Assume that M′′ is the submatrix of M′ obtained from M on the first i− 1
rows with h′ corrections that induces a tripartition T ′ for A(i − 1). Clearly, T ′ is
extended by T due to the fact that M′′ is equal to M′ on the first i − 1 rows.
Since M′ contains ∆(i, T ) corrections on the row fi by construction, it follows that
h = ∆(i, T ) + h′. Moreover, we know that D[i − 1, T ′] ≤ h′ by induction and
by Eq. (1) that D[i, T ] = ∆(i, T ) + minT ′′ extended by T D[i − 1, T ′′]. Hence, since
minT ′′ extended by T D[i−1, T ′′] ≤ D[i−1, T ′], we conclude that D[i, T ] ≤ ∆(i, T )+h′

and, consequently, D[i, T ] ≤ h.
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