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Abstract. In this paper we treat the specification problem in Krivine classical realizabil-
ity (Krivine 2009), in the case of arithmetical formulæ. In the continuity of previous works
from Miquel and the first author (Guillermo 2008; Guillermo and Miquel 2011), we char-
acterize the universal realizers of a formula as being the winning strategies for a game
(defined according to the formula). In the first section we recall the definition of classical
realizability, as well as a few technical results. In Section 5, we introduce in more details
the specification problem and the intuition of the game-theoretic point of view we adopt
later. We first present a gameG1, that we prove to be adequate and complete if the language
contains no instructions ‘quote’ (Krivine 2003), using interaction constants to do substi-
tution over execution threads. We then show that as soon as the language contain ‘quote’,
the game is no more complete, and present a second game G2 that is both adequate and
complete in the general case. In the last Section, we draw attention to a model-theoretic
point of view and use our specification result to show that arithmetical formulæ are abso-
lute for realizability models.

1. Introduction

The so called Curry-Howard correspondence constituted an important breakthrough in
proof theory, by evidencing a strong connection between the notions of functional pro-
gramming and proof theory (Curry and Feys 1958; Howard 1969; Girard, Lafont, and Tay-
lor 1989). For a long time, this correspondence has been limited to intuitionistic proofs and
constructive mathematics, so that classical reasonings, that are omnipresent in mathemat-
ics, could only be retrieved through negative translations to intuitionistic logic (Friedman
1978) or to linear logic (Girard 2006).

In 1990, Griffin discovered that the control operator call/cc (for call with current
continuation) of the Scheme programming language could be typed by Peirce’s law ((A→
B) → A) → A), this way extending the formuæ-as-types interpretation (Howard 1969).
As Peirce’s law is known to imply, in an intuitionistic framework, all the other forms of
classical reasoning (excluded middle, reductio ad absurdum, double negation elimination,
etc.), this discovery opened the way for a direct computational interpretation of classical
proofs, using control operators and their ability to backtrack. Several calculi were born
from this idea, such as Parigot’s λµ-calculus (Parigot 1997), Barbanera and Berardi’s sym-
metric λ-calculus (Barbanera and Berardi 1996), Krivine’s λc-calculus (Krivine 2009) or
Curien and Herbelin’s λ̄µµ̃-calculus (Curien and Herbelin 2000).

Nonetheless, some difficulties quickly appeared in the analysis of the computational be-
haviour of programs extracted from classical proofs. One reason for these difficulties was
precisely the presence of control operators, whose ability to backtrack breaks the linear-
ity of the execution of programs. More importantly, the formulæ-as-types interpretation
suffered from the lack of a theory connecting the point of view of typing with the point
of view of computation. Realizability was designed by Kleene to interpret the computa-
tional contents of the proofs of Heyting arithmetic (Kleene 1945), and even if it has been
extended later to more general frameworks (like intuitionistic set theories (Myhill 1973;
Friedman 1973; McCarty 1984)), it is intrinsically incompatible with classical reasoning:
the negation of the middle excluded principle is realizable.
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1.1. Classical realizibility. To address this problem, Krivine introduced in the middle of
the 90s the theory of classical realizability (Krivine 2009), which is a complete reformu-
lation of the very principles of realizability to make them compatible with classical rea-
soning. (As noticed in several articles (Oliva and Streicher 2008; Miquel 2010), classical
realizability can be seen as a reformulation of Kleene’s realizability through Friedman’s A-
translation (Friedman 1978).) Although it was initially introduced to interpret the proofs of
classical second-order arithmetic, the theory of classical realizability can be scaled to more
expressive theories such as Zermelo-Fraenkel set theory (Krivine 2001) or the calculus of
constructions with universes Miquel 2007.

As in intuitionistic realizability, every formula A is interpreted in classical realizability
as a set |A| of programs called the realizers of A, that share a common computational
behaviour dictated by the structure of the formula A. This point of view is related to the
point of view of deduction (and of typing) via the property of adequacy, that expresses that
any program extracted from a proof of A—that is: any program of type A—realizes the
formula A, and thus has the computational behaviour expected from the formula A.

However the difference between intuitionistic and classical realizability is that in the
latter, the set of realizers of A is defined indirectly, that is from a set ‖A‖ of execution
contexts (represented as argument stacks) that are intended to challenge the truth of A.
Intuitively, the set ‖A‖—which we shall call the falsity value of A—can be understood as
the set of all possible counter-arguments to the formula A. In this framework, a program
realizes the formula A—i.e. belongs to the truth value |A|—if and only if it is able to defeat
all the attempts to refute A using a stack in ‖A‖. (The definition of the classical notion of
a realizer is also parameterized by a pole representing a particular challenge, that we shall
define and discuss in Section 4.1.1.)

By giving an equal importance to programs—or terms—that ‘defend’ the formula A,
and to execution contexts—or stacks—that ‘attack’ the formula A, the theory of classical
realizability is therefore able to describe the interpretation of classical reasoning in terms
of manipulation of whole stacks (as first class citizens) using control operators.

1.2. Krivine λc-calculus. The programming language commonly used in classical real-
izability is Krivine’s λc-calculus, which is an extension of Church’s λ-calculus (Church
1941) containing an instruction cc (representing the control operator call/cc) and con-
tinuation constants embedding stacks. Unlike the traditional λ-calculus, the λc-calculus is
parameterized by a particular execution strategy —corresponding to the Krivine Abstract
Machine (Krivine 2004)— so that the notion of confluence—which is central in traditional
λ-calculi, does not make sense anymore. The property of confluence is replaced by the
property of determinism, which is closer from the point of view of real programming lan-
guages.

A pleasant feature of this calculus is that it can be enriched with ad hoc extra instruc-
tions. For instance, a print instruction might be added to trace an execution, as well as
extra instructions manipulating primitive numerals to do some code optimization (Miquel
2010). In some situations, extra instructions can also be designed to realize reasoning prin-
ciples, the standard example being the instruction quote that computes the Gödel code
of a stack, used for instance to realize the axiom of dependent choice (Krivine 2003). In
this paper, we shall consider this instruction together eq, that tests the syntactic equality
between two λc-terms.

1.3. The specification problem. A central problem in classical realizability is the specifi-
cation problem, which is to find a characterization for the (universal) realizers of a formula
by their computational behaviour. In intuitionistic logic, this characterization does not
contain more information than the formula itself, so that this problem has been given little
attention. For instance, the realizers of an existential formula ∃NxA(x) are exactly the ones
reducing to a pair made of a witness n ∈ N and a proof term realizing A(n) (Krivine 1993).



CLASSICAL REALIZABILITY AND ARITHMETICAL FORMULÆ 3

However, in classical realizability the situation appears to be quite different and the
desired characterization is in general much more difficult to obtain. Indeed, owing to the
presence of control operators in the language of terms, the realizers have the ability to
backtrack at any time, making the execution harder to predict. Considering for instance
the very same formula ∃NxA(x), a classical realizer of it can give as many integers for x
as it wants, using backtrack to make another try. Hence we can not expect from such a
realizer to reduct directly to a witness (for an account of witness extraction techniques in
classical realizability, see Miquel’s article (Miquel 2010)). In addition, as we will see in
Section 5.3, giving such a witness might be computationally impossible without backtrack,
for example in the case of a formula relying on the Halting Problem. We will treat this
particular example in Section 5.3.

Furthermore, as stated in the article on Peirce’s Law (Guillermo and Miquel 2011), the
presence of instructions such as quote (defined in Section 2.3) makes the problem still
more subtle. We will deal with this particular case in Section 7.

1.4. Specifying arithmetical formulæ. The architecture of classical realizability is cen-
tered around the opposition between falsity values (stacks) and truth values (terms). This
opposition, as well as the underlying intuition (opponents vs. defenders), naturally leads us
to consider the problem in a game-theoretic setting. Such a setting—namely realizability
games— was defined by Krivine as a mean to prove that any arithmetical formula which is
universally realized (i.e.: realized for all poles) is true in the ground model (often consid-
ered as the standard full model of second order arithmetics) (c.f.: theorem 16 of (Krivine
2003)). Thereafter, Krivine also proves the converse, which is that every arithmetical for-
mula which is true in the ground model is realized by the term which implements the
trivial winning strategy of the game associated to the formula (c.f.: theorem 21 of (Krivine
2009)). Those realizability games are largely inspired on the non-counterexample interpre-
tation of Kreisel (Kreisel 1951), Kreisel 1952 and the subsequent developpement of game
semantics for proofs by Coquand (Coquand 1995).

