S. Agarwal, K. Branson, and S. Belongie, Higher order learning with graphs, Proceedings of the 23rd international conference on Machine learning , ICML '06, pp.17-24, 2006.
DOI : 10.1145/1143844.1143847

A. Argyriou, M. Herbster, and M. Pontil, Combining Graph Laplacians for Semi-Supervised Learning, Proceedings of the 19th Annual Conference on Neural Information Processing Systems (NIPS-05), pp.67-74, 2005.

M. Bolla, Spectra, Euclidean representations and clusterings of hypergraphs, Discrete Mathematics, vol.117, issue.1-3, pp.19-39, 1993.
DOI : 10.1016/0012-365X(93)90322-K

J. Cai and M. Strube, End-to-end coreference resolution via hypergraph partitioning, Proceedings of the 23rd International Conference on Computational Linguistics (COLING- 10), pp.143-151, 2010.

K. Ashok, P. Chandra, W. L. Raghavan, R. Ruzzo, P. Smolensky et al., The electrical resistance of a graph captures its commute and cover times, Computational Complexity, 1996.

A. Emrick and E. , The Rating of Chess Players, Past and Present, 1978.

B. Andrew, X. Goldberg, . Zhu, J. Stephen, and . Wright, Dissimilarity in graph-based semi-supervised classification, International Conference on Artificial Intelligence and Statistics, pp.155-162, 2007.

S. Hamilton, PythonSkills: Implementation of the TrueSkill, Glicko and Elo Ranking Algorithms, 2012.

R. Herbrich, T. Minka, and T. Graepel, TrueSkill TM : A Bayesian Skill Rating System, Proceedings of the 20th Annual Conference on Neural Information Processing Systems (NIPS-06), pp.569-576, 2006.

M. Herbster, Exploiting Cluster-Structure to Predict the Labeling of a Graph, Proceedings of the 19th International Conference on Algorithmic Learning Theory (ALT-08), pp.54-69, 2008.
DOI : 10.1007/978-3-540-87987-9_9

P. Yao and . Hou, Bounds for the least Laplacian eigenvalue of a signed graph, Acta Mathematica Sinica, vol.21, issue.4, pp.955-960, 2005.

S. Klamt, U. Haus, and F. Theis, Hypergraphs and Cellular Networks, PLoS Computational Biology, vol.9, issue.5, 2009.
DOI : 10.1371/journal.pcbi.1000385.g002

J. Douglas, M. Klein, and . Randi´crandi´c, Resistance distance, Journal of Mathematical Chemistry, vol.12, issue.1, pp.81-95, 1993.

Y. Koren, L. Carmel, and D. Harel, ACE: a fast multiscale eigenvectors computation for drawing huge graphs, IEEE Symposium on Information Visualization (INFOVIS-02), pp.137-144, 2002.

J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. et al., Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization, Proceedings of the 10th SIAM International Conference on Data Mining (SDM-10), pp.559-559, 2010.
DOI : 10.1137/1.9781611972801.49

J. Lasek, Z. Szlávik, and S. Bhulai, The predictive power of ranking systems in association football, International Journal of Applied Pattern Recognition, vol.1, issue.1, pp.27-46, 2013.
DOI : 10.1504/IJAPR.2013.052339

H. Lee, Python implementation of Elo: A rating system for chess tournaments, 2013.

H. Lee, Python implementation of TrueSkill: The video game rating system, 2013.

T. Ricatte, R. Gilleron, and M. Tommasi, Hypernode Graphs for Spectral Learning on Binary Relations over Sets, Proceedings of the 7th European Conference on Machine Learning and Data Mining (ECML-PKDD-14), pp.662-677, 2014.
DOI : 10.1007/978-3-662-44851-9_42

URL : https://hal.archives-ouvertes.fr/hal-01104618

J. Rodríguez, On the Laplacian spectrum and walk-regular hypergraphs. Linear and Multilinear Algebra, pp.285-297, 2003.

U. Von and L. , A tutorial on spectral clustering, Statistics and computing, vol.17, issue.4, pp.395-416, 2007.

S. Zhang, G. D. Sullivan, and K. D. Baker, The automatic construction of a view-independent relational model for 3-D object recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.15, issue.6, pp.531-544, 1993.

D. Zhou, J. Huang, and B. Schölkopf, Learning from labeled and unlabeled data on a directed graph, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.1036-1043, 2005.
DOI : 10.1145/1102351.1102482

D. Zhou, J. Huang, and B. Schölkopf, Learning with hypergraphs: Clustering, classification, and embedding, Proceedings of the 20th Annual Conference on Neural Information Processing Systems (NIPS-06), pp.1601-1608, 2007.