
HAL Id: hal-01246639
https://inria.hal.science/hal-01246639

Submitted on 18 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coping with Recall and Precision of Soft Error Detectors
Leonardo Bautista-Gomez, Anne Benoit, Aurélien Cavelan, Saurabh K.

Raina, Yves Robert, Hongyang Sun

To cite this version:
Leonardo Bautista-Gomez, Anne Benoit, Aurélien Cavelan, Saurabh K. Raina, Yves Robert, et al..
Coping with Recall and Precision of Soft Error Detectors. [Research Report] RR-8832, ENS Lyon,
CNRS & INRIA. 2015, pp.30. �hal-01246639�

https://inria.hal.science/hal-01246639
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
88

32
--

FR
+E

N
G

RESEARCH
REPORT
N° 8832
June 2015

Project-Team ROMA

Coping with Recall and
Precision of Soft Error
Detectors
Leonardo Bautista-Gomez, Anne Benoit, Aurélien Cavelan, Saurabh
K. Raina, Yves Robert, Hongyang Sun

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Coping with Recall and Precision of Soft
Error Detectors

Leonardo Bautista-Gomez∗, Anne Benoit†‡, Aurélien Cavelan†‡,

Saurabh K. Raina§, Yves Robert†‡¶, Hongyang Sun†‡

Project-Team ROMA

Research Report n° 8832 — June 2015 — 30 pages

Abstract: Many methods are available to detect silent errors in high-performance computing
(HPC) applications. Each comes with a given cost, recall (fraction of all errors that are actually
detected, i.e., false negatives), and precision (fraction of true errors amongst all detected errors,
i.e., false positives). The main contribution of this paper is to characterize the optimal computing
pattern for an application: which detector(s) to use, how many detectors of each type to use,
together with the length of the work segment that precedes each of them. We first prove that
detectors with imperfect precisions offer limited usefulness. Then we focus on detectors with perfect
precision, and we conduct a comprehensive complexity analysis of this optimization problem, showing
NP-completeness and designing an FPTAS (Fully Polynomial-Time Approximation Scheme). On
the practical side, we provide a greedy algorithm, whose performance is shown to be close to the
optimal for a realistic set of evaluation scenarios. Extensive simulations illustrate the usefulness of
detectors with false negatives, which are available at a lower cost than guaranteed detectors.

Key-words: fault tolerance, high performance computing, silent data corruption, partial verifica-
tion, recall, precision, supercomputer, exascale.

∗ Argonne National Laboratory, USA
† École Normale Supérieure de Lyon, France
‡ INRIA, France
§ Jaypee Institute of Information Technology, India
¶ University of Tennessee Knoxville, USA

Comment faire face au rappel et la précision des détecteurs
d’erreurs silencieuses

Résumé : De nombreuses méthodes sont disponibles pour détecter les erreurs silencieuses dans
les applications de Calcul Haute Performance (HPC). Chaque méthode a un coût, un rappel
(fraction de toutes les erreurs qui sont effectivement détectées, i.e., faux négatifs), et une précision
(fraction des vraies erreurs parmi toutes les erreurs détectées, i.e., faux positifs). La principale
contribution de c travail est de montrer quel(s) détecteur(s) utiliser, et de caractériser le motif
de calcul optimale pour une application: combien de détecteurs de chaque type utiliser, ainsi que
la longueur du segment de travail qui les précède. Nous prouvons que les détecteurs avec une
précision non parfaite sont d’une utilité limitée. Ainsi, nous nous concentrons sur des détecteurs
avec une précision parfaite et nous menons une analyse de complexité exhaustive de ce problème
d’optimisation, montrant sa NP-complétude et concevant un schéma FPTAS (Fully Polynomial-
Time Approximation Scheme). Sur le plan pratique, nous fournissons un algorithme glouton dont
la performance est montrée comme étant proche de l’optimal pour un ensemble réaliste de scénarios
d’évaluation. De nombreuses simulations démontrent l’utilité de détecteurs avec des résultats
faux-négatifs (i.e., des erreurs non détectées), qui sont disponibles à un coût bien moindre que les
détecteurs parfaits.

Mots-clés : tolérance aux pannes, calcul haute performance, erreur silencieuse, corruption de
donnée silencieuse, vérification partielle, recall, précision, checkpoint, supercalculateur, exascale.

Coping with Recall and Precision of Soft Error Detectors 3

1 Introduction
Failures in high-performance computing (HPC) systems have become a major issue as the number
of components proliferates. Indeed, future exascale platforms are expected to be composed of
hundreds of thousands of computing nodes [22]. Even if each individual node provides an optimistic
mean time between failures (MTBF) of, say 100 years, the whole platform will experience a
failure around every few hours on average, which is shorter than the execution time of most HPC
applications. Thus, effective resilient protocols will be essential to achieve efficiency.

The de-facto general-purpose error recovery technique in HPC is checkpoint and rollback
recovery [15, 25]. Such protocols employ checkpoints to periodically save the state of a parallel
application so that when an error strikes some process, the application can be restored to one of its
former states. However, checkpoint/restart assumes instantaneous error detection, and therefore
applies to fail-stop errors. Silent errors, a.k.a. silent data corruptions (SDC), constitute another
source of failures in HPC, whose threat can no longer be ignored [35, 39, 33]. There are several
causes of silent errors, such as cosmic radiation, packaging pollution, among others. In contrast to
a fail-stop error whose detection is immediate, a silent error is identified only when the corrupted
data leads to an unusual application behavior. Such detection latency raises a new challenge: if the
error struck before the last checkpoint, and is detected after that checkpoint, then the checkpoint
is corrupted and cannot be used for rollback.

In order to avoid corrupted checkpoints, an effective approach consists in employing some
verification mechanism and combining it with checkpointing [16, 36, 1]. The simplest protocol with
this approach would be to execute a verification procedure before taking each checkpoint. If the
verification succeeds, then one can safely store the checkpoint. Otherwise, it means that an error
has struck since the last checkpoint, which was duly verified, and one can safely recover from that
checkpoint to resume the execution of the application. Of course, more sophisticated protocols
can be designed, by coupling multiple verifications with one checkpoint, or interleaving multiple
checkpoints and verifications [1, 9]. The optimal parameter (e.g., number of verifications per
checkpoint) in these protocols would be determined by the relative cost of executing a verification.

In practice, not all verification mechanisms are 100% accurate and at the same time admit fast
implementations. In fact, guaranteeing accurate and efficient detection of silent errors for scientific
applications is one of the hardest challenges in extreme-scale computing [3]. Indeed, thorough error
detection is usually very costly, and often involves expensive techniques, such as replication [26]
or even triplication [32]. For many parallel applications, alternative techniques exist that are
capable of detecting some but not all errors. We call these techniques partial verifications, while
a guaranteed verification is capable of detecting all errors. One example is the lightweight SDC
detector based on data dynamic monitoring [3], designed to recognize anomalies in HPC datasets
based on physical laws and spatial interpolation. Similar fault filters have also been designed to
detect silent errors based on time series predictions [11]. Although not completely accurate, these
partial verification techniques nevertheless cover a substantial amount of silent errors, and more
importantly, they incur very low overhead. These properties make them attractive candidates for
designing more efficient resilient protocols.

Since checkpointing is often expensive in terms of both time and space required, to avoid saving
corrupted data, we only keep verified checkpoints by placing a guaranteed verification right before
each checkpoint. Such a combination ensures that the checkpoint contains valid data and can be
safely written onto stable storage. The execution of the application is partitioned into periodic
patterns, i.e., computational chunks that repeat over time, and that are delimited by verified
checkpoints, possibly with a sequence of partial verifications in between. Figure 1 shows a periodic
pattern with two partial verifications followed by a verified checkpoint.

The error detection accuracy of a partial verification can be characterized by two parameters:
recall and precision. The recall, denoted by r, is the ratio between the number of detected errors
and the total number of errors that occurred during a computation. The precision, denoted by p,
is the ratio between the number of true errors and the total number of errors detected by the
verification. For example, a basic spatial based SDC detector [3] has been shown to have a recall
value around 0.5 and a precision value very close to 1, which means that it is capable of detecting

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 4

Timew1 w2 w3 w1 w2 w3

V ∗ C V1 V2 V ∗ C V1 V2 V ∗ C

Figure 1: A periodic pattern (highlighted in red) with three segments, two partial verifications and
a verified checkpoint.

half of the errors with almost no false alarm. Note that a guaranteed verification can be considered
as a special type of partial verification with recall r∗ = 1 and precision p∗ = 1. Each partial
verification also has an associated cost V , which is typically much smaller than the cost V ∗ of a
guaranteed verification.

An application can use several types of detectors with different overheads. For instance, to
detect silent errors in HPC datasets, one has the option of using either a detector based on time
series prediction [11], or a detector using spatial multivariate interpolation [3]. The first one needs
more data to make a prediction, hence comes at a higher cost. However, its accuracy is also better.
In the example of Figure 1, the second verification may use a detector whose cost is lower than
that of the first one, i.e., V2 < V1, but is expected to have a lower accuracy as well, i.e., r2 < r1
and/or p2 < p1.

In this paper, we assume to have several detector types, whose costs and accuracies may differ.
At the end of each segment inside the pattern, any detector can be used. The only constraint is to
enforce a guaranteed verification after the last segment. Given the values of C (cost to checkpoint)
and V ∗ (cost of guaranteed verification), as well as the cost V (j), recall r(j) and precision p(j) of
each detector type D(j), the main question is which detector(s) to use? The objective is to find
the optimal pattern that minimizes the expected execution time of the application. Intuitively,
including more partial verifications in a pattern allows us to detect more errors, and earlier in
the execution, thereby reducing the waste due to re-execution; but that comes at the price of
additional overhead in an error-free execution, and in case of bad precision, of unnecessary rollbacks
and recoveries. Therefore, an optimal strategy must seek a good tradeoff between error-induced
waste and error-free overhead. The problem is intrinsically combinatorial, because there are many
parameters to choose: the length of the pattern, the number of partial verifications, and the type
and location of each partial verification within the pattern. Of course, the length of an optimal
pattern will also depend on the platform MTBF µ.

Only very specific instances of the problem have received a solution yet. For example, when there
is a single segment in the pattern without intermediate verification, the only thing to determine
is the size of the segment. In the classical protocol for fail-stop errors (where verification is not
needed), the optimal checkpointing period is known to be

√
2µC (where C is the checkpoint time),

as given by Young [38] and Daly [20]. A similar result is known for silent errors when using only
verified checkpoints [9, 7]; in that case, the optimal period is

√
µ(C + V ∗). These formulas provide

first-order approximation to the length of the optimal pattern in the corresponding scenario, and
are valid only if the resilience parameters satisfy C, V ∗ � µ. To the best of our knowledge, the
only analysis that includes partial verifications is the recent work [14], which deals with patterns
that may include one or several detector(s) but all of the same type, and which considers detection
recall only. While most applications accept several detector types, there has been no attempt
to determine which and how many of these detectors should be used. This paper is the first to
investigate the use of different types of partial detectors while taking both recall and precision into
account.