Our goal is to establish an operational description which characterize all the realizers
of a given arithmetical formula. In particular, it does not suffice to find a realizer for any
true arithmetical formula, but we want to explicit an operational sufficient condition to be
a realizer.

In Coquand’s games, the only atomic formulæ are > and ⊥, therefore a strategy for
a true atomic formula does nothing, as the game is already won by the defender. As a
consequence, any “blind” enumeration of Nk is a winning strategy for every true Σ0

2k-
formulæ. Such a strategy, which is central in Krivine’s proof that any true formula in the
ground model is realized (Krivine 2009, Theorem 21), has no interesting computational
content. Worse, it is not suitable for being a realizer in the general case where we use
Leibniz equality. This remark will be discussed more consistently in Section 8.

The game developed by Krivine makes both players to use only constants. If the calcu-
lus does not contain instructions incompatible with substitution (like ’quote’), this game
is equivalent to the one we prove that specifies the arithmetical formulæ in the substitutive
case. However, Krivine’s realizers are eventually intended to contain ’quote’. In this gen-
eral case, we prove that the specification is obtained from the first game by a relaxation of
the rules of ∃.

Thus, both works left open the question of giving a precise specification for arithmetic
formulæ in the general case.

In this paper, we will restrict ourself to the setting where arithmetical formulæ have
been relativized to canonical integers, as we explained in Section 4.7. We will rephrase
the game-theoretic framework of the first author Ph.D. thesis (Guillermo 2008), to provide
a game-theoretic characterization G1 that is both complete and adequate, in the particular
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case where the underlying calculus contains infinitely many interaction constants. How-
ever, this hypothesis—that is crucial in our proof of completeness—is known to be in-
compatible with the presence of instructions such as quote or eq (Guillermo and Miquel
2011), which allow us to distinguish syntactically λc terms that are computationally equiv-
alent. We exhibit in Section 6.3 a wild realizer that uses these instructions and does not
suit as a winning strategy for G1, proving that G1 is no more complete in this case.

Indeed, as highlighted in the article on Peirce’s Law (Guillermo and Miquel 2011),
the presence of such instructions introduces a new—and purely game-theoretic—form of
backtrack that does not come from a control operator but from the fact that realizers, using
a syntactic equality test provided by quote, can check whether a position has already
appeared before. We present in Section 7 a second game G2 that allows this new form of
backtrack, and captures the behaviour of our wild realizer. Then we prove that without
any assumption on the set of instructions, this game is both adequate and complete, thus
constituting the definitive specification of arithmetical formulæ.

1.5. Connexion with forcing. In addition to the question of knowing how to specify arith-
metical formulæ, this paper presents an answer to another question, which is to know
whether arithmetical formulæ are absolute for realizability models. In set theory, a com-
mon technique to prove independence results in theory is to use forcing, that allows us to
extend a model and add some specific properties to it. Yet, it is known Σ1

2-formulæ are
absolute for a large class of models, including those produced by forcing. This constitutes
somehow a barrier to forcing, which does not permit to change the truth of formulæ that
are below Σ1

2 in the arithmetical hierarchy.
If classical realizability was initially designed to be a semantics for proofs of Peano

second-order arithmetic, it appeared then to be scalable to build models for high-order
arithmetic (Miquel 2011) or set theory Krivine 2011. Just like forcing techniques, these
constructions rest upon a ground model and allow us to break some formulæ that were true
in the ground model, say the continuum hypothesis or the axiom of choice (Krivine 2012).
In addition, the absoluteness theorem of Σ2

1 does not apply to realizability model. Hence it
seems quite natural to wonder, as for forcing, whether realizability models preserve some
formulæ. We will explain in Section 8 how the specification results allow us to show that
arithmetical formulæ are absolute for realizability models.

2. The language λc

A lot of the notions we use in this paper are the very same as in the article on Peirce’s
Law (Guillermo and Miquel 2011). We will recall them briefly, for a more gentle introduc-
tion, we advise the reader to refer to this paper.

2.1. Terms and stacks. The λc-calculus distinguishes two kinds of syntactic expressions:
terms, which represent programs, and stacks, which represent evaluation contexts. For-
mally, terms and stacks of the λc-calculus are defined (see Fig. 1) from three auxiliary sets
of symbols, that are pairwise disjoint:

• A denumerable setVλ of λ-variables (notation: x, y, z, etc.)
• A countable setC of instructions, which contains at least an instruction cc (‘call/cc’,

for: call with current continuation).
• A nonempty countable set B of stack constants, also called stack bottoms (nota-

tion: α, β, γ, etc.)
In what follows, we adopt the same writing conventions as in the pure λ-calculus, by

considering that application is left-associative and has higher precedence than abstraction.
We also allow several abstractions to be regrouped under a single λ, so that the closed term
λx . λy . λz . ((zx)y) can be more simply written λxyz . zxy.

As usual, terms and stacks are considered up to α-conversion (Barendregt 1984) and we
denote by t{x := u} the term obtained by replacing every free occurrence of the variable x
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Terms t, u ::= x | λx.t | tu | kπ | κ x, ∈ Vλ, κ ∈ C
Stacks π ::= α | t · π (α ∈ B, t closed)
Processes p, q ::= t ? π (t closed)

x{c := u} ≡ x
(λx . t){c := u} ≡ λx . t{c := u}

(t1t2){c := u} ≡ t1{c := u}t2{c := u}
kπ{c := u} ≡ kπ{c:=u}

c{c := u} ≡ u
c′{c := u} ≡ c′ (if c′ . c)
α{c := u} ≡ α

(t · π){c := u} ≡ t{c := u} · π{c := u}

x{α := π0} ≡ x
(λx . t){α := π0} ≡ λx . t{α := π0}

(t1t2){α := π0} ≡ t1{α := π0}t2{α := π0}

kπ{α := π0} ≡ kπ{α:=π0}

c{α := π0} ≡ c
α{α := π0} ≡ π0

α′{α := π0} ≡ α′ (if α′ . α)
(t · π){α := π0} ≡ t{α := π0} · π{α := π0}

Substitution over terms and stacks

First-order terms e1, e2::=x | f (e1, . . . , ek) x ∈ V1, f ∈ Σ

Formulæ A, B ::=X(e1, . . . , ek) | A⇒ B | ∀xA | ∀XA X ∈ V2

⊥ ≡ ∀Z Z
¬A ≡ A⇒ ⊥

A ∧ B ≡ ∀Z ((A⇒ B⇒ Z)⇒ Z)
A ∨ B ≡ ∀Z ((A⇒ Z)⇒ (B⇒ Z)⇒ Z)

A⇔ B ≡ (A⇒ B) ∧ (B⇒ A)
∃x A(x) ≡ ∀Z (∀x (A(x)⇒ Z)⇒ Z)
∃X A(X) ≡ ∀Z (∀X (A(X)⇒ Z)⇒ Z)

e1 = e2 ≡ ∀W (W(e1)⇒ W(e2))

Second-order encodings

Γ ` x : A
(x:A)∈Γ

Γ, x : A ` t : B
Γ ` λx . t : A⇒ B

Γ ` t : A⇒ B Γ ` t : A
Γ ` tu : B

Γ ` t : A
Γ ` t : ∀x A

x<FV(Γ)
Γ ` t : ∀x A

Γ ` t : A{x := e}
Γ ` t : A

Γ ` t : ∀X A
X<FV(Γ)

Γ ` t : ∀X A
Γ ` t : A{X := P} Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Typing rules of second-order logic

Figure 1. Definitions

by the term u in the term t, possibly renaming the bound variables of t to prevent name
clashes. The sets of all closed terms and of all (closed) stacks are respectively denoted
by Λ and Π.

Definition 1 (Proof-like terms). – We say that a λc-term t is proof-like if t contains no
continuation constant kπ. We denote by PL the set of all proof-like terms.

