M. Jdr, R. Rupp, G. Müller-putz, R. Murray-smith, and C. Giugliemma, Combining brain?computer interfaces and assistive technologies: State-of-429 the-art and challenges, Front Neurosci, vol.428, issue.4, pp.161-430, 2010.

C. Vidaurre and B. Blankertz, Towards a Cure for BCI Illiteracy, Brain Topography, vol.113, issue.1, pp.194-198, 2010.
DOI : 10.1007/s10548-009-0121-6

I. Iturrate, L. Montesano, and J. Minguez, Task-dependent signal variations in 433 EEG error-related potentials for brain-computer interfaces, J Neural Eng, vol.10, pp.434-026024, 2013.

B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K. Müller, Single-trial analysis and classification of ERP components ??? A tutorial, NeuroImage, vol.56, issue.2, pp.814-825, 2010.
DOI : 10.1016/j.neuroimage.2010.06.048

C. Vidaurre, M. Kawanabe, V. Bünau, P. Blankertz, B. Müller et al., Toward Unsupervised Adaptation of LDA for Brain–Computer Interfaces, IEEE Transactions on Biomedical Engineering, vol.58, issue.3, pp.587-597, 2011.
DOI : 10.1109/TBME.2010.2093133

C. Vidaurre, C. Sannelli, K. Müller, and B. Blankertz, Co-adaptive calibration to improve BCI efficiency, Journal of Neural Engineering, vol.8, issue.2, pp.25009-442, 2011.
DOI : 10.1088/1741-2560/8/2/025009

M. Krauledat, M. Schröder, B. Blankertz, and K. Müller, Reducing calibration 443 time for brain-computer interfaces: A clustering approach, Proc Adv Neural 444 Inf Process Syst (NIPS), pp.753-760, 2006.

S. Fazli, F. Popescu, M. Danóczy, B. Blankertz, and K. Müller, Subject-independent mental state classification in single trials, Neural Networks, vol.22, issue.9, pp.1305-1312, 2009.
DOI : 10.1016/j.neunet.2009.06.003

I. Iturrate, L. Montesano, R. Chavarriaga, M. Jdr, and J. Minguez, Minimizing 448 calibration time using inter-subject information of single-trial recognition of error 449 potentials in brain-computer interfaces, Conf Proc IEEE Eng Med Biol Soc, vol.450, pp.6369-6372, 2011.

J. Faller, C. Vidaurre, T. Solis-escalante, C. Neuper, and R. Scherer, Autocalibra-452 tion and recurrent adaptation: Towards a plug and play online ERD-BCI, 2012.

F. Lotte and C. Guan, Learning from other subjects helps reducing brain-455 computer interface calibration time, Proc IEEE Int Conf Acoust Speech Signal 456 Process, pp.614-617, 2010.

F. Lotte, Generating Artificial EEG Signals To Reduce BCI Calibration 458, 2011.

P. Kindermans, D. Verstraeten, and B. Schrauwen, A bayesian model for exploit-461 ing application constraints to enable unsupervised training of a P300-based BCI, PloS one, vol.7, pp.462-33758, 2012.

A. Orsborn, S. Dangi, H. Moorman, and J. Carmena, Closed-loop decoder adapta-467 tion on intermediate time-scales facilitates rapid bmi performance improvements 468 independent of decoder initialization conditions. Neural Systems and Rehabilita-469 tion Engineering, IEEE Transactions on, vol.20, issue.12, pp.468-47713, 2012.

R. Chavarriaga and M. Jdr, Learning from EEG error-related potentials in 474 noninvasive brain-computer interfaces, IEEE Trans Neural Syst Rehabil Eng, vol.18, pp.475-381, 2010.

I. Iturrate, L. Montesano, and J. Minguez, Shared-control brain-computer interface 477 for a two dimensional reaching task using EEG error-related potentials, p.478, 2013.

J. Grizou, I. Iturrate, L. Montesano, P. Oudeyer, and M. Lopes, Calibration-Free 480 BCI Based Control, Proc Conf AAAI Artif Intell, pp.1213-1220, 2014.

J. Grizou, I. Iturrate, L. Montesano, P. Oudeyer, and M. Lopes, Interactive 482 learning from unlabeled instructions, Proc Uncertain Artif Intell (UAI), pp.483-290, 2014.

R. Chavarriaga, A. Sobolewski, and M. Jdr, Errare machinale est: the use of error-related potentials in brain-machine interfaces, Frontiers in Neuroscience, vol.37, issue.88, pp.208-486, 2014.
DOI : 10.1016/j.patrec.2013.05.020

F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, A review 487 of classification algorithms for EEG-based brain?computer interfaces, J Neural, vol.488, issue.4, pp.1-489, 2007.

O. Ledoit and M. Wolf, Honey, I Shrunk the Sample Covariance Matrix, The Journal of Portfolio Management, vol.30, issue.4, pp.110-119, 2004.
DOI : 10.3905/jpm.2004.110

A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian data analysis. CRC 492 press, p.493, 2003.

A. Barto and R. Sutton, Reinforcement Learning, p.494, 1998.
DOI : 10.1016/B978-012526430-3/50003-9

J. Omedes, I. Iturrate, L. Montesano, and J. Minguez, Using frequency-domain 495 features for the generalization of eeg error-related potentials among different tasks, p.496, 2013.

D. Mcfarland, W. Sarnacki, and J. Wolpaw, Electroencephalographic (EEG) control of three-dimensional movement, Journal of Neural Engineering, vol.7, issue.3, p.36007, 2010.
DOI : 10.1088/1741-2560/7/3/036007

N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, and B. Kotchoubey, A spelling device for the paralysed, Nature, vol.398, issue.6725, pp.297-298, 1999.
DOI : 10.1038/18581

G. Schalk, K. Miller, N. Anderson, J. Wilson, and M. Smyth, Two-dimensional 502 movement control using electrocorticographic signals in humans, J Neural Eng, vol.5, pp.503-75, 2008.