As in those previous works, we apply first-order approximation to tackle the optimization
problem. We first show that a partial detector with imperfect precision plays a limited role in
the optimization of a pattern. Then we focus on detectors with perfect precision but imperfect
recall, and we prove that the optimization problem is NP-complete. In this case, a detector is most
useful when it offers the highest accuracy-to-cost ratio, defined as φ(j) = a(j)

b(j) , where a(j) = r(j)

2−r(j)

denotes the accuracy of the detector and b(j) = V (j)

V ∗+C the relative cost. Finally, we propose a
greedy algorithm and a fully polynomial-time approximation scheme (FPTAS) to solve the problem.
Simulation results, based on a wide range of parameters from realistic detectors, corroborate the

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 5

theoretical study by showing that the detector with the best accuracy-to-cost ratio should be
favored. In some particular cases with close accuracy-to-cost ratios, an optimal pattern may use
two or more different detectors, but the greedy algorithm has been shown to work really well in
these scenarios.

The rest of this paper is organized as follows. Section 2 surveys the related work. Section 3
introduces the model, notations and assumptions. Section 4 computes the expected execution
time of a given pattern, based on which we derive some key properties of the optimal pattern in
Section 5. Section 6 provides a comprehensive complexity analysis. While the optimization problem
is shown to be NP-complete, a simple greedy algorithm is presented, and a fully polynomial-time
approximation scheme is described. Simulation results are presented in Section 7. Finally, Section 8
provides concluding remarks and hints for future directions.

2 Related Work
Considerable efforts have been directed at detection techniques to reveal silent errors. Hardware
mechanisms, such as ECC memory, can detect and even correct a fraction of errors. Unfortunately,
future extreme scale systems are expected to observe an important increase in soft errors because of
power constraints at increased system size. Most traditional resilient approaches maintain a single
checkpoint. If the checkpoint file contains corrupted data, the application faces an irrecoverable
failure and must restart from scratch. This is because error detection latency is ignored in
traditional rollback and recovery schemes, which assume instantaneous error detection (therefore
mainly targeting fail-stop errors) and are unable to accommodate SDC. This section describes
some related work on detecting and handling silent errors.

2.1 Checkpoint Versioning
One approach to dealing with silent errors is by maintaining several checkpoints in memory [31].
This multiple-checkpoint approach, however, has three major drawbacks. First, it is very demanding
in terms of stable storage: each checkpoint typically represents a copy of a large portion of the
memory footprint of the application, which may well correspond to tens or even hundreds of
terabytes. Second, the application cannot be recovered from fatal failures: suppose we keep k
checkpoints in memory, and a silent error has struck before all of them. Then, all live checkpoints
are corrupted, and one would have to re-execute the entire application from scratch. Third, even
without memory constraints, we have to determine which checkpoint is the last valid one, which is
needed to safely recover the application. However, due to the detection latency, we do not know
when the silent error has occurred, hence we cannot identify the last valid checkpoint.

2.2 Process Replication
There are few methods that can guarantee a perfect detection recall. Process replication is one
of them. The simplest technique is triple modular redundancy and voting [32]. Elliot et al. [24]
propose combining partial redundancy and checkpointing, and confirm the benefit of dual and
triple redundancy. Fiala et al. [26] apply process replication (each process is equipped with a
replica, and messages are quadruplicated) in the RedMPI library for high-performance scientific
applications. Ni et al. [34] use checkpointing and replication to detect and enable fast recovery
of applications from both silent errors and hard errors. However, full process replication is too
expensive to be used in extreme scale HPC systems and is usually avoided for this reason.

2.3 Application-Specific Techniques
Application-specific information can be very useful to enable ad-hoc solutions, which dramatically
decrease the cost of detection. Algorithm-based fault tolerance (ABFT) [29, 12, 37] is a well-known
technique, which uses checksums to detect up to a certain number of errors in linear algebra

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 6

kernels. Unfortunately, ABFT can only protect datasets in linear algebra kernels and it has to
be implemented for each different kernel, which incurs a large amount of work for large HPC
applications. Other techniques have also been advocated. Benson, Schmit and Schreiber [10]
compare the result of a higher-order scheme with that of a lower-order one to detect errors in the
numerical analysis of ODEs and PDEs. Sao and Vuduc [36] investigate self-stabilizing corrections
after error detection in the conjugate gradient method. Heroux and Hoemmen [28] design a fault-
tolerant GMRES capable of converging despite silent errors, and Bronevetsky and de Supinski [13]
provide a comparative study of detection costs for iterative methods.

2.4 Analytics-Based Corruption Detection
Recently, several SDC detectors based on data analytics have been proposed, showing promising
results. These detectors use several interpolation techniques such as time series prediction [11]
and spatial multivariate interpolation [3, 5, 6]. Such techniques have the benefit of offering large
detection coverage for a negligible overhead. However, these detectors do not guarantee full
coverage; they can detect only a certain percentage of corruptions (i.e., partial verification with an
imperfect recall). Nonetheless, the accuracy-to-cost ratios of these detectors are high, which makes
them interesting alternatives at large scale. Similar detectors have also been designed to detect
SDCs in the temperature data of the Orbital Thermal Imaging Spectrometer (OTIS) [17]. Most
of the research work done in this domain focuses on how to increase the error detection accuracy
while keeping low overhead, but there has been no theoretical attempt to find the optimal protocol
the applications should use when multiple verification techniques are offered by the runtime.

2.5 Optimal Strategies with Guaranteed Verifications
Theoretically, various protocols that couple verification and checkpointing have been studied. Aupy
et al. [1] propose and analyze two simple patterns: one with k checkpoints and one verification, and
the other with k verifications and one checkpoint. The latter pattern, which needs to maintain only
one checkpoint, is also analyzed in [7] to accommodate both fail-stop and silent errors. Benoit et
al. [9] extend the analysis of [1] by including p checkpoints and q verifications that are interleaved
to form arbitrary patterns. All of these results assume the use of guaranteed verifications only.

As already mentioned, the only analysis that includes partial verifications in the pattern is the
recent work of [14]. However, [14] restricts to a single type of partial verification, and it focuses on
verifications with perfect precision. In this paper, we provide the first theoretical analysis that
includes partial verifications of different types, and that considers verifications with imperfect
precision.

3 Model
We consider divisible-load applications, where checkpoints and verifications can be inserted anywhere
in the execution of the application. The occurrence of silent errors follows a Poisson process with
arrival rate λ = 1

µ , where µ denotes the MTBF of the platform.
We enforce resilience through the use of a pattern that repeats periodically throughout the

execution, as discussed in Section 1. When an error alarm is raised inside the pattern, either by
a partial verification or by the guaranteed one, we roll back to the beginning of the pattern and
recover from the last checkpoint (taken at the end of the execution of the previous pattern, or
initial data for the first pattern). Since the last verification of the pattern is guaranteed, we need
to maintain only one checkpoint at any time, and it is always valid. The objective is to find a
pattern that minimizes the expected execution time of the application.

Let C denote the cost of checkpointing, R the cost of recovery and V ∗ the cost of guaranteed
verification. Furthermore, there are k types of detectors available, and the detector type D(j),
where 1 ≤ j ≤ k, is characterized by its cost V (j), recall r(j) and precision p(j). For notational

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 7

convenience, we also define g(j) = 1 − r(j) (proportion of undetected errors) and let D∗ be the
guaranteed detector with cost V ∗, recall r∗ = 1 and precision p∗ = 1.

A pattern Pattern(W,n,α,D) is defined by its total length W , the number n of segments in
the pattern, a vector α = [α1, α2, . . . , αn]T containing the proportions of the segment sizes, and
a vector D = [D1, D2, . . . , Dn−1, D

∗]T containing the detectors used at the end of each segment.
We also define the vector of segment sizes w = [w1, w2, . . . , wn]T . Formally, for each segment i,
where 1 ≤ i ≤ n, wi is the size of the segment, αi = wi

W is the proportion of the segment size in
the whole pattern, and Di is the detector used at the end of the segment. We have

∑n
i=1 αi = 1,

and
∑n
i=1 wi = W . If i < n, Di has cost Vi, recall ri and precision pi (we have Di = D(j) for

some type j, 1 ≤ j ≤ k), and Dn = D∗ with cost V ∗, recall r∗ = 1 and precision p∗ = 1. Note
that the same detector type D(j) may well be used at the end of several segments. For notational
convenience, let gi = 1 − ri denote the probability that the i-th detector of the pattern fails to
detect an error (for 1 ≤ i < n), and let g[i,j[=

∏j−1
k=i gk be the probability that the error remains

undetected by detectors Di to Dj−1 (for 1 ≤ i < j < n). Similarly, pi represents the probability
that the i-th detector does not raise a false alarm when there is no error, and let p[i,j[=

∏j−1
k=i pk

denote the probability that no false alarm is raised by detectors Di to Dj−1. In the example of
Figure 1, we have W = w1 +w2 +w3 and n = 3. The first partial verification has cost V1, recall r1
and precision p1, and the second one has cost V2, recall r2 and precision p2.

Let Wbase denote the base time of an application without any overhead due to resilience
techniques (without loss of generality, we assume unit-speed execution). Suppose the execution
is divided into periodic patterns, defined by Pattern(W,n,α,D). Let E(W) be the expected
execution time of the pattern. Then, the expected makespan Wfinal of the application when taking
silent errors into account can be bounded as follows:⌊

Wbase

W

⌋
× E(W) ≤Wfinal ≤

⌈
Wbase

W

⌉
× E(W).

This is because the execution involves
⌊
Wbase
W

⌋
full patterns, and terminates by a (possibly)

incomplete one. For large jobs, we can approximate the execution time as

Wfinal ≈
E(W)
W

×Wbase.

Let H(W) = E(W)
W − 1 denote the execution overhead of the pattern. We obtain Wfinal ≈

Wbase +H(W)×Wbase. Thus, minimizing the expected makespan is equivalent to minimizing the
pattern overhead H(W).

We assume that errors only strike the computations, while verifications and I/O transfers
(checkpointing and recovery) are protected and are thus error-free. It has been shown in [8] that
removing this assumption does not affect the asymptotic behavior of a pattern.

4 Expected Execution Time of A Pattern
In this section, we compute the expected execution time of a pattern by giving a closed-form
formula that is exact up to second-order terms. This is a key result that will be used to derive
properties of the optimal pattern in the subsequent analysis.