Finally, every natural number n ∈ N is represented in the λc-calculus as the closed
proof-like term n defined by

n ≡ sn0 ≡ s(· · · (s︸ ︷︷ ︸
n

0) · · · ) ,

where 0 ≡ λx f . x and s ≡ λnx f . f (nx f ) are Church’s encodings of zero and the successor
function in the pure λ-calculus. Note that this encoding slightly differs from the traditional
encoding of numerals in the λ-calculus, although the term n ≡ sn0 is clearly β-convertible
to Church’s encoding λx f . f nx—and thus computationally equivalent. The reason for pre-
ferring this modified encoding is that it is better suited to the call-by-name discipline of
Krivine’s Abstract Machine (KAM) we will now present.
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2.2. Krivine’s Abstract Machine. In the λc-calculus, computation occurs through the
interaction between a closed term and a stack within Krivine’s Abstract Machine (KAM).
Formally, we call a process any pair t ? π formed by a closed term t and a stack π. The set
of all processes is written Λ ? Π (which is just another notation for the Cartesian product
of Λ by Π).

Definition 2 (Relation of evaluation). We call a relation of one step evaluation any binary
relation �1 over the set Λ ? Π of processes that fulfils the following four axioms:

(Push)
(Grab)
(Save)
(Restore)

tu ? π �1 t ? u · π
(λx . t) ? u · π �1 t{x := u} ? π

cc ? t · π �1 t ? kπ · π
kπ ? t · π′ �1 t ? π

The reflexive-transitive closure of �1 is written �.

One of the specificities of the λc-calculus is that it comes with a binary relation of
(one step) evaluation �1 that is not defined, but axiomatized via the rules (Push), (Grab),
(Save) and (Restore). In practice, the binary relation �1 is simply another parameter of
the definition of the calculus, just like the sets C and B. Strictly speaking, the λc-calculus
is not a particular extension of the λ-calculus, but a family of extensions of the λ-calculus
parameterized by the sets B, C and the relation of one step evaluation �1. (The set Vλ of
λ-variables—that is interchangeable with any other denumerable set of symbols—does not
really constitute a parameter of the calculus.)

2.3. Adding new instructions. The main interest of keeping open the definition of the
sets B, C and of the relation evaluation �1 (by axiomatizing rather than defining them) is
that it makes possible to enrich the calculus with extra instructions and evaluation rules,
simply by putting additional axioms about C, B and �1. On the other hand, the definitions
of classical realizability (Krivine 2009) as well as its main properties do not depend on
the particular choice of B, C and �1, although the fine structure of the corresponding
realizability models is of course affected by the presence of additional instructions and
evaluation rules.

For the needs of the discussion in Section 6, we shall sometimes consider the following
extra instructions in the set C:

• The instruction quote, which comes with the evaluation rule

(Quote) quote ? t · π �1 t ? nπ · π ,

where π 7→ nπ is a recursive injection from Π to N. Intuitively, the instruction
quote computes the ‘code’ nπ of the stack π, and passes it (using the encoding
n 7→ n described in Section 2.1) to the term t. This instruction was originally
introduced to realize the axiom of dependent choices (Krivine 2003).

• The instruction eq, which comes with the evaluation rule

(Eq) eq ? t1 · t2 · u · v · π �1

u ? π if t1 ≡ t2
v ? π if t1 . t2

Intuitively, the instruction eq tests the syntactic equality of its first two argu-
ments t1 and t2 (up to α-conversion), giving the control to the next argument u
if the test succeeds, and to the second next argument v otherwise. In presence of
the quote instruction, it is possible to implement a closed λc-term eq′ that has the
very same computational behaviour as eq, by letting

eq′ ≡ λx1x2 . quote (λn1y1 . quote (λn2y2 . eq nat n1 n2) x2) x1 ,

where eq nat is any closed λ-term that tests the equality between two numerals
(using the encoding n 7→ n).
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• The instruction t (‘fork’), which comes with the two evaluation rules

(Fork) t ? t0 · t1 · π �1 t0 ? π and t ? t0 · t1 · π �1 t1 ? π .

Intuitively, the instruction t behaves as a non deterministic choice operator, that
indifferently selects its first or its second argument. The main interest of this in-
struction is that it makes evaluation non deterministic, in the following sense:

Definition 3 (Deterministic evaluation). We say that the relation of evaluation �1 is deter-
ministic when the two conditions p �1 p′ and p �1 p′′ imply p′ ≡ p′′ (syntactic identity)
for all processes p, p′ and p′′. Otherwise, �1 is said to be non deterministic.

The smallest relation of evaluation, that is defined as the union of the four rules (Push),
(Grab), (Save) and (Restore), is clearly deterministic. The property of determinism still
holds if we enrich the calculus with an instruction eq (. cc) together with the aforemen-
tioned evaluation rules or with the instruction quote (. cc).

On the other hand, the presence of an instruction t with the corresponding evaluation
rules definitely makes the relation of evaluation non deterministic.

2.4. The thread of a process and its anatomy. Given a process p, we call the thread of p
and write th(p) the set of all processes p′ such that p � p′:

th(p) = {p′ ∈ Λ ? Π : p � p′} .

This set has the structure of a finite or infinite (di)graph whose edges are given by the rela-
tion �1 of one step evaluation. In the case where the relation of evaluation is deterministic,
the graph th(p) can be either:

• Finite and cyclic from a certain point, because the evaluation of p loops at some
point. A typical example is the process I?δδ ·α (where I ≡ λx . x and δ ≡ λx . xx),
that enters into a 2-cycle after one evaluation step:

I ? δδ · α �1 δδ ? α �1 δ ? δ · α �1 δδ ? α �1 · · ·

• Finite and linear, because the evaluation of p reaches a state where no more rule
applies. For example:

II ? α �1 I ? I · α �1 I ? α .

• Infinite and linear, because p has an infinite execution that never reaches twice the
same state. A typical example is given by the process δ′δ′?α, where δ′ ≡ λx . x x I:

δ′δ′ ? α �3 δ′δ′ ? I · α �3 δ′δ′ ? I · I · α �3 δ′δ′ ? I · I · I · α �3 · · ·

2.5. Interaction constants. The two examples of extra instructions quote and eq we
gave in Section 2.3 have a strong impact on the potential behaviour of processes. Indeed,
they are able to distinguish syntactically different terms that are computationally equiv-
alent, such as the terms I and II. To better understand the consequence of the presence
of such extra instructions in the λc-calculus, we need to introduce the important notion of
interaction constant. This definition relies on the notions of substitution over terms and
stacks, that are defined in Fig. 1. Unlike the traditional form of substitution t{x := u}
(which is only defined for terms), the substitutions t{c := u} and π{c := u} also propagate
through the continuation constants kπ.

Definition 4. A constant κ ∈ C is said to be
• inert if for all π ∈ Π, there is no process p such that κ ? π �1 p;
• substitutive if for all u ∈ Λ and for all processes p, p′ ∈ Λ ? Π, p �1 p′ implies

p{κ := u} �1 p′{κ := u};
• non generative if for all processes p, p′ ∈ Λ ? Π, p �1 p′, the constant κ cannot

occur in p′ unless it already occurs in p.
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A constant κ ∈ C that is inert, substitutive and non generative is then called an interaction
constant. Similarly, we say that a stack constant α ∈ B is:

• substitutive if for all π ∈ Π and for all processes p, p′ ∈ Λ ? Π, p �1 p′ implies
p{α := π} �1 p′{α := π};

• non generative if for all processes p, p′ ∈ Λ ? Π, p �1 p′, the constant α cannot
occur in p′ unless it already occurs in p.

The main observation is that substitutive constants are incompatible with both instruc-
tion quote and eq (see (Guillermo and Miquel 2011) for a proof):

Proposition 1. If the calculus of realizers contains one of both instructions quote or eq,
then none of the constants κ ∈ C is substitutive.

The very same argument can be applied to prove the incompatibility of substitutive stack
constants with the instruction quote. On the other hand, it is clear that if the relation of
evaluation �1 is only defined from the rules (Grab),(Push),(Save) and (Restore) -and pos-
sibly: the rule (Fork)- then all the remaining constants κ in C (i.e. κ . cc,t) are interaction
constants (and thus substitutive), whereas all the stack constants in B are substitutive and
non generative. Substitutive (term and stack) constants are useful to analyze the computa-
tional behaviour of realizers in a uniform way. For instance, if we know that a closed term
t ∈ Λ is such that

t ? κ1 · · · κn · α � p

where κ1, . . . , κn are substitutive constants that do not occur in t, and where α is a substitu-
tive stack constant that does not occur in t too, then we more generally know that

t ? u1 · · · un · π � p{κ1 := u1, . . . , κn := un, α := π}

for all terms u1, . . . , un ∈ Λ and for all stacks π ∈ Π. Intuitively, substitutive constants play
in the λc-calculus the same role as free variables in the pure λ-calculus.

