A dimensionality reduction process to forecast events through stochastic models

Abstract : This paper describes a dimensionality reduction process to forecast time series events using stochastic models. As well as the KDD process defines a sequence of common steps to achieve useful information through data mining techniques, we propose a sequence of steps in order to estimate the probability of future events through stochastic modeling. Our process focus on reduce the dimension-ality of data, thus reducing the effect of the common problems involved in stochastic modeling, such as the state space explosion and the large modeling efforts to create such models.
Type de document :
Communication dans un congrès
International Conference on Software Engineering and Knowledge Engineering, Jul 2015, Pittsburgh, United States. 2015, 〈http://www.ksi.edu/seke/seke15.html〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01247905
Contributeur : Arnaud Legrand <>
Soumis le : mercredi 23 décembre 2015 - 09:42:24
Dernière modification le : mercredi 29 novembre 2017 - 14:51:13
Document(s) archivé(s) le : dimanche 30 avril 2017 - 00:11:50

Fichier

seke14paper_111.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01247905, version 1

Citation

Joaquim Assunção, Paulo Fernandes, Lucelene Lopes, Silvio Normey. A dimensionality reduction process to forecast events through stochastic models. International Conference on Software Engineering and Knowledge Engineering, Jul 2015, Pittsburgh, United States. 2015, 〈http://www.ksi.edu/seke/seke15.html〉. 〈hal-01247905〉

Partager

Métriques

Consultations de la notice

61

Téléchargements de fichiers

92