Consider a given pattern Pattern(W,n,α,D). The following proposition shows the expected
execution time of this pattern.

Proposition 1. The expected time to execute a pattern Pattern(W,n,α,D) is

E(W) =
n∑
i=1

Wαi + Vi
p[i,n[

+ C +
(

1
p[1,n[

− 1
)
R+ λW

(
R

p[1,n[
+WαTAα + αTAv

)
+ o(λ), (1)

where A is an n× n symmetric matrix defined by Aij = 1+g[i,j[
2p[i,n[

for i ≤ j, and v is an n× 1 vector
defined by v = [V1, V2, . . . , Vn]T .

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 8

Proof. Let qi denote the probability that an error occurs in the execution of segment i. We can
express the expected execution time of the pattern recursively as follows:

E(W) =
(

n∏
k=1

(1− qk)
)
p[1,n[C +

(
1−

(
n∏
k=1

(1− qk)
)
p[1,n[

)
(R+ E(W))

+
n∑
i=1

i−1∑
j=1

(
j−1∏
k=1

(1− qk)
)
p[1,j[qjg[j,i[+

(
i−1∏
k=1

(1− qk)
)
p[1,i[

 (wi + Vi). (2)

The first line shows that checkpointing will be taken only if no error has occurred in all the segments
and no intermediate detector has raised a false alarm. This happens with probability(

n∏
k=1

(1− qk)
)(

n−1∏
k=1

pk

)
=
(

n∏
k=1

(1− qk)
)
p[1,n[. (3)

In all the other cases, the application needs to recover from the last checkpoint and then re-computes
the entire pattern. The second line shows the expected cost involved in the execution of each
segment of the pattern and the associated verification. To better understand it, let us consider the
third segment of size w3 and the verification D3 right after it, which will be executed only when
the following events happen (with the probability of each event in brackets):

• There is a fault in the first segment (q1), which is missed by the first verification (1− r1 = g1)
and again missed by the second verification (1− r2 = g2).

• There is no fault in the first segment (1 − q1), the first verification does not raise a false
alarm (p1), and there is a fault in the second segment (q2), which is missed by the second
verification (1− r2 = g2).

• There is no fault in the first segment (1 − q1), the first verification does not raise a false
alarm (p1), there is no fault in the second segment (1− q2), and the second verification does
not raise a false alarm (p2).

Thus, the expected cost involved in the execution of this segment is given by(
q1g1g2 + (1− q1)p1q2g2 + (1− q1)p1(1− q2)p2

)
(w3 + V3)

=
(
q1g[1,3[+ (1− q1)p[1,2[q2g[2,3[+ (1− q1)(1− q2)p[1,3[

)
(w3 + V3).

We can generalize this reasoning to express the expected cost to execute the i-th segment of the
pattern, which leads to Equation (2).

Since errors arrive according to the Poisson process, by definition, we have qi = 1 − e−λwi .
Substituting it into the recursive formula and solving for E(W), we obtain the expected execution
time as

E(W) = C +
(
eλW

p[1,n[
− 1
)
R+

n∑
i=1

i−1∑
j=1

(
eλWj,n − eλWj+1,n

) g[j,i[

p[j,n[
+ eλWi,n

p[i,n[

 (wi + Vi),

where Wi,j =
∑j
k=i wk. Approximating eλx = 1 + λx + o(λ) up to the first-order term, we can

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 9

further simplify the expected execution time as

E(W) = C +
(

1 + λW

p[1,n[
− 1
)
R+

n∑
i=1

i−1∑
j=1

λwjg[j,i[

p[j,n[
+

1 + λ
∑n
j=i wj

p[i,n[

 (wi + Vi) + o(λ)

=
n∑
i=1

wi + Vi
p[i,n[

+ C +
(

1
p[1,n[

− 1
)
R

+ λW
R

p[1,n[
+ λ

n∑
i=1

i−1∑
j=1

wjg[j,i[

p[j,n[
+

n∑
j=i

wj
p[i,n[

 (wi + Vi) + o(λ).

Letting F =
∑n
i=1

(∑i−1
j=1

wjg[j,i[
p[j,n[

+
∑n
j=i

wj

p[i,n[

)
(wi +Vi), we can express it in the following matrix

form:
F = wTMw + wTMv,

where M is the following n× n matrix

M =



1
p[1,n[

1
p[1,n[

1
p[1,n[

. . . 1
p[1,n[

g[1,2[
p[1,n[

1
p[2,n[

1
p[2,n[

. . . 1
p[2,n[

g[1,3[
p[1,n[

g[2,3[
p[2,n[

1
p[3,n[

. . . 1
p[3,n[

...
...

...
. . .

...
g[1,n[
p[1,n[

g[2,n[
p[2,n[

g[3,n[
p[3,n[

. . . 1
p[n,n[


.

For instance, when n = 4 we have

M =



1
p1p2p3

1
p1p2p3

1
p1p2p3

1
p1p2p3

g1
p1p2p3

1
p2p3

1
p2p3

1
p2p3

g1g2
p1p2p3

g2
p2p3

1
p3

1
p3

g1g2g3
p1p2p3

g2g3
p2p3

g3
p3

1

 .

Replacing M by A = M+MT

2 gives the same value for F , and we obtain the following symmetric
matrix

A = 1
2



2
p[1,n[

1+g[1,2[
p[1,n[

. . .
1+g[1,n[
p[1,n[

1+g[1,2[
p[1,n[

2
p[2,n[

. . .
1+g[2,n[
p[2,n[

...
...

. . .
...

1+g[1,n[
p[1,n[

1+g[2,n[
p[2,n[

. . . 2


.

Now, by using w = Wα, we obtain Equation (1), which completes the proof of the proposition.

5 Properties of Optimal Pattern
In this section, we characterize the properties of the optimal pattern. First, we derive the optimal
length of a pattern (Section 5.1). Then, we show that the optimal pattern does not contain partial
detectors with imperfect precision (Section 5.2). By focusing on detectors with perfect precision,
we define two key parameters to characterize a pattern (Section 5.3). Finally, we obtain the optimal
positions for a give set of partial verifications (Section 5.4).

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 10

5.1 Optimal Length of a Pattern
We first compute the optimal length W of a pattern Pattern(W,n,α,D) in order to minimize its
execution overhead H(W).

Theorem 1. The execution overhead of a pattern Pattern(W,n,α,D) is minimized when its
length is

W ∗ =

√√√√∑n
i=1

Vi

p[i,n[
+ C +

(
1

p[1,n[
− 1
)
R

λαTAα
. (4)

In that case, the overhead is given by

H(W ∗) = 2

√√√√λαTAα

(
n∑
i=1

Vi
p[i,n[

+ C +
(

1
p[1,n[

− 1
)
R

)

+
n∑
i=1

(
1

p[i,n[
− 1
)
αi + o(

√
λ). (5)

Proof. From the expected execution time of a pattern given in Equation (1), we can derive the
overhead as follows:

H(W) = E(W)
W

− 1

=

∑n
i=1

Vi

p[i,n[
+ C +

(
1

p[1,n[
− 1
)
R

W
+ λWαTAα

+
n∑
i=1

(
1

p[i,n[
− 1
)
αi + λ

(
R

p[1,n[
+ αTAv

)
+ o(λ). (6)

The optimal pattern length that minimizes the execution overhead can now be computed by
balancing the first two terms of the above equation, which gives rise to Equation (4). Now,
substitutingW ∗ back into Equation (6), we can obtain the execution overhead shown in Equation (5).
Note that when the platform MTBF µ = 1/λ is large in front of the resilience parameters, the
last two terms of Equation (6) become negligible compared to other dominating terms given in
Equation (5), so they are absorbed into o(

√
λ).

5.2 Usefulness of Imprecise Detectors
We now assess the usefulness of partial detectors with imperfect precision. We show that an
imprecise partial verification (i.e., with p < 1) is not used in the optimal pattern. The result is
valid when the platform MTBF µ = 1/λ is large in front of the resilience parameters, and when
the precision values are constants and independent of the error rate λ.

Theorem 2. The optimal pattern contains no detector with imprecise verification.

Proof. We show that given any pattern containing imprecise verifications, we can transform it into
one that does not use any imprecise verification and that has a better execution overhead.

Consider a given pattern Pattern(W,n,α,D) that contains imprecise verifications. Theorem 1
gives the optimal length of the pattern as well as the execution overhead in that case. From
Equation (5), we observe that the overhead is dominated by the term

∑n
i=1

(
1

p[i,n[
− 1
)
αi, if the

precisions of all detectors are constants and independent of the error rate λ. Assuming that the
size of each segment in the pattern is also a constant fraction of the pattern length, we can improve
the overhead by making αi approach 0 for all segment i with p[i,n[< 1. Suppose segment m is the

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 11

first segment that satisfies p[m,n[= 1. Then the execution overhead of the pattern becomes

H = 2

√√√√λαTAα

(
n∑
i=1

Vi
p[i,n[

+ C +
(

1
p[1,n[

− 1
)
R

)
+ o(
√
λ),

where α = [0, . . . , 0, αm, . . . , αn]T . Now, by removing the first m− 1 detectors while keeping the
relative sizes of the remaining segments unchanged, we get a new pattern whose overhead is

H ′ = 2

√√√√λα′TA′α′

(
n∑

i=m
Vi + C

)
+ o(
√
λ),

where α = [αm, . . . , αn]T and A′ is the submatrix of A by removing the first m − 1 rows and
columns. Clearly, we have H ′ < H since

∑n
i=m Vi + C <

∑n
i=1

Vi

p[i,n[
+ C +

(
1

p[1,n[
− 1
)
R and

α′TA′α′ = αTAα.

Theorem 2 shows that an imprecise partial verification should not be used when the platform
MTBF is large. Intuitively, this is because a low precision induces too much re-execution overhead
when the error rate is small, yielding the verification unworthy. Again, we point out that this result
holds when the precision can be considered as a constant, which is true in practice as the accuracy
of a detector is independent of the error rate. In fact, many practical fault filters do have almost
perfect precision under realistic settings [4, 17, 18]. Still, the result is striking, because it is the
opposite of what is observed for predictors, for which recall matters more than precision [21, 2].

In the rest of this paper, we will focus on partial verifications with perfect precision (i.e., p = 1)
but imperfect recall (i.e., r < 1).

5.3 Two Key Parameters
For a pattern Pattern(W,n,α,D), assuming that all detectors have perfect precision, the expected
execution time of the pattern according to Proposition 1 is given by

E(W) = W +
n∑
i=1

Vi + C + λW
(
R+WαTAα + αTAv

)
+ o(λ),

where A is an n× n symmetric matrix defined by Aij = 1
2
(
1 + g[i,j[

)
for i ≤ j.

To characterize such as pattern, we introduce two key parameters in the following.