3. Classical second-order arithmetic

In Section 2 we delt with the computing facet of the theory of classical realizability. In
this section, we will now present its logical facet by introducing the language of classical
second-order logic with the corresponding type system. In section 3.3, we will focus to the
particular case of second-order arithmetic and present its axioms.

3.1. The language of second-order logic. The language of second-order logic distin-
guishes two kinds of expressions: first-order expressions representing individuals, and
formulæ, representing propositions about individuals and sets of individuals (represented
using second-order variables as we shall see below).

3.1.1. First-order expressions. First-order expressions are formally defined (see Fig. 1)
from the following sets of symbols:

• A first-order signature Σ defining function symbols with their arities, and consid-
ering constant symbols as function symbols of arity 0. We assume that the signa-
ture Σ contains a constant symbol 0 (‘zero’), a unary function symbol s (‘succes-
sor’) as well as a function symbol f for every primitive recursive function (includ-
ing symbols +, ×, etc.), each of them being given its standard interpretation in N
(see Section 3.3).

• A denumerable setV1 of first-order variables. For convenience, we shall still use
the lowercase letters x, y, z, etc. to denote first-order variables, but these variables
should not be confused with the λ-variables introduced in Section 2.

The set FV(e) of all (free) variables of a first-order expression e is defined as expected,
as well as the corresponding operation of substitution, that we still write e{x := e′}.
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3.1.2. Formulæ. Formulæ of second-order logic are defined (see Fig. 1) from an additional
set of symbolsV2 of second-order variables (or predicate variables), using the uppercase
letters X, Y , Z, etc. to represent such variables:

A, B ::= X(e1, . . . , ek) | A⇒ B | ∀xA | ∀XA (X ∈ V2)

We assume that each second-order variable X comes with an arity k ≥ 0 (that we shall
often leave implicit since it can be easily inferred from the context), and that for each arity
k ≥ 0, the subset ofV2 formed by all second-order variables of arity k is denumerable.

Intuitively, second-order variables of arity 0 represent (unknown) propositions, unary
predicate variables represent predicates over individuals (or sets of individuals) whereas
binary predicate variables represent binary relations (or sets of pairs), etc.

The set of free variables of a formula A is written FV(A). (This set may contain
both first-order and second-order variables.) As usual, formulæ are identified up to α-
conversion, neglecting differences in bound variable names. Given a formula A, a first-
order variable x and a closed first-order expression e, we denote by A{x := e} the formula
obtained by replacing every free occurrence of x by the first-order expression e in the for-
mula A, possibly renaming some bound variables of A to avoid name clashes.

Lastly, although the formulæ of the language of second-order logic are constructed from
atomic formulæ only using implication and first- and second-order universal quantifica-
tions, we can define other logical constructions (negation, conjunction disjunction, first-
and second-order existential quantification as well as Leibniz equality) using the so called
second-order encodings (cf Fig. 1).

3.1.3. Predicates and second-order substitution. We call a predicate of arity k any ex-
pression of the form P ≡ λx1 · · · xk .C where x1, . . . , xk are k pairwise distinct first-order
variables and where C is an arbitrary formula. (Here, we (ab)use the λ-notation to indicate
which variables x1, . . . , xk are abstracted in the formula C).

The set of free variables of a k-ary predicate P ≡ λx1 · · · xk .C is defined by FV(P) ≡
FV(C) \ {x1; . . . ; xk}, and the application of the predicate P ≡ λx1 · · · xk .C to a k-tuple of
first-order expressions e1, . . . , ek is defined by letting

P(e1, . . . , ek) ≡ (λx1 · · · xk .C)(e1, . . . , ek) ≡ C{x1 := e1; . . . ; xk := ek}

(by analogy with β-reduction). Given a formula A, a k-ary predicate variable X and
an actual k-ary predicate P, we finally define the operation of second-order substitution
A{X := P} as follows:

X(e1, . . . , ek){X := P} ≡ P(e1, . . . , ek)
Y(e1, . . . , em){X := P} ≡ Y(e1, . . . , em)

(A⇒ B){X := P} ≡ A{X := P} ⇒ B{X := P}
(∀x A){X := P} ≡ ∀x A{X := P}
(∀X A){X := P} ≡ ∀X A
(∀Y A){X := P} ≡ ∀Y A{X := P}

(Y . X)

(x < FV(P))

(Y . X, Y < FV(P))

3.2. A type system for classical second-order logic. Through the formulæ-as-types cor-
respondence (Howard 1969; Girard, Lafont, and Taylor 1989), we can see any formula A
of second-order logic as a type, namely, as the type of its proofs. We shall thus present
the deduction system of classical second-order logic as a type system based on a typing
judgement of the form Γ ` t : A, where

• Γ is a typing context of the form Γ ≡ x1 : B1, . . . , xn : Bn, where x1, . . . , xn are
pairwise distinct λ-variables and where B1, . . . , Bn are arbitrary propositions;

• t is a proof-like term, i.e. a λc-term containing no continuation constant kπ;
• A is a formula of second-order logic.
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The type system of classical second-order logic is then defined from the typing rules of
Fig. 1. These typing rules are the usual typing rules of AF2 (Krivine 1993), plus a specific
typing rule for the instruction cc which permits to recover the full strength of classical logic.

Using the encodings of second-order logic, we can derive from the typing rules of Fig. 1
the usual introduction and elimination rules of absurdity, conjunction, disjunction, (first-
and second-order) existential quantification and Leibniz equality (Krivine 1993). The typ-
ing rule for call/cc (law of Peirce) allows us to construct proof-terms for classical reasoning
principles such as the excluded middle, reductio ad absurdum, de Morgan laws, etc.

3.3. Classical second-order arithmetic (PA2). From now on, we consider the particular
case of second-order arithmetic (PA2), where first-order expressions are intended to rep-
resent natural numbers. For that, we assume that every k-ary function symbol f ∈ Σ comes
with an interpretation in the standard model of arithmetic as a function J f K : Nk → N, so
that we can give a denotation JeK ∈ N to every closed first-order expression e. Moreover,
we assume that each function symbol associated to a primitive recursive definition (cf Sec-
tion 3.1.1) is given its standard interpretation in N. In this way, every numeral n ∈ N is
represented in the world of first-order expressions as the closed expression sn(0) that we
still write n, since Jsn(0)K = n.

3.3.1. Induction. Following Dedekind’s construction of natural numbers, we consider the
predicate Nat(x) (Girard, Lafont, and Taylor 1989; Krivine 1993) defined by

Nat(x) ≡ ∀Z (Z(0)⇒ ∀y (Z(y)⇒ Z(s(y)))⇒ Z(x)) ,

that defines the smallest class of individuals containing zero and closed under the successor
function. One of the main properties of the logical system presented above is that the axiom
of induction, that we can write ∀x Nat(x), is not derivable from the rules of Fig. 1. As
Krivine proved (Krivine 2009, Theorem 12), this axiom is not even (universally) realizable
in general. To recover the strength of arithmetic reasoning, we need to relativize all first-
order quantifications to the class Nat(x) of Dedekind numerals using the shorthands for
numeric quantifications

∀natx A(x) ≡ ∀x (Nat(x)⇒ A(x))
∃natx A(x) ≡ ∀Z (∀x(Nat(x)⇒ A(x)⇒ Z)⇒ Z)

so that the relativized induction axiom becomes provable in second-order logic (Krivine
1993):

∀Z (Z(0)⇒ ∀natx (Z(x)⇒ Z(s(x)))⇒ ∀natxZ(x)) .

3.3.2. The axioms of PA2. Formally, a formula A is a theorem of second-order arithmetic
(PA2) if it can be derived (using the rules of Fig. 1) from the two axioms

• ∀x∀y (s(x) = s(y)⇒ x = y) (Peano 3rd axiom)
• ∀x¬(s(x) = 0) (Peano 4th axiom)

expressing that the successor function is injective and not surjective, and from the defini-
tional equalities attached to the (primitive recursive) function symbols of the signature:

• ∀x (x + 0 = x), ∀x∀y (x + s(y) = s(x + y))
• ∀x (x × 0 = 0), ∀x∀y (x × s(y) = (x × y) + x)
• etc.

