Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems

Laurent Debreu 1 Emilie Neveu 2 Ehouarn Simon 3 François-Xavier Le Dimet 1 Arthur Vidard 1
1 AIRSEA - Mathematics and computing applied to oceanic and atmospheric flows
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, UJF - Université Joseph Fourier - Grenoble 1, INPG - Institut National Polytechnique de Grenoble
2 NANO-D - Algorithms for Modeling and Simulation of Nanosystems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. In a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse-grid correction step. We show that, even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid method. The view of multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale-dependent weighting of the multigrid preconditioner and the usual background-error covariance-matrix based preconditioner is proposed and brings significant improvements.
Type de document :
Article dans une revue
Quarterly Journal of the Royal Meteorological Society, Wiley, 2016, 142 (694), pp.515-528. 〈10.1002/qj.2676〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01246349
Contributeur : Laurent Debreu <>
Soumis le : vendredi 18 décembre 2015 - 13:28:12
Dernière modification le : mercredi 12 septembre 2018 - 17:46:03

Lien texte intégral

Identifiants

Citation

Laurent Debreu, Emilie Neveu, Ehouarn Simon, François-Xavier Le Dimet, Arthur Vidard. Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems. Quarterly Journal of the Royal Meteorological Society, Wiley, 2016, 142 (694), pp.515-528. 〈10.1002/qj.2676〉. 〈hal-01246349〉

Partager

Métriques

Consultations de la notice

431