Definition 1. The fault-free overhead off of a pattern Pattern(W,n,α,D) is

off =
n∑
i=1

Vi + C, (7)

and the fraction of re-executed work in case of faults is

fre = αTAα. (8)

According to Theorem 1, we can get the optimal pattern length and execution overhead as

W ∗ =
√
off
fre

,

H(W ∗) = 2
√
λofffre + o(

√
λ).

The equation above shows that when the platform MTBF µ = 1/λ is large in front of the resilience
parameters, the expected execution overhead of the optimal pattern is dominated by 2

√
λofffre.

The problem is then reduced to the minimization of the product offfre. Intuitively, this calls for a
tradeoff between fault-free overhead and fault-induced re-execution, as a smaller fault-free overhead
off tends to induce a larger re-execution fraction fre, and vice versa.

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 12

5.4 Optimal Positions of Verifications
To fully characterize an optimal pattern, we have to determine its number of segments, as well
as the type and position of each partial verification. In this section, we consider a pattern whose
number of segments is given, as well as the type of all partial verifications, that is, the value
of off (Equation (7)) is given. We show how to determine the optimal length of each segment
(or equivalently, the optimal position of each verification), so as to minimize the value of fre
(Equation (8)). The result is the most technically involved contribution of this paper, and the
reader may want to skip its lengthy proof.

Theorem 3. Consider a pattern Pattern(W,n,α,D) where W , n, and D are given. The fraction
of re-executed work fre is minimized when α = α∗, where

α∗k = 1
Un
· 1− gk−1gk

(1 + gk−1)(1 + gk) for 1 ≤ k ≤ n, (9)

with g0 = gn = 0 and

Un = 1 +
n−1∑
i=1

1− gi
1 + gi

. (10)

In that case, the value of fre is

f∗re = 1
2

(
1 + 1

Un

)
. (11)

Proof. The goal is to minimize fre = αTAα (Equation (8)) subject to the constraint
∑n
k=1 αk = 1,

which we rewrite as cTα = 1 with c = [1, 1, . . . , 1]T . Hence, we have a quadratic minimization
problem under a linear constraint. When A is symmetric positive definite (SPD), which we show
later in the proof, there is a unique solution

foptre = 1
cTA−1c , (12)

obtained for
αopt = A−1c

cTA−1c . (13)

This result is shown as follows. Let a valid vector α be a vector such that cTα = 1. We have
cTαopt = foptre (cTA−1c) = 1, hence αopt is indeed a valid vector. Then, because A is SPD, we
have X = (α−αopt)TA(α−αopt) ≥ 0 for any valid vector α, and X = 0 if and only if α = αopt.
Developing X, we get

X = αTAα− 2αTAαopt + (αopt)TAαopt.

We have αTAαopt = foptre αT c = foptre because cTα = 1. Similarly, we get (αopt)TAαopt = foptre .
Hence, we derive that X = αTAα− foptre ≥ 0, with equality if and only if α = αopt. Hence the
optimal value of fre is achieved for αopt, and is equal to foptre .

In the following, we prove that A is symmetric positive definite (SPD), and that αopt = α∗

and foptre = f∗re. To avoid ambiguity, we use superscripts like A(n) whenever needed to identify the
problem size n (the number of work segments).

From Proposition 1, we can rewrite A(n) as:

A(n) = 1
2

(
J (n) +B(n)

)
,

where J (n) is the n × n matrix whose entries are all 1, and B(n) is the n × n matrix defined by
B

(n)
ij = g[i,j[for i ≤ j.
We start by proving two properties of α∗.

Lemma 1. α∗ is a valid vector, i.e.,
∑n
k=1 α

∗
k = 1.

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 13

Proof. The proof is by induction on n. First, for n = 1 we do have
∑1
k=1 α

∗(1)
k = 1. For n = 2, we

have
∑2
k=1 α

∗(2)
k = 1+g1

2

(
1

1+g1
+ 1

1+g1

)
= 1, which is also correct. Assume that this result holds

up to n− 1. We can express α∗(n) as:

α∗(n) = Un−1

Un



α
∗(n−1)
1
α
∗(n−1)
2
...

α
∗(n−1)
n−2
α
∗(n−1)
n−1

0


+



0
0
...
0

−gn−1α
∗(n)
n

α
∗(n)
n


. (14)

Therefore, we have:
n∑
k=1

α
∗(n)
k =

n−2∑
k=1

α
∗(n)
k + α

∗(n)
n−1 + α∗(n)

n

= Un−1

Un

n−2∑
k=1

α
∗(n−1)
k + Un−1

Un
α
∗(n−1)
n−1 − gn−1α

∗(n)
n + α∗(n)

n

= Un−1

Un

n−1∑
k=1

α
∗(n−1)
k + α∗(n)

n (1− gn−1)

= Un−1

Un

n−1∑
k=1

α
∗(n−1)
k + 1

Un
· 1− gn−1

1 + gn−1
.

Now, using the inductive hypothesis that
∑n−1
k=1 α

∗(n−1)
k = 1, we get:

n∑
k=1

α
∗(n)
k = 1

Un

(
Un−1 + 1− gn−1

1 + gn−1

)
= 1
Un
· Un

= 1,

which concludes the proof.

Lemma 2. Aα∗ = f∗rec.

Proof. We have A = 1
2 (J +B) and from Lemma 1 Jα∗ = (

∑n
k=1 α

∗
k) c = c. The result will follow

if we show
Bα∗ = c

Un
, (15)

for all n ≥ 1. Equivalently, letting γ = Unα∗, we prove by induction on n that B(n)γ(n) = c(n).
First, for n = 1 we have B(1)γ(1) = 1, and for n = 2 we get:

B(2)γ(2) =
[

1 g1
g1 1

] [1
1+g1

1
1+g1

]
=
[1

1+g1
+ g1

1+g1
g1

1+g1
+ 1

1+g1

]
= c(2).

Now, suppose the result holds up to n− 1. We can write:

B(n)γ(n) =
[
B(n−1) x(n−1)(
x(n−1))T 1

][
γ̄(n−1)

γ
(n)
n

]

=
[
B(n−1)γ̄(n−1) + x(n−1)γ

(n)
n(

x(n−1))T γ̄(n−1) + γ
(n)
n

]
, (16)

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 14

where γ̄(n−1) is the (n−1)×1 truncated vector containing the first n−1 elements of γ(n) (for a prob-
lem of size n), and x(n−1) is an (n−1)×1 vector defined as x(n−1) =

[
g[1,n−1[g[2,n−1[. . . gn−1

]T .
For instance, for n = 4 we have x(3) =

[
g1g2g3 g2g3 g3

]T . Then the goal is to showB(n−1)γ̄(n−1)+
x(n−1)γ

(n)
n = c(n−1) and

(
x(n−1))T γ̄(n−1) + γ

(n)
n = 1. From Equation (14), we can derive:

B(n−1)γ̄(n−1)

= B(n−1)

(
γ(n−1) +

[
0(n−2)

−gn−1γ
(n)
n

])

= B(n−1)γ(n−1) +
[
B(n−2) x(n−2)(
x(n−2))T 1

][
0(n−2)

−gn−1γ
(n)
n

]

= B(n−1)γ(n−1) +
[
−x(n−2)gn−1γ

(n)
n

−gn−1γ
(n)
n

]
= c(n−1) − x(n−1)γ(n)

n .

The last line applies the inductive hypothesis B(n−1)γ(n−1) = c(n−1) as well as the property that[
x(n−2)

1

]
gn−1 = x(n−1). Putting this result back into Equation (16), we derive that

B(n−1)γ̄(n−1) + x(n−1)γ(n)
n

= c(n−1) − x(n−1)γ(n)
n + x(n−1)γ(n)

n = c(n−1).

Using the property
(
x(n−1))T =

[(
x(n−2))T 1

]
gn−1, we can write:

(
x(n−1)

)T
γ̄(n−1) + γ(n)

n

=
[(

x(n−2))T 1
]
gn−1

(
γ(n−1) +

[
0(n−2)

−gn−1γ
(n)
n

])
+ γ(n)

n

=
[(

x(n−2))T 1
]

γ(n−1)gn−1 − g2
n−1γ

(n)
n + γ(n)

n .

Notice that
[(

x(n−2))T 1
]

γ(n−1) is actually the last row of the product B(n−1)γ(n−1), which, by
induction, is 1. Therefore we get:(

x(n−1)
)T

γ̄(n−1) + γ(n)
n

= gn−1 + γ(n)
n (1− g2

n−1)

= gn−1 + (1 + gn−1)(1− gn−1)
1 + gn−1

= gn−1 + 1− gn−1

= 1.

This concludes the proof.

We now prove that A is SPD. This requires several intermediate steps.

Lemma 3. B is nonsingular and α∗ = 1
Un
B−1c.

Proof. To prove that B is nonsingular, we prove by induction on n that B(n)y(n) = 0(n) has only
one solution y(n) = 0(n). First, for n = 1 we have y(1)

1 = 0, which is correct. Then, for n = 2 we

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 15

have the following equation: [
1 g1
g1 1

] [
y

(2)
1
y

(2)
2

]
= 0(2),

from which we derive y(2)
1 (1− g2

1) = 0 and y(2)
2 (1− g2

1) = 0, hence y(2) = 0(2), which is also correct.
Now, assume that the result holds up to n− 1. We want to solve the general equation:[

B(n−1) x(n−1)(
x(n−1))T 1

] [
ȳ(n−1)

y
(n)
n

]
= 0(n), (17)

which is equivalent to: B(n−2) x(n−2) x(n−2)gn−1(
x(n−2))T 1 gn−1(

x(n−2))T gn−1 gn−1 1


ȳ(n−2)

y
(n)
n−1
y

(n)
n

 = 0(n), (18)

where ȳ(n−1) and ȳ(n−2) are the truncated vectors containing respectively the first n− 1 and n− 2
elements of y(n) (for a problem of size n). First, let us expand Equation (18) and consider only
the last two equations of the system:(

x(n−2)
)T

ȳ(n−2) + y
(n)
n−1 + gn−1y

(n)
n = 0

gn−1

(
x(n−2)

)T
ȳ(n−2) + gn−1y

(n)
n−1 + y(n)

n = 0.

We can derive that y(n)
n (1 − g2

n−1) = 0, hence y(n)
n = 0. Then, plugging y

(n)
n = 0 back into

Equation (17), we derive that:

B(n−1)ȳ(n−1) = 0(n−1).

Using the induction hypothesis for B(n−1)ȳ(n−1) = 0(n−1), we have ȳ(n−1) = 0(n−1) and thus
y(n) = 0(n), which implies that B(n) is nonsingular. Hence, from Equation (15), we can get:

α∗ = 1
Un

B−1c,

which concludes the proof.