Unlike the non relativized induction axiom—that requires a special treatment in PA2—we
shall see in Section 4.5 that all these axioms are realized by simple proof-like terms.
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4. Classical realizability semantics

4.1. Generalities. Given a particular instance of the λc-calculus (defined from particular
setsB, C and from a particular relation of evaluation �1 as described in Section 2), we shall
now build a classical realizability model in which every closed formula A of the language
of PA2 will be interpreted as a set of closed terms |A| ⊆ Λ, called the truth value of A, and
whose elements will be called the realizers of A.

4.1.1. Poles, truth values and falsity values. Formally, the construction of the realizability
model is parameterized by a poley in the sense of the following definition:

Definition 5 (Poles). — A pole is any set of processes y ⊆ Λ ? Π which is closed under
anti-evaluation, in the sense that both conditions p � p′ and p′ ∈ y together imply that
p ∈ y for all processes p, p′ ∈ Λ ? Π.

We will mainly use one method to define a pole y. From an arbitrary set of processes
P, we can define pole as the complement set of the union of all threads starting from an
element of P, that is:

y ≡
(⋃

p∈P

th(p)
)c
≡

⋂
p∈P

(
th(p)

)c
.

It is indeed quite easy to check that y is closed by anti-reduction, and it is also the largest
pole that does not intersect P. We shall say that such a definition is thread-oriented.

Let us now consider a fixed pole y. We call a falsity value any set of stacks S ⊆ Π.
Every falsity value S ⊆ Π induces a truth value S y ⊆ Λ that is defined by

S y = {t ∈ Λ : ∀π ∈ S (t ? π) ∈ y} .

Intuitively, every falsity value S ⊆ Π represents a particular set of tests, while the corre-
sponding truth value S y represent the set of all programs that passes all tests in S (w.r.t.
the pole y, that can be seen as the challenge). From the definition of S y, it is clear that the
larger the falsity value S , the smaller the corresponding truth value S y, and vice-versa.

4.1.2. Formulæ with parameters. In order to interpret second-order variables that occur
in a given formula A, it is convenient to enrich the language of PA2 with a new predicate
symbol Ḟ of arity k for every falsity value function F of arity k, that is, for every func-
tion F : Nk → P(Π) that associates a falsity value F(n1, . . . , nk) ⊆ Π to every k-tuple
(n1, . . . , nk) ∈ Nk. A formula of the language enriched with the predicate symbols Ḟ is
then called a formula with parameters. Formally, this correspond to the formulæ defined
by:

A, B ::= X(e1, . . . , ek) | A⇒ B | ∀xA | ∀XA | Ḟ(e1, . . . , ek) X ∈ V2, F ∈ P(Π)N
k

The notions of a predicate with parameters and of a typing context with parameters are
defined similarly. The notations FV(A), FV(P), FV(Γ), dom(Γ), A{x := e}, A{X := P}, etc.
are extended to all formulæ A with parameters, to all predicates P with parameters and to
all typing contexts Γ with parameters in the obvious way.

4.2. Definition of the interpretation function. The interpretation of the closed formulæ
with parameters is defined as follows:

Definition 6 (Interpretation of closed formulæ with parameters). — The falsity value
‖A‖ ⊆ Π of a closed formula A with parameters is defined by induction on the number
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of connectives/quantifiers in A from the equations

‖Ḟ(e1, . . . , ek)‖ = F(Je1K, . . . , JekK)

‖A⇒ B‖ = |A| · ‖B‖ =
{
t · π : t ∈ |A|, π ∈ ‖B‖

}
‖∀x A‖ =

⋃
n∈N

‖A{x := n}‖

‖∀X A‖ =
⋃

F:Nk→P(Π)

‖A{X := Ḟ}‖ (if X has arity k)

whereas its truth value |A| ⊆ Λ is defined by |A| = ‖A‖y. Finally, defining > ≡ ∅̇ (recall
that we have ⊥ ≡ ∀X.X), one can check that we have :

‖>‖ = ∅ |>| = Λ ‖⊥‖ = Π

Since the falsity value ‖A‖ (resp. the truth value |A|) of A actually depends on the poley,
we shall write it sometimes ‖A‖y (resp. |A|y) to recall the dependency. Given a closed
formula A with parameters and a closed term t ∈ Λ, we say that:

• t realizes A and write t  A when t ∈ |A|y.
(This notion is relative to a particular pole y.)

• t universally realizes A and write t � A when t ∈ |A|y for all poles y.
From these definitions, we have

Lemma 1 (Law of Peirce). — Let A and B be two closed formulæ with parameters:
(1) If π ∈ ‖A‖, then kπ  A⇒ B.
(2) cc � ((A⇒ B)⇒ A)⇒ A.

4.3. Valuations and substitutions. In order to express the soundness invariants relating
the type system of Section 3 with the classical realizability semantics defined above, we
need to introduce some more terminology.

Definition 7 (Valuations). — A valuation is a function ρ that associates a natural number
ρ(x) ∈ N to every first-order variable x and a falsity value function ρ(X) : Nk → P(Π) to
every second-order variable X of arity k.

• Given a valuation ρ, a first-order variable x and a natural number n ∈ N, we denote
by ρ, x← n the valuation defined by:

(ρ, x← n) = ρ| dom(ρ)\{x} ∪ {x← n} .

• Given a valuation ρ, a second-order variable X of arity k and a falsity value func-
tion F : Nk → P(Π), we denote by ρ, X ← F the valuation defined by:

(ρ, X ← F) = ρ| dom(ρ)\{X} ∪ {X ← F} .

To every pair (A, ρ) formed by a (possibly open) formula A of PA2 and a valuation ρ,
we associate a closed formula with parameters A[ρ] that is defined by

A[ρ] ≡ A{x1 := ρ(x1); . . . ; xn := ρ(xn); X1 := ρ̇(X1); . . . ; Xm := ρ̇(Xm)}

where x1, . . . , xn, X1, . . . , Xm are the free variables of A, and writing ρ̇(Xi) the predicate
symbol associated to the falsity value function ρ(Xi). This operation naturally extends to
typing contexts by letting (x1 : A1, . . . , xn : An)[ρ] ≡ x1 : A1[ρ], . . . , xn : An[ρ].

Definition 8 (Substitutions). — A substitution is a finite function σ from λ-variables to
closed λc-terms. Given a substitution σ, a λ-variable x and a closed λc-term u, we denote
by σ, x := u the substitution defined by (σ, x := u) ≡ σ| dom(σ)\{x} ∪ {x := u}.

Given an open λc-term t and a substitution σ, we denote by t[σ] the term defined by

t[σ] ≡ t{x1 := σ(x1); . . . ; xn := σ(xn)}

where dom(σ) = {x1, . . . , xn}. Notice that t[σ] is closed as soon as FV(t) ⊆ dom(σ). We
say that a substitution σ realizes a closed context Γ with parameters and write σ  Γ if:
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• dom(σ) = dom(Γ);
• σ(x)  A for every declaration (x : A) ∈ Γ.

4.4. Adequacy. Given a fixed pole y, we say that:
• A typing judgement Γ ` t : A is adequate (w.r.t. the pole y) if for all valuations ρ

and for all substitutions σ  Γ[ρ] we have t[σ]  A[ρ].
• More generally, we say that an inference rule

J1 · · · Jn

J0

is adequate (w.r.t. the pole y) if the adequacy of all typing judgements J1, . . . , Jn

implies the adequacy of the typing judgement J0.
From the latter definition, it is clear that a typing judgement that is derivable from a set of
adequate inference rules is adequate too.

Proposition 2 (Adequacy). The typing rules of Fig. 1 are adequate w.r.t. any pole y, as
well as all the judgements Γ ` t : A that are derivable from these rules.

Proof. We will only sketch the proof for the introduction and elimination rules for im-
plication. The rule for x is obvious and the rule for cc directly stems from Lemma 1,
while introduction and elimination rules for universal quantifiers results from the defini-
tion of the corresponding falsity values. A more detailed proof can be found in Krivine’s
article (Krivine 2003).

