M. Nichols, N. Townsend, P. Scarborough, and M. Rayner, European Cardiovascular Disease Statistics, 2012 edition British Heart Foundation Health Promotion Research Group

D. Carden and D. Granger, Pathophysiology of ischaemia-reperfusion injury J Pathol, Feb, vol.190, issue.3, pp.255-66, 2000.

W. Huber, C. Vj, R. Gentleman, A. S. Carlson, M. Carvalho et al., Orchestrating high-throughput genomic analysis with Bioconductor, Nature Methods, vol.46, issue.2, pp.115-136
DOI : 10.1093/bioinformatics/btu168

M. Ritchie, B. Phipson, D. Wu, Y. Hu, C. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, vol.43, issue.7, 2015.
DOI : 10.1093/nar/gkv007

S. Anders, D. Mccarthy, Y. Chen, M. Okoniewski, G. Smyth et al., Count-based differential expression analysis of RNA sequencing data using R and Bioconductor, Nature Protocols, vol.57, issue.9, pp.1765-86, 2013.
DOI : 10.1093/bioinformatics/bts477

D. Mccarthy, Y. Chen, and G. Smyth, Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation, Nucleic Acids Research, vol.40, issue.10, pp.4288-97
DOI : 10.1093/nar/gks042

P. Bryant, G. Smyth, R. Robins-browne, and C. N. , Technical Variability Is Greater than Biological Variability in a Microarray Experiment but Both Are Outweighed by Changes Induced by Stimulation, PLoS ONE, vol.31, issue.5, p.19556, 2011.
DOI : 10.1371/journal.pone.0019556.t003

M. Robinson, D. Mccarthy, and G. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, issue.1, pp.139-179, 2010.
DOI : 10.1093/bioinformatics/btp616

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biology, vol.11, issue.10, p.106, 2010.
DOI : 10.1186/gb-2010-11-10-r106

F. Geraci, M. Leoncini, M. Montangero, M. Pellegrini, and R. M. , K-Boost: A Scalable Algorithm for High-Quality Clustering of Microarray Gene Expression Data, Journal of Computational Biology, vol.16, issue.6, 2009.
DOI : 10.1089/cmb.2008.0201

F. Geraci, M. Pellegrini, and R. Me, AMIC@: All MIcroarray Clusterings @ once, Nucleic Acids Research, vol.36, issue.Web Server, 2008.
DOI : 10.1093/nar/gkn265

N. Olson, The microarray data analysis process: From raw data to biological significance, NeuroRX, vol.4, issue.3, pp.373-83, 2006.
DOI : 10.1016/j.nurx.2006.05.005

G. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, p.3, 2004.
DOI : 10.2202/1544-6115.1027

T. Kogure and K. Kogure, Molecular and biochemical events within the brain subjected to cerebral ischemia (targets for therapeutical intervention), Clinical Neuroscience, vol.4, issue.4, pp.179-183, 1997.

H. Markus, C. Neuroscience, and S. George, Cerebral perfusion and stroke, Hospital Medical School Journal of Neurology Neurosurgery, and Psychiatry, issue.3, pp.75353-361, 2004.

J. Koistinaho, T. Hkfelt, A. I. Virtanen-institute-da, W. Huang, T. Brad et al., Altered gene expression in brain ischemia The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists, Neuroreport Genome Biology, vol.817, issue.8, p.183, 1997.