Lemma 4. A is nonsingular.

Proof. To prove that A is nonsingular, we solve Ay = 0 and show that y = 0. First, we can write:

Jy +By = 0,

By = −Jy = −
(

n∑
i=1

yi

)
c.

From Lemma 3, we know that B is nonsingular and B−1c = Unα∗. Therefore, we get:

y = −Un

(
n∑
i=1

yi

)
α∗. (19)

Summing the components of both sides of Equation (19), we obtain:(
n∑
i=1

yi

)
= −Un

(
n∑
i=1

yi

)(
n∑
i=1

α∗i

)
.

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 16

Since
∑n
i=1 α

∗
i = 1 from Lemma 1, we have:(

n∑
i=1

yi

)
(1 + Un) = 0,

n∑
i=1

yi = 0,

which implies y = 0 from Equation (19), and this concludes the proof that A is nonsingular.

Lemma 5. The last column of B−1 is given by:

z =


0
0
...

−gn−1zn
zn

 , with zn = 1
1− gn−12 .

Proof. Because we do not need the whole inverse of B, we solve Bz = d, where d =
[
0 0 · · · 1

]T ,
hence z will be the last column of B−1. We can write: B(n−2) x(n−2) x(n−2)gn−1(

x(n−2))T 1 gn−1(
x(n−2))T gn−1 gn−1 1


z̄(n−2)

z
(n)
n−1
z

(n)
n

 = d(n),

where z̄(n−2) is the truncated vector containing the first n − 2 elements of z(n). Expanding the
product, we get the following system of equations:

B(n−2)z̄(n−2) + x(n−2)z
(n)
n−1 + x(n−2)gn−1z

(n)
n = 0(n−2),(

x(n−2)
)T

z̄(n−2) + z
(n)
n−1 + gn−1z

(n)
n = 0,(

x(n−2)
)T

gn−1z̄(n−2) + gn−1z
(n)
n−1 + z(n)

n = 1.

Since B(n) is nonsingular, there is a unique solution. We can check that z̄(n−2) = 0(n−2), z(n)
n−1 =

−gn−1
1−gn−12 and z(n)

n = 1
1−gn−12 is indeed a solution, which concludes the proof.

Remark. The matrix B is an extension of the famous KMS symmetric matrix K [23], where
Kij = gj−i for i ≤ j (recall that Bij = g[i,j[). The inverse of B turns out to be tridiagonal, just as
that of K, and we get:

B−1
ij =


− gj

1−g2
j

if i = j + 1
− gi

1−g2
i

if i = j − 1
1−g2

i−1g
2
i

(1−g2
i−1)(1−g2

i
) if i = j

0 otherwise

.

For instance, when n = 4 we have

B−1 =


1

1−g2
1

− g1
1−g2

1
0 0

− g1
1−g2

1

1−g2
1g

2
2

(1−g2
1)(1−g2

2) − g2
1−g2

2
0

0 − g2
1−g2

2

1−g2
2g

2
3

(1−g2
2)(1−g2

3) − g3
1−g2

3

0 0 − g3
1−g2

3

1
1−g2

3

 .

The proof of this result is very similar to the proof of Lemma 5.

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 17

Lemma 6. A−1
nn = 2 Un(1+gn−1)+2gn−1

(Un+1)(1−gn−1)(1+gn−1)2 .

Proof. As in the proof of Lemma 5, we compute the last column of A−1, which we call β, by
solving Aβ = d. Because we already solved Bz = d, we have:

Aβ = Bz = d,
1
2(J +B)β = Bz,

Jβ = B(2z− β).

Remember that J is the matrix whose entries are all 1. Hence, we have Jβ = (
∑n
i=1 βi) c. Also,

from Lemma 3, we have Bα∗ = c
Un

. Therefore, we can derive:

2z− β =
(

n∑
i=1

βi

)
Unα∗. (20)

Summing the components of both sides of Equation (20), we get 2
∑n
i=1 zi−

∑n
i=1 βi = (

∑n
i=1 βi)Un (

∑n
i=1 α

∗
i).

Since
∑n
i=1 α

∗
i = 1 from Lemma 1, we get

n∑
i=1

βi = 2
Un + 1

n∑
i=1

zi.

From Lemma 5, we can easily compute
∑n
i=1 zi = −gn−1zn + zn = 1

1+gn−1
. Hence, we have

n∑
i=1

βi = 2
(Un + 1)(1 + gn−1) .

Finally, from Equation (20), we derive that

βn = 2zn −
(

n∑
i=1

βi

)
Unα

∗
n

= 2
1− gn−12 −

2
(Un + 1)(1 + gn−1)2

= 2 Un(1 + gn−1) + 2gn−1

(Un + 1)(1− gn−1)(1 + gn−1)2 ,

which concludes the proof.

Lemma 7. A is symmetric positive definite (SPD).

Proof. Note that by construction, A, J and B are all symmetric matrices. To show that A is
positive definite, we show that all its principal minors are strictly positive. Recall that the principal
minor of order k of A(n) is the determinant of the submatrix of size k that consists of the first k
rows and columns of A(n). But this submatrix is exactly A(k), the matrix for the problem of size k,
so the result will follow if we show that det

(
A(n)) > 0 for all n ≥ 1. We prove by induction on n

that

det
(
A(n)

)
= Un + 1

2n
n−1∏
k=1

(
1− g2

k

)
> 0. (21)

For n = 1, Equation (21) gives det
(
A(1)) = 1, which is correct. Suppose the result holds up to

n− 1. Since A(n) is nonsingular, using the co-factor method, we get that(
A(n)

)−1

nn
=

det
(
A(n−1))

det
(
A(n)

) .

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 18

Therefore, using the definition of Un and the induction hypothesis for det
(
A(n−1)), we can get:

det
(
A(n)

)
=

det
(
A(n−1))(

A(n)
)−1
nn

= 1(
A(n)

)−1
nn

· Un−1 + 1
2n−1

n−2∏
k=1

(1− g2
k)

= 1(
A(n)

)−1
nn

· 1
2n−1

(
Un −

1− gn−1

1 + gn−1
+ 1
) n−2∏
k=1

(1− g2
k)

= 1(
A(n)

)−1
nn

· 1
2n−1 ·

Un(1 + gn−1) + 2gn−1

1 + gn−1

n−2∏
k=1

(1− g2
k). (22)

Now, plugging
(
A(n))−1

nn
from Lemma 6 into Equation (22), we get:

det
(
A(n)

)
= 1

2n ·
(Un + 1)(1− gn−1)(1 + gn−1)2

Un(1 + gn−1) + 2gn−1
· Un(1 + gn−1) + 2gn−1

1 + gn−1

n−2∏
k=1

(1− g2
k)

= Un + 1
2n (1− g2

n−1)
n−2∏
k=1

(1− g2
k)

= Un + 1
2n

n−1∏
k=1

(1− g2
k),

which shows that Equation (21) holds for det
(
A(n)) and completes the proof that A(n) is SPD.

We are almost done! There remains to show that αopt = α∗ and foptre = f∗re. But Lemma 2
shows that Aα∗ = f∗rec, hence α∗ = f∗reA

−1c and 1 = cTα∗ = f∗re(cTA−1c), which leads to
foptre = f∗re, and finally αopt = α∗. This concludes the proof of Theorem 3.

When all the partial verifications in the pattern have the same type, i.e., gk = g for all 1 ≤ k < n,
we retrieve the result of [14], obtaining f∗re = 1

2

(
1 + 1+g

n(1−g)+2g

)
with

α∗k =
{

1
n(1−g)+2g for k = 1, n

1−g
n(1−g)+2g for k = 2, . . . , n− 1

.

Theorem 3 also shows that, for a given set of partial verifications in a pattern, the minimum
value of fre does not depend upon their ordering within the pattern.

Corollary 1. For a given set of partial verifications within a pattern, the minimum fraction of
re-executed work f∗re is independent of their ordering.

6 Complexity
This section builds upon the previous results to provide a comprehensive complexity analysis.
We introduce the accuracy-to-cost ratio of a detector and show that it is the key parameter to
compute the optimal rational solution (Section 6.1). Then we establish the NP-completeness to
determine the optimal integer solution (Section 6.2). On the positive side, we design a simple
greedy algorithm whose performance is guaranteed, and sketch the construction of an FPTAS for
the problem (Section 6.3).

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 19

6.1 Accuracy-to-Cost Ratio and Rational Solution
Consider a pattern Pattern(W,n,α,D). Let mj denote the number of partial verifications using
detector type D(j) in the pattern (the number of indices i < n such that Di is of type D(j)), and
define m = [m1,m2, . . . ,mk]. Section 5.1 shows that minimizing the execution overhead of the
pattern is equivalent to minimizing the product offfre. From Equations (7) and (11), we have
offfre = V ∗+C

2 f(m), where

f(m) =
(

1 + 1
1 +

∑k
j=1mja(j)

)1 +
k∑
j=1

mjb
(j)

 . (23)

In Equation (23), we define a(j) = 1−g(j)

1+g(j) to be the accuracy of detector D(j) and define b(j) = V (j)

V ∗+C

to be the relative cost of D(j). Furthermore, we define φ(j) = a(j)

b(j) to be the accuracy-to-cost ratio
of D(j). We will show that this ratio plays a key role in selecting the best detector(s).

Altogether, minimizing the pattern overhead amounts to finding the solution m = [m1,m2, . . . ,mk]
that minimizes f(m), with mj ∈ N0 for all 1 ≤ j ≤ k. Indeed, once m is given, Proposition 1
and Theorem 3 completely characterize the optimal pattern, giving its length W , the number of
segments n =

∑k
j=1mj + 1, and the locations α of all partial detectors (whose ordering does not

matter).
We first derive the optimal solution if we relax the integer constraint on m. A rational solution

in this case is denoted by m̄ = [m̄1, m̄2, . . . , m̄k] with m̄j ≥ 0 for all 1 ≤ j ≤ k. The optimal value
of f(m̄) is a lower bound on the optimal integer solution.

Lemma 8. Suppose there are k types of detectors sorted in non-increasing order of accuracy-to-cost
ratio, i.e., φ(1) ≥ φ(2) ≥ · · · ≥ φ(k). Then,

f∗(m̄) =


(√

1
φ(1) +

√
1− 1

φ(1)

)2
if φ(1) > 2

2 otherwise
.