• Case
Γ ` t : A⇒ B Γ ` t : A

Γ ` tu : B :
we assume that Γ ` t : A ⇒ B and Γ ` u : B are adequate w.r.t. y, and pick
a valuation ρ and a substitution σ such that σ  Γ[ρ].. We want to show that
(tu)[σ]  B[ρ]. It suffices to show that if π ∈ ‖B[ρ]‖, then (tu)[σ] ? π ∈ y.
Applying the Push rule, we get :

(tu)[σ] ? π � t[σ] ? u[σ] · π

By hypothesis, we have u[σ]  A[ρ] (and then u[σ] · π ∈ ‖(A ⇒ B)[ρ]‖)), and
t[σ]  (A ⇒ B)[ρ], so that t[σ] ? u[σ] · π belongs to y. We conclude by anti-
reduction.

• Case
Γ, x : A ` t : B

Γ ` λx.t : A⇒ B:
we assume that Γ, x : A ` t : B is adequate w.r.t y. This means that for any
valuation ρ, any u  A[ρ] and any σ  Γ[ρ], denoting by σ′ the substitution
σ, x := u, we have t[σ′]  B[ρ]. Let us pick a valuation ρ and a substitution σ
such that σ  Γ[ρ]. We want to show that (λx.t)[σ]  (A ⇒ B)[ρ]. Let u · π be a
stack in ‖(A⇒ B)[ρ]‖. Applying the Grab rule, we have :

(λx.t)[σ] ? u · π � t[σ, x := u] ? π

By hypothesis, we have u  A[ρ], and so t[σ, x := u]  B[ρ]. Thus t[σ, x := u]?π
belongs to y. and we conclude by anti-reduction.

�

Since the typing rules of Fig. 1 involve no continuation constant, every realizer that
comes from a proof of second order logic by Prop. 2 is thus a proof-like term.

4.5. Realizing the axioms of PA2. Let us recall that in PA2, Leibniz equality e1 = e2 is
defined by e1 = e2 ≡ ∀Z (Z(e1)⇒ Z(e2)).

Proposition 3 (Realizing Peano axioms (Krivine 2009)). :
(1) λz . z � ∀x∀y (s(x) = s(y)⇒ x = y)
(2) λz . zu � ∀x (s(x) = 0⇒ ⊥) (where u is any term such that FV(u) ⊆ {z}).
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(3) λz . z � ∀x1 · · · ∀xk (e1(x1, . . . , xn) = e2(x1, . . . , xk))
for all arithmetic expressions e1(x1, . . . , xn) and e2(x1, . . . , xk) such that
N |= ∀x1 · · · ∀xk (e1(x1, . . . , xn) = e2(x1, . . . , xk)).

From this we deduce the main theorem:

Theorem 1 (Realizing the theorems of PA2). — If A is a theorem of PA2 (in the sense
defined in Section 3.3.2), then there is a closed proof-like term t such that t � A.

Proof. Immediately follows from Prop. 2 and 3. �

4.6. The full standard model of PA2 as a degenerate case. It is easy to see that when
the pole y is empty, the classical realizability model defined above collapses to the full
standard model of PA2, that is: to the model (in the sense of Tarski) where individuals
are interpreted by the elements of N and where second-order variables of arity k are in-
terpreted by all the subsets of Nk. For that, we first notice that when y = ∅, the truth
value S y associated to an arbitrary falsity value S ⊆ Π can only take two different values:
S y = Λc when S = ∅, and S y = ∅when S , ∅. Moreover, we easily check that the realiz-
ability interpretation of implication and universal quantification mimics the standard truth
value interpretation of the corresponding logical construction in the case where y = ∅.
WritingM for the full standard model of PA2, we thus easily show that:

Proposition 4. — If y = ∅, then for every closed formula A of PA2 we have

|A| =

Λ ifM |= A
∅ ifM 6|= A

Proof. We more generally show that for all formulæ A and for all valuations ρ closing A
(in the sense defined in section 4.2) we have

|A[ρ]| =

Λ ifM |= A[ρ̃]
∅ ifM 6|= A[ρ̃]

where ρ̃ is the valuation inM (in the usual sense) defined by
• ρ̃(x) = ρ(x) for all first-order variables x;
• ρ̃(X) = {(n1, . . . , nk) ∈ Nk : ρ(X)(n1, . . . , nk) = ∅} for all second-order variables X

of arity k.
(This characterization is proved by a straightforward induction on A.) �

An interesting consequence of the above lemma is the following:

Corollary 1. — If a closed formula A has a universal realizer t � A, then A is true in the
full standard modelM of PA2.

Proof. If t � A, then t ∈ |A|∅. Therefore |A|∅ = Λ andM |= A. �

However, the converse implication is false in general, since the formula ∀x Nat(x) (cf
Section 3.3.1) that expresses the induction principle over individuals is obviously true
inM, but it has no universal realizer when evaluation is deterministic (Krivine 2009, The-
orem 12).

4.7. Relativization to canonical integers. We previously explained in Section 3.3.1 that
we needed to relativize first-order quantifications to the class Nat(x). If we have as ex-
pected n̄ � Nat(n) for any n ∈ N, there are realizers of Nat(n) different from n̄. Intuitively,
a term t � Nat(n) represents the integer n, but n might be present only as a computation,
and not directly as a computed value.

The usual technique to retrieve n̄ from such a term consist in the use of a storage op-
erator T , which simulates a call-by-value reduction (for integers) on the first argument on
the stack. While such a term is easy to define, its use would make our definition of game
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harder. Rather than that, we define a new asymmetrical implication where the left member
must be an integer value (somehow forcing call-by-value reduction on all integers), and
the interpretation of this new implication.

Formulæ
Falsity value

A, B ::= . . . | {e} ⇒ A
‖{e} ⇒ A‖ = {n̄ · π : JeK = n ∧ π ∈ ‖A‖}

We finally define the corresponding shorthands for relativized quantifications:

∀Nx A(x) ≡ ∀x ({x} ⇒ A(x))
∃Nx A(x) ≡ ∀Z (∀x({x} ⇒ A(x)⇒ Z)⇒ Z)

It is easy to check that this relativization of first-order quantification is equivalent (in terms
of realizability) to the one defined in Section 3.3.1 and that the relativized principle of
induction holds.

Proposition 5. Let T be a storage operator. The following holds for any formula A(x):
(1) λx.x � ∀NxNat(x)
(2) λx.x � ∀natx.A(x)⇒ ∀Nx.A(x)
(3) λx.T x � ∀Nx.A(x)⇒ ∀natx.A(x)

For an arithmetic formula Φ, we denote by ΦN,nat the formula Φ where every existential
quantifier ∃x has been relativized to ∃Nx, and every universal quantifier ∀y to ∀Ny. We let
the reader check that if we define the following λc-terms :

ξ0:=λtu.t (Tu) χ0:=λtu.t (λxy.u x (Ty))
ξn:=λtu.t (λxy.(Tu) x (ξn−1 y)) χn:=λtu.t (λxy.u x (T (χn−1 y))

we get the following proposition.

Proposition 6. Given a pole y, the following holds for all n ∈ N and any Σ0
2n-formula Φn:

(1) If t  Φ
N,nat
n then t  Φ

N,N
n .

(2) If t  Φ
N,nat
n then t  Φ

nat,nat
n .

(3) If t  Φ
nat,nat
n then ξnt  Φ

N,N
n .

(4) If t  Φ
N,N
n then χnt  Φ

nat,nat
n .

In the case of arithmetical formulæ , we can then easily transform a realizer for one
relativization into a realizer for the other one. In the authors’ opinion, this enhances the
fact that the choice of a relativization is more a question of convenience than a choice
having a deep impact on the behaviour of the realizers.

For further details about the relativization and storage operator, please refer to Section
2.9 and 2.10.1 of Rieg’s Ph.D. thesis (Rieg 2014).

4.8. Leibniz equality. Before going further, we would like to draw the reader’s attention
to the treatment that is given to equality, which is crucial in what follows. We recall that
the equality of two arithmetical expressions e1 and e2 is defined by the 2nd-order encoding

e1 = e2 ≡ ∀W(W(e1)⇒ W(e2))

Unfolding the definitions of falsity values, we easily get the following lemma:

Lemma 2. Given a pole y, if e1, e2 are arithmetical expressions, we have

‖e1 = e2‖ =

‖∀X(X ⇒ X)‖ ifM |= e1 = e2

‖> ⇒ ⊥‖ ifM |= e1 , e2

The following corollaries are straightforward but will be very useful in Sections 5-7, so
it is worth mentionning them briefly now.