Proof. First, we prove that the optimal rational solution is achieved when only the detector
with the largest accuracy-to-cost ratio φ(1) is used. Specifically, given any rational solution
m̄ = [m̄1, m̄2, . . . , m̄k], we show that there exists a solution m̄′ = [m̄′1, 0, . . . , 0], which satisfies
f(m̄′) ≤ f(m̄). We have

f(m̄) =
(

1 + 1
1 +

∑k
j=1 m̄ja(j)

)1 +
k∑
j=1

m̄jb
(j)


=
(

1 + 1
1 + a(1)∑k

j=1
m̄ja(j)

a(1)

)1 + b(1)
k∑
j=1

m̄jb
(j)

b(1)

 . (24)

Let m̄′1 =
∑k
j=1

m̄ja
(j)

a(1) and n̄′1 =
∑k
j=1

m̄jb
(j)

b(1) . Since b(j)

b(1) ≥ a(j)

a(1) for all 1 ≤ j ≤ k, we get
n̄′1 =

∑k
j=1

m̄jb
(j)

b(1) ≥
∑k
j=1

m̄ja
(j)

a(1) = m̄′1. Hence, Equation (24) can be written as

f(m̄) =
(

1 + 1
1 + a(1)m̄′1

)(
1 + b(1)n̄′1

)
=
(

1 + 1
1 + a(1)m̄′1

)(
1 + b(1)n̄′1

m̄′1
· m̄′1

)
≥
(

1 + 1
1 + a(1)m̄′1

)(
1 + b(1)m̄′1

)
= f(m̄′).

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 20

Now, define f(m̄) =
(

1 + 1
1+a(1)m̄

) (
1 + b(1)m̄

)
. The following derives the minimum value of

f(m̄). Differentiating f(m̄) with respect to m̄ and solving ∂f(m̄)
∂m̄ = 0, we get

m̄∗ = − 1
a(1) +

√
1
a(1)

(
1
b(1) −

1
a(1)

)
, (25)

which is positive (hence a potential solution) if φ(1) = a(1)

b(1) > 2. Taking the second-order derivative
of f(m̄), we get

∂2f(m̄)
∂m̄2 = 2a(1)(a(1) − b(1))

(a(1)m̄+ 1)3 ,

which is positive (hence ensures that the solution is the unique minimum) for all m̄ ∈ [0,∞) if
φ(1) = a(1)

b(1) > 1.
Thus, when φ(1) > 2, the optimal solution is obtained by substituting m̄∗ into f(m̄), and we get

f(m̄∗) =
(

1 + 1
1 + a(1)m̄∗

)(
1 + b(1)m̄∗

)
=
(

1 + 1√
φ(1) − 1

)(
1− 1

φ(1) +

√
1
φ(1)

(
1− 1

φ(1)

))

= φ(1) − 1
φ(1) + 2

√
φ(1) − 1
φ(1) + 1

φ(1)

=
(√

1
φ(1) +

√
1− 1

φ(1)

)2

.

When φ(1) ≤ 2, the minimum value of f(m̄) is achieved at m̄ = 0, which gives f(0) = 2.

Lemma 8 shows that the optimal rational solution is achieved with only one detector, namely,
the one with the highest accuracy-to-cost ratio. The optimal integer solution, however, may
use more than one detector. The following shows that finding the optimal integer solution is
NP-complete.

6.2 NP-Completeness
We show that finding the optimal integer solution m is NP-complete, even when all detectors share
the same accuracy-to-cost ratio. In particular, we consider the following decision problem.

Definition 2 (Multiple Partial Verifications (MPV)). Given k detectors with the same accuracy-
to-cost ratio φ, i.e., a(j)

b(j) = φ for all 1 ≤ j ≤ k, and a bound K, is there a solution m that
satisfies (

1 + 1
1 +

∑k
j=1mja(j)

)1 +
k∑
j=1

mjb
(j)

 ≤ K? (26)

Theorem 4. The MPV problem is NP-complete.

Proof. The MPV problem is obviously in NP. We prove the completeness by a reduction from the
Unbounded Subset Sum (USS) problem, which is known to be NP-complete [27]. Given a multiset
S = {s1, s2, . . . , sk} of k positive integers and a positive integer I, the USS problem asks if there
exists a subset S′ ⊆ S whose sum is exactly I, i.e.,

∑k
j=1mjsj = I, where mj ∈ N0. We can

further assume that I/sj is not an integer for 1 ≤ j ≤ k, since otherwise we would have a trivial
solution.

Given an instance of the USS problem, we construct an instance of the MPV problem with
k detectors. First, choose any φ ∈

(
2, (I/smax + 1)2 + 1

)
, where smax = maxj=1..k sj . Then, let

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 21

a
b = φ and − 1

a +
√

1
a

(1
b −

1
a

)
= I, so we can get a =

√
φ−1−1
I and b =

√
φ−1−1
φI . For each 1 ≤ j ≤ k,

define a(j) = sja and b(j) = sjb. According to the range of φ, we have a(j) < 1 and b(j) < 1 for all

1 ≤ j ≤ k. Finally, let K =
(√

1
φ +

√
1− 1

φ

)2
.

If we use only one detector, say D(j), then Lemma 8 shows that Equation (26) is satisfied with
the following unique solution:

m∗j = − 1
a(j) +

√
1
a(j)

(
1
b(j)
− 1
a(j)

)

= 1
sj

(
−1
a

+

√
1
a

(
1
b
− 1
a

))
= I

sj
,

which is not an integer by hypothesis, but achieves the lower bound
(√

1
φ +

√
1− 1

φ

)2
= K. Now,

we show that, by using multiple detectors, an integer solution to the MPV instance exists if and
only if there is an integer solution to the USS instance.

(⇒) Suppose there is an integer solution m = [m1,m2, . . . ,mk] such that
∑k
j=1mjsj = I.

Then, by employing mj partial verifications of detector type D(j) for 1 ≤ j ≤ k, we get(
1 + 1

1 +
∑k
j=1mja(j)

)1 +
k∑
j=1

mjb
(j)


=
(

1 + 1
1 + a

∑k
j=1mjsj

)1 + b

k∑
j=1

mjsj


=
(

1 + 1
1 + aI

)
(1 + bI)

=
(√

1
φ

+
√

1− 1
φ

)2

= K.

(⇐) Suppose there is an integer solution m = [m1,m2, . . . ,mk] to the MPV instance such that(
1 + 1

1 +
∑k
j=1mja(j)

)1 +
k∑
j=1

mjb
(j)

 = K.

This implies (
1 + 1

1 + a
∑k
j=1mjsj

)1 + b

k∑
j=1

mjsj


= 1 + 2

√
1
φ

(
1− 1

φ

)
.

Let T =
∑k
j=1mjsj . Solving T from the equation above, we get the following unique solution:

T = −1
a

+

√
1
a

(
1
b
− 1
a

)
= I.

This completes the proof of the theorem.

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 22

6.3 Greedy Algorithm and FPTAS
To cope with the NP-completeness of minimizing offfre, there is a simple and intuitive greedy
algorithm. This greedy algorithm uses only the detector with the highest accuracy-to-cost ratio φ(1).
We compute the optimal rational number of partial verifications m̄∗ and then round it up if it is
not an integer. In Section 7, we show that this algorithm performs quite well in practice.

Interestingly, we can guarantee the performance of this simple algorithm. From Lemma 8,
we can assume φ(1) = a(1)

b(1) > 2. Since a(1) < 1, we can get b(1) < 1/2. If the optimal fractional
solution m̄∗ given in Equation (25) happens to be an integer, then we get the optimal solution.
Otherwise, rounding it to dm̄∗e increases the objective function f(m) shown in Equation (23) by at
most a factor of δ = 1 + b(1) < 3/2. According to Equation (5), this gives a

√
3/2-approximation

algorithm for minimizing the expected execution overhead (and hence the makespan).
In the following, we show that it is possible to have a fully polynomial-time approximation

scheme (FPTAS), which ensures, for any ε > 0, that the solution is within 1 + ε times the optimal,
and that the running time of the algorithm is polynomial in the input size and 1/ε. To develop the
FPTAS, we perform the following transformations to the problem.

First, we convert all parameters in Equation (23) to integers. Since a(j) = 1−g(j)

1+g(j) = r(j)

2−r(j) ≤ 1
and r(j) is rational, we can write a(j) = pj

qj
, where pj and qj are positive integers with pj ≤ qj . We

assume that C, V ∗ and all the V (j)’s are also integers. Thus, minimizing f(m) is equivalent to
minimizing the following function:

F (m) =
(

1 + L

L+
∑k
j=1mjL(j)

)C + V ∗ +
k∑
j=1

mjV
(j)

 ,

where L denotes the least common multiple (LCM) of q1, q2, . . . , qk, and L(j) = pj

qj
L ≤ L. Clearly,

L and all the L(j)’s can be represented by a polynomial function of the original input size.
Next, we compute an upper bound on the number of partial verifications. Observe that

F (0) = 2(C + V ∗) and F (m) ≥ C + V ∗ +
∑k
j=1mjV

(j). This implies that the optimal solution
must satisfy mj ≤ C+V ∗

V (j) for all 1 ≤ j ≤ k. Therefore, it follows that
∑k
j=1mjV

(j) ≤ k(C + V ∗).
The bound on mj allows us to transform the unbounded problem to the 0-1 problem by providing
blogmjc additional copies of each item type j with doubling V (j) and L(j) values. This is a
standard technique also used in transforming the bounded and unbounded knapsack problems to
the 0-1 knapsack problem [30]. The total number of items becomes K =

∑k
j=1 (1 + blogmjc) =

O(k log(C + V ∗)), which stays polynomial in the input size.
Define x = [x1, x2, . . . , xK], and let Lj and Vj be the value and cost of item j, respectively. We

can now formulate the optimization problem as follows:

minimize F (x) =
(

1 + L

L+
∑K
j=1 xjLj

)C + V ∗ +
K∑
j=1

xjVj


subject to

K∑
j=1

xjVj ≤ k(C + V ∗)

xj ∈ {0, 1} ∀j = 1, 2, . . . ,K

and the size of all parameters is a polynomial function of the input size of the original problem.
To find an FPTAS for the problem above, we adopt the technique used in [19] for designing an
FPTAS for the Maximum Density Knapsack (MDK) problem described below.

Maximum Density Knapsack (MDK): Given a set S = {s1, s2, . . . , sK} of K items, where each
item sj ∈ S has a positive integer profit pj and a positive integer weight wj , a total capacity W ,
and an initial weight w0, the MDK problem is formulated as:

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 23

maximize
∑K
j=1 xjpj

w0 +
∑K
j=1 xjwj

subject to
K∑
j=1

xjwj ≤W

xj ∈ {0, 1} ∀j = 1, 2, . . . ,K

Cohen and Katzir [19] give an FPTAS for the MDK problem by using the existing FPTAS for
the knapsack problem [30]. In particular, their algorithm relies on the property that, for every
profit P , a minimum weight solution x is found such that P (x) =

∑K
j=1 xjpj ≥ b

P
1+ε′ c, for any

ε′ > 0. This immediately gives rise to an FPTAS for MDK.
We can apply the same technique to construct an FPTAS for minimizing F (x). Let xopt

denote the optimal solution. By considering Vj as weight and Lj as profit, we can run the FPTAS
for knapsack and return in polynomial time a solution x that satisfies P (x) ≥ bP (xopt)

1+ε′ c and
W (x) ≤ W (xopt). By setting carefully the value of ε′ as a function of ε, the solution yields
F (x) ≤ (1 + ε)F (xopt). The detail is similar to the one presented in [19] and is omitted here.

7 Performance Evaluation
In this section, we assess the benefits of partial detectors and evaluate the performance improvement
they can provide. Both Maple-based evaluations using the performance model and realistic
simulations using fault-injection are conducted. We consider four scenarios. In the first scenario,
we study the optimal algorithm using only a single detector type. In the second scenario, we
study the impact of the number of partial verifications on the overhead and the optimal pattern
length. The third scenario tackles applications with various datasets that expose a range of
recall values for each detector rather than a single value. Finally, in the fourth scenario, we
focus on the greedy algorithm and compare its performance with the optimal solution that uses
more than one type of partial detectors. The simulator code is available for download at http:
//graal.ens-lyon.fr/~yrobert/two-level.zip, so that interested readers can experiment with
it and build relevant scenarios of their choice.

7.1 Simulation Setup
We have chosen realistic parameters that depict a typical future exascale platform. The target
platform consists of 105 nodes whose individual MTBF is 100 years, which amounts to a platform
MTBF of µ = 31536 seconds (i.e., about 8.7 hours). The global size of the memory for an exascale
machine is expected to be between 32 PB and 64 PB; divided by the number of nodes (105), the
memory size per node goes from 320 GB to 640 GB. Most HPC applications try to populate 90% of
the node memory but only 10%− 50% of the memory is checkpointed. That makes the checkpoint
size between 30 GB and 300 GB. At exascale, most checkpoints will be done in local non-volatile
memory (NVM), which is known to be slower than DRAM. We assume checkpoint throughput
between 0.5 GB/s and 1 GB/s.

Concerning the SDC detectors, we assume that they have an almost perfect precision, otherwise
we would not use them, as shown in Section 5.2. The first detector D(1) has a throughput of about
200 MB/s/process and a recall of 0.5 [3, 6]. The second one D(2) has a throughput of about 20
MB/s/process and a recall of 0.95 [11]. If we assume 512 processes per node at exascale, then
the node throughput of the detectors becomes 100 GB/s for D(1) and 10 GB/s for D(2). Finally,
we assume a third detector D(3), which is an optimized version that combines the features of the
first two detectors, achieving a recall of 0.8 and a throughput of 50 GB/s. Concerning the perfect
detector D∗, we assume a throughput of 0.5 GB/s based on the fact that application-specific

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 24

detectors are usually based on physical properties such as mass or energy conservation, which
requires global communications and is therefore more expensive than purely local checks.

The simulator generates errors following an exponential distribution of parameter λ. An
experiment goes as follows. We feed the simulator with the description of the platform, consisting
of the parameters λ, C, V ∗ and V . For each pattern, we compute the optimal length W ∗, the
optimal overhead H∗, as well as the optimal number of verifications m∗, using the formulas from
our model. The total amount of work for the application is set to that of 1000 optimal patterns,
and the simulator runs each experiment 1000 times. For each pattern, we obtain the execution
overhead, the number of checkpoints and verifications by averaging the results from the 1000 runs.

7.2 Scenario 1: Performance of Different Detectors
In the first scenario, we study the optimal algorithm when using a single detector type. Three
detectors D(1), D(2) and D(3) are used separately, with respective costs and recall values V (1) = 3
seconds, V (2) = 30 seconds, V (3) = 6 seconds and r(1) = 0.5, r(2) = 0.95, r(3) = 0.8. The
checkpointing cost and the perfect detector cost with recall r∗ = 1 are fixed at C = V ∗ = 600
seconds.

Table 1 summarizes the characteristics of all detector types including the perfect detector, and
presents the predicted performance of the optimal pattern using each detector alone. Recall that
the accuracy-to-cost ratio is defined as φ(j) = a(j)

b(j) , where a(j) = r(j)

2−r(j) denotes the accuracy of the
detector and b(j) = V (j)

V ∗+C the relative cost. Thanks to the higher accuracy-to-cost ratios, the use of
partial verifications yields much better performance compared to the baseline algorithm that uses
only guaranteed verification. In particular, D(1) and D(3), which have the highest accuracy-to-cost
ratio, offer about 10% improvement in the execution overhead. This translates to about 1 hour of
saving for every 10 hours of execution, which is significant in terms of cost and resource usage.
The optimal pattern also employs a larger number m∗ of partial verifications, due to their lower
costs, so that checkpoints can be taken less frequently (i.e., larger periods W ∗).

To validate the predicted performance, we have simulated the execution of the optimal patterns
by injecting faults with the specified error rate. The last part of Table 1 shows the simulation
results, obtained by averaging the values over 1000 runs for the respective patterns. We can see that
the simulated overheads are within 1% of the predicted values for all patterns, which demonstrates
the high accuracy of first-order approximation to the performance model. The results also confirm
the low checkpointing frequency and high recovery rate of computing patterns that employ partial
verifications. Intuitively, a higher recovery rate means that more errors are detected earlier in the
execution. The results nicely corroborate the theoretical analysis, and demonstrate the benefit of
using low-cost partial verifications for dealing with silent errors.

Since the results for realistic simulations with fault injections are very close to the model’s
predictions, we will focus on studying the model in the following experiments.

Table 1: Characteristics of all detector types and the performance of the optimal pattern using
each detector type alone.

D(1) D(2) D(3) D∗

Cost V (seconds) 3 30 6 600
Recall r 0.5 0.95 0.8 1
Accuracy-to-cost ratio φ 133 36 133 2
Predicted overhead H∗ 29.872% 31.798% 29.872% 39.014%
Optimal W ∗ (hours) 2.41 2.38 2.41 1.71
Optimal m∗ 33 6 17 0
Simulated overhead 30.313% 32.537% 30.743% 40.414%
Ave. # checkpoints (per day) 7.28 7.23 7.25 9.50
Ave. # recoveries (per day) 2.26 2.25 2.33 1.94

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 25

7.3 Scenario 2: Impact of Number of Partial Verifications
In the second scenario, we study the impact of the number of partial verifications on the execution
overhead and pattern length of the optimal partial verification algorithm.

Figure 2 plots the overhead as well as the optimal pattern length as functions of the number of
partial verifications m for each detector. The plots also show the overhead (≈ 39%) and optimal
pattern length (≈ 6156 seconds) of the baseline algorithm, represented by m = 0. We can see that
the expected overhead is reduced for all three detectors by employing partial verifications. For each
detector, the optimal overhead is attained for a particular value of m, corroborating the theoretical
study. After this point, it starts rising again due to the fact that forcing too many verifications
will eventually cause the error-free overhead to increase. The improvement in overhead over the
baseline algorithm is 9% for detectors D(1) and D(3) (optimal overhead for both is ≈ 30%), and
7% for detector D(2) (optimal overhead is ≈ 32%).

Also, the optimal pattern length increases as more partial verifications are employed inside the
pattern. This is because the use of intermediate verifications allows silent errors to be detected
earlier in the pattern and thus delays the checkpointing process. Interestingly, the optimal pattern
lengths of all three detectors are around 8600 seconds when their respective optimal overheads
are reached. This implies that an optimal pattern using partial verifications delays the taking of
each checkpoint by ≈ 40 minutes, which corresponds to a saving of ≈4 checkpoints/day over the
baseline algorithm. Concerning the performance of detectors, we can see that D(1) and D(3) are
slightly better than D(2), due to their higher accuracy-to-cost ratios. However, for m ≤ 2, D(2) is
better due to its higher recall, while its performance degrades as more D(2) detectors are employed
due to its high cost.

7.4 Scenario 3: Impact of Detector Recall
In the third scenario, we consider applications with various datasets that expose a change in the
detection recall. Therefore, a range of recall values is possible for each detector rather than a single
value.

According to [6, 5], the recall ranges of the three detectors are r(1) = [0.5, 0.9], r(2) = [0.75, 0.95],
and r(3) = [0.8, 0.99], respectively. Given a dataset, we obtain a value of recall for each detector
within the range. This is because different datasets might expose different levels of entropy and
therefore the detectors might expose different prediction accuracy, hence different recall. We note

(a) (b)

Figure 2: Expected overhead (a) and optimal length (b) of a pattern against the number of partial
verifications when a single type of detector is used for three different detectors. The costs and
recalls of the three detectors are V (1) = 3 seconds, V (2) = 30 seconds, V (3) = 6 seconds, and
r(1) = 0.5, r(2) = 0.95, r(3) = 0.8. The costs of checkpointing and guaranteed verification are
C = V ∗ = 600 seconds. The platform MTBF is µ = 31536 seconds.

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 26

that although the recall might be different for different datasets, the work done, hence the detection
cost, is the same. We rely upon four different metrics, namely, optimal overhead, optimal pattern
length, optimal number of verifications, and accuracy-to-cost-ratio, to assess the impact of recall r
on the optimal partial verification algorithm.

Figure 3 compares the performance of the three detectors through the four metrics when there
is a change in the detection recall for each detector in its recall range. The plots in Figure 3(a)
show variations in the optimal overheads with increasing recall values. As expected, the optimal
overheads are reduced for all three detectors, since a higher recall value for the same cost (and same
number) of verification reduces the fault-induced re-execution cost (fre), while keeping the fault-free
overhead (off) constant, thus minimizes the product offfre (see Section 5.1). This reduction in
overhead can also be explained through the plots in Figure 3(d), which show an increase in the
accuracy-to-cost ratio of each detector with higher recall values. The detectors D(1) and D(3) have
the highest accuracy-to-cost ratio, and when used alone inside the pattern, produce the lowest
optimal overheads for their respective recall ranges. This substantiates the theoretical analysis
of Lemma 8 in Section 6.1. The detector D(2), being an expensive verification, has a much lower
ratio and thus incurs a higher optimal overhead.

Figure 3(b) shows oscillations in the curves representing the optimal pattern length for varying
recall values. This can be understood by observing the plot in Figure 3(c), where the optimal
number of partial verifications m∗ for all three detectors follows a staircase function. For example,
the optimal m∗ for detector D(1) goes from 33 to 22 as the recall value increases in the range.
This is due to the fact that verifications with higher recalls (or accuracy-to-cost ratios) allow us

(a) (b)

(c) (d)

Figure 3: Optimal overhead (a), optimal pattern length (b), optimal number of partial verifications
(c), and accuracy-to-cost ratio (d) for three different detectors as functions of recall in their
respective recall ranges (r(1) = [0.5, 0.9], r(2) = [0.75, 0.95] and r(3) = [0.8, 0.99]).