Corollary 2. Let y be a fixed pole, e1, e2 some arithmetical expressions, u ∈ Λ a closed
term and π ∈ Π a stack such that u · π ∈ ‖e1 = e2‖. IfM |= e1 = e2 then u ? π ∈ y .
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Proof. By Lemma 2 we have

u · π ∈ ‖∀X(X ⇒ X)‖ = {u · π : ∃S ∈ P(Π), π ∈ S ∧ u ∈ |Ṡ |}

so that u ∈ S y and u ? π ∈ y �

Corollary 3. Given a pole y, if e1, e2 are arithmetical expressions, and u ∈ Λ, π ∈ Π are
such that u · π < ‖e1 = e2‖, then

(1) M � e1 = e2
(2) u ? π < y

Proof. (1) By contraposition: ifM � e1 , e2, by Lemma 2 we have ‖e1 = e2‖ = ‖> ⇒

⊥‖ = Λ × Π, hence u · π ∈ ‖e1 = e2‖.
(2) By (1) we have ‖e1 = e2‖ = ‖∀X(X ⇒ X)‖ =

⋃
S∈P(Π) ‖Ṡ ⇒ Ṡ ‖, hence u · π < ‖e1 =

e2‖ implies that if S = {π}, u · π < ‖Ṡ ⇒ Ṡ ‖, i.e. u 1 S , so u ? π < y. �

5. The specification problem

5.1. The specification problem. In the continuity of the work done for Peirce’s Law (Guillermo
and Miquel 2011), we are interested in the specification problem, which is to give a purely
computational characterization of the universal realizers of a given formula A. As men-
tioned in this paper, this problem is much more subtle than in the case of intuitionistic
realizability, what could be justified, amongst other things, by the presence of extra instruc-
tions that do not exist in the pure λ-calculus and by the ability of a realizer to backtrack
at any time. Some very simple case, as the identity-type (∀X(X ⇒ X)) or the boolean-
type (∀X(X ⇒ X ⇒ X)), are quite easy to specify, but more interestingly, it turns out
that some more complex formulæ, for instance the Law of Peirce, can also be fully speci-
fied (Guillermo and Miquel 2011). In the following, we will focus on the generic case of
arithmetical formulæ. A premise of this work was done by the first author for the partic-
ular case of formulæ of the shape ∃Nn∀Ny( f (x, y) = 0) (Guillermo 2008). In the general
case (that is with a finite alternation of quantifiers) an attempt to characterize the threads
of universal realizers is also given in an article of Krivine (Krivine 2003), but in the end
it only provides us with the knowing of the final state, whereas we are here interested in a
specification of the full reduction process. As in (Guillermo 2008), our method will rely
on game-theoretic interpretation of the formulæ. Before going more into details, let us first
look at the easiest example of specification.

Example 1 (Identity type). In the language of second-order logic, the identity type is
described by the formula ∀X(X ⇒ X). A closed term t ∈ Λ is said to be identity-like if
t ? u · π � u ? π for all u ∈ Λ and π ∈ Π. Examples of identity-like terms are of course
the identity function I ≡ λx.x, but also terms such as II, δI (where δ ≡ λx.xx), λx.cc(λk.x),
cc(λk.kIδk), etc.

Proposition 7 ((Guillermo and Miquel 2011)). For all terms t ∈ Λ, the following asser-
tions are equivalent:

(1) t � ∀X(X ⇒ X)
(2) t is identity-like

The interesting direction of the proof is (1) ⇒ (2). We prove it with the methods of
threads, that we use later in Section 6. Assume t � ∀X(X ⇒ X), and consider u ∈ Λ, π ∈ Π.
We want to prove that t ? u · π � u ? π. We define the pole

y ≡ (th(t ? u · π))c ≡ {p ∈ Λ ? Π : (t ? u · π � p)}

as well as the falsity value S = {π}. From the definition of y, we know that t?u ·π < y. As
t  Ṡ ⇒ Ṡ and π ∈ ‖Ṡ ‖, we get u 1 S . This means that u ? π < y, that is t ? u · π � u ? π.
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5.2. Arithmetical formulæ. In this paper, we want to treat the case of first-order arith-
metical formulæ, that are Σ0

n-formulæ. As we explained in Section 3.3.1, in order to recover
the strength of arithmetical reasoning, we will relativize all first-order quantifications to the
class Nat(x). Besides, relativizing the quantifiers make the individuals visible in the stacks:
indeed, a stack belonging to ‖∀NxA(x)‖ is of the shape n · π with π ∈ ‖A(n)‖, whereas a
stack of ‖∀xA(x)‖ is of the form π ∈ ‖A(n)‖ for some n ∈ N that the realizers do not have
any physical access to.

Definition 9. We define inductively the following classes of formulæ:
• Σ0

0- and Π0
0-formulæ are the formulæ of the form f (~e) = 0 where f is a primitive

recursive function and ~e a list of first-order expressions.
• Π0

n+1-formulæ are the formulæ of the form ∀NxF, where F is a Σ0
n-formula.

• Σ0
n+1-formulæ are the formulæ of the form ∃NxF, where F is a Π0

n-formula.

In the ground modelM, any closed Σ0
n- or Π0

n-formula Φ naturally induces a game be-
tween two players ∃ and ∀, that we shall name Eloise and Abelard from now on. Both
players instantiate the corresponding quantifiers in turns, Eloise for defending the formula
and Abelard for attacking it. The game, whose depth is bounded by the number of quan-
tifications, proceeds as follows:

• When Φ is ∃xΦ′, Eloise has to give an integer m ∈ N, and the game goes on over
the closed formula Φ′{x := m}.

• When Φ is ∀yΦ′, Abelard has to give an integer n ∈ N, and the game goes on over
the closed formula Φ′{y := n}.

• When Φ is atomic andM � Φ (Φ is true), Eloise wins, otherwise Abelard wins.
We say that a player has a winning strategy if (s)he has a way of playing that ensures

him/her the victory independently of the opponent moves. It is obvious from Tarski’s
definition of truth that a closed arithmetical formula Φ is true in the ground model if and
only if Eloise has a winning strategy.

The problem with this too simple definition is that there exists true formulæ whose game
only has non-computable winning strategies (as we shall see below), so that they cannot
be implemented by λ-terms. This is why in classical logic, we will need to relax the rules
of the above game to allow backtracking.

5.3. The Halting problem or the need of backtrack. For instance, let us consider one
of the primitive recursive functions f : N3 → N such that

f (m, n, p) = 0 iff (n > 0 ∧ Halt(m, n)) ∨ (n = 0 ∧ ¬Halt(m, p))

where Halt(m, n) is the primitive recursive predicate expressing that the mth Turing machine
has stopped before n evaluation steps (in front of the empty tape). From this we consider
the game on the formula

ΦH ≡ ∀
Nx∃Ny∀Nz( f (x, y, z) = 0)

that expresses that any Turing machine terminates or does not terminate. (Intuitively y
equals 0 when the machine x does not halt, and it represents a number larger than the
execution length of x otherwise.) Yet, there is no pure λ-term that can compute directly
from an m ∈ N an integer nm such that ∀Nz( f (m, nm, z) = 0) (such a term would break the
halting problem). However, ΦH could be classically realized, using the cc instruction. Let
Θ be a λ-term such that :

Θ ? m · n · t0 · t1 · π �
{

t0 ? π if the mth Turing machine stops before n steps
t1 ? π otherwise

and let tH be the following term :

T [m, u, k] ≡ λpv.Θ m p (k (u p λpv.v)) v
tH ≡ λmu.cc (λk.u 0 T [m, u, k])
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If we think of tH as a strategy for Eloise with backtrack allowed, we can analyze its
computational behaviour this way:

• First Eloise receives the code m of a Turing machine M , and chooses to play
n = 0, that is ”M never stops”.

• Then Abelard answers a given number of steps p, and Eloise checks if M stops
before p steps and distinguishes two cases :

– either M is still running after p steps, hence f (m, 0, p) = 0 and Eloise wins.
– either M does stop before p steps, then Eloise backtracks to the previous

position and instead of 0, it plays p, that is ”M stops before p steps”, which
ensures him victory whatever Abelard plays after.