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 27

to achieve lower optimal overhead (as in Figure 3(a)) with fewer verifications. This step-wise
reduction in the number of verifications leads to minor oscillations in the optimal pattern length. In
particular, it is interesting to observe that in case of detector D(2), by fixing its recall at r(2) = 0.94
and r(2) = 0.95, the optimal overheads are 31.83% and 31.79% respectively, and the optimal pattern
lengths are 8668 and 8490 seconds respectively. Thus, approximately 3 minutes of more execution
per pattern can be done by compromising 0.04% of overhead. The reduction in the optimal pattern
length for a higher recall value is due to a decrement in m∗. Note that both oscillations and
staircase effects would disappear if m∗ was allowed to take rational values.

7.5 Scenario 4: Performance of Greedy Algorithm
Finally, in the last scenario, we focus on the greedy algorithm presented in Section 6.3 and compare
its performance with the optimal solution that uses more than one type of partial detector with
different datasets, while keeping the same values for C, V ∗ and µ.

As in the previous experiment, the recall of each detector is given a range of possible values, and
its actual value depends on the dataset. As shown in Figure 3(d), even with the recall ranges, D(2)

always has a lower accuracy-to-cost ratio compared to D(1) and D(3), which share similar ratios.
Table 2 presents three scenarios that we have identified, where a combination of D(1) and D(3)

constitutes the optimal pattern. In all these scenarios, the greedy algorithm, which uses only the
detector with the highest accuracy-to-cost ratio, performs within 0.002% of the optimal solution.
The results show that the greedy algorithm performs extremely well under these practical settings,
even though the optimal pattern may employ both D(1) and D(3) in the solution.

8 Conclusion and Future Work
In this paper, we provide a comprehensive analysis of a computing pattern that employs different
types of partial verifications for detecting silent errors in HPC applications. We demonstrate that
detectors with imperfect precision should not be used in such computing patterns. When considering
only detectors with imperfect recall, we show that the optimization problem is NP-complete in
general, and we propose both a greedy algorithm and an FPTAS for choosing the number of
detectors to be used, as well as their types and locations in the pattern. Extensive simulations
based on realistic detector settings show that the greedy algorithm works well in practice, and
confirm the usefulness of partial detectors to cope with silent errors on exascale systems.

In future work, we plan to investigate detectors with imperfect recall (and possibly imperfect
precision) for an application consisting in a set of tasks with precedence constraints, where a detector
can be employed only at the end of a task, hence reducing the flexibility in the computational
scenario. Also, it would be interesting to combine the use of such detectors with a reasonable use

Table 2: Performance comparison of greedy algorithm and optimal solution. In all scenarios,
C = V ∗ = 600 seconds, V (1) = 3 seconds, V (3) = 6 seconds.

m overhead H diff. from opt.
Scenario 1: r(1) = 0.51, r(3) = 0.82, φ(1) ≈ 137, φ(3) ≈ 139
Optimal solution (1, 15) 29.828% 0%
Greedy with D(3) (0, 16) 29.829% 0.001%
Scenario 2: r(1) = 0.58, r(3) = 0.9, φ(1) ≈ 163, φ(3) ≈ 164
Optimal solution (1, 14) 29.659% 0%
Greedy with D(3) (0, 15) 29.661% 0.002%
Scenario 3: r(1) = 0.64, r(3) = 0.97, φ(1) ≈ 188, φ(3) ≈ 188
Optimal solution (1, 13) 29.523% 0%
Greedy with D(1) (27, 0) 29.524% 0.001%
Greedy with D(3) (0, 14) 29.525% 0.002%

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 28

of replication: one may prefer to replicate a small task rather than paying a costly detector to
detect silent data corruptions.

Acknowledgment
This research was funded in part by the European project SCoRPiO, by the LABEX MILYON
(ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir" (ANR-
11-IDEX-0007) operated by the French National Research Agency (ANR), by the PIA ELCI project,
by the ANR Rescue project, by the U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research Program, under Contract DE-AC02-06CH11357, by the INRIA-
Illinois-ANL-BSC Joint Laboratory on Extreme Scale Computing, and by the Center for Exascale
Simulation of Advanced Reactors at Argonne. Yves Robert is with Institut Universitaire de France.

References
[1] G. Aupy, A. Benoit, T. Hérault, Y. Robert, F. Vivien, and D. Zaidouni. On the combination

of silent error detection and checkpointing. In Proceedings of the 19th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC), pages 11–20, 2013.

[2] G. Aupy, Y. Robert, F. Vivien, and D. Zaidouni. Checkpointing algorithms and fault prediction.
J. Parallel and Distributed Computing, 74(2):2048–2064, 2014.

[3] L. Bautista Gomez and F. Cappello. Detecting silent data corruption through data dynamic
monitoring for scientific applications. In Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’14, pages 381–382, New York,
NY, USA, 2014. ACM.

[4] L. Bautista Gomez and F. Cappello. Detecting silent data corruption through data dynamic
monitoring for scientific applications. SIGPLAN Notices, 49(8):381–382, 2014.

[5] L. Bautista Gomez and F. Cappello. Detecting and correcting data corruption in stencil
applications through multivariate interpolation. In Proceedings of the 1st International
Workshop on Fault Tolerant Systems, FTS’15. IEEE, 2015.

[6] L. Bautista Gomez and F. Cappello. Exploiting Spatial Smoothness in HPC Applications to
Detect Silent Data Corruption. In Proceedings of the 17th IEEE International Conference on
High Performance Computing and Communications, HPCC’15. IEEE, 2015.

[7] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Assessing general-purpose algorithms to
cope with fail-stop and silent errors. In Proceedings of the 5th International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS), pages 215–236, 2014.

[8] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Optimal resilience patterns to cope with
fail-stop and silent errors. Research report RR-8786, INRIA, 2015. Available at graal.
ens-lyon.fr/~yrobert/rr8786.pdf.

[9] A. Benoit, Y. Robert, and S. K. Raina. Efficient checkpoint/verification patterns. Int. J.
of High Performance Computing Applications, DOI: 10.1177/1094342015594531, Published
online, July 2015. Available as ICL Research report RR-1403.

[10] A. R. Benson, S. Schmit, and R. Schreiber. Silent error detection in numerical time-stepping
schemes. Int. J. High Performance Computing Applications, DOI: 10.1177/1094342014532297,
2014.

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 29

[11] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. Lightweight silent data
corruption detection based on runtime data analysis for HPC applications. In Proceedings of
The ACM International Symposium on High-Performance Parallel and Distributed Computing
(HPDC), HPDC ’15, 2015.

[12] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based fault tolerance applied
to high performance computing. J. Parallel Distrib. Comput., 69(4):410–416, 2009.

[13] G. Bronevetsky and B. de Supinski. Soft error vulnerability of iterative linear algebra methods.
In Proceedings of the International Conference on Supercomputing (ICS), pages 155–164, 2008.

[14] A. Cavelan, S. K. Raina, Y. Robert, and H. Sun. Assessing the impact of partial verifications
against silent data corruptions. In Proceedings of the 44th Annual International Conference
on Parallel Processing (ICPP), 2015.

[15] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed
systems. ACM Transactions on Computer Systems, 3(1):63–75, 1985.

[16] Z. Chen. Online-ABFT: An online algorithm based fault tolerance scheme for soft error
detection in iterative methods. In Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages 167–176, 2013.

[17] E. Ciocca, I. Koren, Z. Koren, C. M. Krishna, and D. S. Katz. Application-level fault tolerance
in the orbital thermal imaging spectrometer. In Proceedings of the 10th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC’04), pages 43–48, 2004.

[18] E. Ciocca, I. Koren, and C. M. Krishna. Determining acceptance tests for application-level
fault detection. In Proceedings of the 2nd ASPLOS EASY Workshop, pages 47–53, 2002.

[19] R. Cohen and L. Katzir. The generalized maximum coverage problem. Inf. Process. Lett.,
108(1):15–22, 2008.

[20] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.
Future Generation Comp. Syst., 22(3):303–312, 2006.

[21] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello. Optimization of multi-level
checkpoint model for large scale HPC applications. In Proc. IPDPS’14, 2014.

[22] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka, P. Messina, T. Moore,
R. Stevens, A. Trefethen, and M. Valero. The international exascale software project: a call to
cooperative action by the global high-performance community. IJHPCA, 23(4):309–322, 2009.

[23] M. Dow. Explicit inverses of Toeplitz and associated matrices. ANZIAM J., 44(E):E185–E215,
Jan. 2003.

[24] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann. Combining
partial redundancy and checkpointing for HPC. In Proceedings of the IEEE International
Conference on Distributed Computing Systems (ICDCS), pages 615–626, 2012.

[25] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Survey, 34:375–408, 2002.

[26] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell. Detection
and correction of silent data corruption for large-scale high-performance computing. In Proc.
SC’12, page 78, 2012.

[27] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

RR n° 8832

Coping with Recall and Precision of Soft Error Detectors 30

[28] M. Heroux and M. Hoemmen. Fault-tolerant iterative methods via selective reliability. Research
report SAND2011-3915 C, Sandia National Laboratories, 2011.

[29] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations.
IEEE Trans. Comput., 33(6):518–528, 1984.

[30] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[31] G. Lu, Z. Zheng, and A. A. Chien. When is multi-version checkpointing needed? In Proc. 3rd
Workshop on Fault-tolerance for HPC at extreme scale (FTXS), pages 49–56, 2013.

[32] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to improve computer
reliability. IBM J. Res. Dev., 6(2):200–209, 1962.

[33] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, Modeling, and
Evaluation of a Scalable Multi-level Checkpointing System. In Proc. of the ACM/IEEE SC
Conf., pages 1–11, 2010.

[34] X. Ni, E. Meneses, N. Jain, and L. V. Kalé. ACR: Automatic Checkpoint/Restart for Soft
and Hard Error Protection. In Proc. SC’13. ACM, 2013.

[35] T. O’Gorman. The effect of cosmic rays on the soft error rate of a DRAM at ground level.
IEEE Trans. Electron Devices, 41(4):553–557, 1994.

[36] P. Sao and R. Vuduc. Self-stabilizing iterative solvers. In Proceedings of the Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), 2013.

[37] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault tolerant preconditioned conjugate
gradient for sparse linear system solution. In Proceedings of the ACM International Conference
on Supercomputing (ICS), pages 69–78, 2012.

[38] J. W. Young. A first order approximation to the optimum checkpoint interval. Comm. of the
ACM, 17(9):530–531, 1974.

[39] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. IBM experiments in
soft fails in computer electronics. IBM J. Res. Dev., 40(1):3–18, 1996.

RR n° 8832

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