Proposition 8. tH � ΦH

Proof. Let us consider a fixed pole y and let m ∈ N be an integer, M be the mth Turing
machine, and a stack u ·π ∈ ‖∃Ny∀Nz( f (m, y, z) = 0)‖, and let us prove that tH?m ·u ·π ∈ y.
We know that

tH ? m · u · π � u ? 0 · T [m, u,kπ] · π
by anti-reduction, it suffices to prove that T [m, u,kπ]  ∀Nz( f (m, 0, z) = 0). Thus let us
consider p ∈ N and a stack u′ · π′ ∈ ‖ f (m, 0, p) = 0‖. We distinguish two cases:

• M is still running after p steps (that isM � ¬Halt(m, p)). In this case, we have
f (m, 0, p) = 0, and so by Corollary 2, u′ ? π′ ∈ y. Furthermore, by definition of
Θ, we have

T [m, u,kπ] ? p · u′ · π′ � u′ ? π′ ∈ y

which concludes the case by anti-reduction.
• M stops before p steps (M � Halt(m, p)). By definition of Θ, we have in this case

T [m, u,kπ] ? p · u′ · π′ � kπ ? (u p (λpv.v)) · π′ � u ? p · λpv.v · π

hence it suffices to show that λpv.v  ∀Nz( f (m, p, z) = 0). But this is clear, as
M � Halt(m, p), we have for any s ∈ N, M � f (m, p, s) = 0. Therefore if we
consider any integer s ∈ N and any stack u′′ · π′′ ∈ ‖ f (m, p, s) = 0‖, as in the
previous case, from Corollary 2 we get u′′ ? π′′ ∈ y and

λpv.v ? s · u′′ · π′′ � u′′ ? π′′ ∈ y �

This leads us to define a new notion of game with backtrack over arithmetical formulæ.

5.4. G0
Φ

: a first game with backtrack. From now on, to simplify our work, we will
always consider Σ0

2h-formulæ, that is of the form:

∃Nx1∀
Ny1 . . .∃

Nxh∀
Nyh f (~xh, ~yh) = 0

where h ∈ N and the notation ~xi refers to the tuple (x1, . . . , xi) (we will denote the con-
catenation by · : ~xi · xi+1 = ~xi+1). It is clear that any arithmetical formulæ can be written
equivalently in that way, adding some useless quantifiers if needed.

Given such a formula Φ, we define a game G0
Φ

between Eloise and Abelard whose rules
are basically the same as they were before, except that we will keep track of all the former
∃-positions, allowing Eloise to backtrack. This corresponds to the definition of Coquand’s
game (Coquand 1995). We call an ∃-position of size i ∈ J0, hK a pair of tuple of integers
(~mi, ~ni) standing for the instantiation of the variables ~xi, ~yi, while a ∀-position will be a
pair of the form (~mi+1, ~ni). We call history of a game and note H the set of every former
∃-positions. The game starts with an empty history (H = {∅}) and proceeds as follows:

• ∃-move: Eloise chooses a position (~mi, ~ni) ∈ H for some i ∈ J0, h − 1K, and
proposes mi+1 ∈ N, so that (~mi+1, ~ni) becomes the current ∀-position.

• ∀-move: Abelard has to answer with some ni+1 ∈ N to complete the position.



CLASSICAL REALIZABILITY AND ARITHMETICAL FORMULÆ 19

If i + 1 = h and f (~mh, ~nh) = 0, then Eloise wins and the game stops. Otherwise, we simply
add the new ∃-position (~mi+1, ~ni+1) to H, and the game goes on. We say that Abelard wins
if the game goes on infinitely, that is if Eloise never wins.

Given a set H of former ∃-positions, we will say that Eloise has a winning strategy and
write H ∈ W0

Φ
if she has a way of playing that ensures her a victory, independently of

future Abelard moves.
Formally, we define the set W0

Φ
by induction with the two following rules:

(1) If there exists (~mh, ~nh) ∈ H such thatM � f (~mh, ~nh) = 0:
(Win)

H ∈W0
Φ

(2) For all i < h, (~mi, ~ni) ∈ H and m ∈ N

H ∪ {(~mi · m, ~ni · n)} ∈W0
Φ
∀n ∈ N

(Play)
H ∈W0

Φ

Given a formula Φ, the difference between this game and the one we defined in Section
5.2 is that this one allows Eloise to make some wrong tries before ending on a winning
positio. This means for Abelardthat its winning condition changes from knowing one po-
sition on which Eloise is not winning (the play ends on a false atomic formula) to always
be able to find one (the play never ends), that is Eloise is not knowing any.

Clearly, there is a winning strategy for G0
Φ

if and only if there was one in the previous
game1. It is even easy to see that for any formula Φ, we have

Proposition 9. M � Φ iff {∅} ∈W0
Φ

Given a formula Φ, in both games the existence of a winning strategy is equivalent to the
truth in the model, hence such a definition does not carry anything new from an outlook of
model theory, the interest of this definition is fundamentally computational. For instance,
for the halting problem, this will now allow Eloise to use the strategy we described in the
previous section.

Besides, it is worth noting that in general, the match somehow grows among a tree of
height h, as we shall see in the following example.

Example 2. We define the following function

g :
{

N2 → N
(x, y) 7→ x + (1 .−x)y

where .− refers to the truncated subtraction. Notice that g(x, ·) is clearly bounded if x , 0.
Then we consider f a function such that

f (x1, y1, x2, y2) = 0 if and only if (x1 = y1 ∨ g(x1, x2) > g(y1, y2))

Finally, we define the formula ϕ ∈ Σ0
4

ϕ ≡ ∃Nx1∀
Ny1∃

Nx2∀
Ny2( f (x1, y1, x2, y2) = 0)

which expresses that there exists x1 (in fact 0) such that g(y1, ·) : z 7→ g(y1, z) is bounded
for every y1 , x1. The shortest strategy for Eloise to win that game would be to give 0
for x1, wait for an answer m for y1, and give m + 1 for x2. But we can also imagine that
Eloise might try 0 first, receive Abelard answer, and then change her mind, start from the
beginning with 1, try several possibilities before going back to the winning position. If we
observe the positions Eloise will reach for such a match, we remark it draws a tree (see
Figure 2). We shall formalize this remark later, but we strongly advise the reader to keep
this representation in mind all along the next section.

1It suffices to remove the ”bad tries” to keep only the winning move



20 MAURICIO GUILLERMO AND ÉTIENNE MIQUEY

Start Eloise move Abelard new ∃-position
∅, ∅ 0 1 0, 1
∅, ∅ 1 0 1, 0
1, 0 1 1 1·1, 0·1
1, 0 2 2 1·2, 0·2
∅, ∅ 2 0 2, 0
0, 1 2 1 0·2, 1·1

0·2, 1·1 Eloise wins / /

∅, ∅

0, 1

0·2, 1·1

1, 0

1·1, 0·1 1·2, 0·2

2, 0

Figure 2. Example of a match for G0
ϕ

6. Implementing the game

6.1. Substitutive Game: G1
Φ

. Now that we have at our disposal a notion of game that
seems to be suitable to capture computational content of classical theorems, we shall adapt
it to play with realizers. Considering a formula Φ ≡ ∃Nx1∀

Ny1 . . .∃
Nxh∀yh( f (~xh, ~yh) = 0)

we will have to consider sub-formulæ of Φ to write down proofs about Φ. Therefore we
give the following abbreviations that we will use a lot in the following:

Ei ≡ ∀Xi+1(Ai+1 ⇒ Xi+1)
Ai ≡ ∀

Nxi(∀NyiEi ⇒ Xi)
Eh ≡ ∀W(W( f (~xh, ~yh))⇒ W(0))

(∀i ∈ J0, h − 1K)
(∀i ∈ J1, hK)

One can easily check that E0 ≡ Φ and that the other definitions correspond to the unfolding
of the quantifiers.

In order to play using realizers, we will slightly change the setting of G0
Φ

, adding pro-
cesses. One should notice that we only add more information, so that the game G1

Φ
is

somehow a “decorated” version of G0
Φ

.
To describe the match, we use ∃-positions –which are just processes– and ∀-positions

–which are 4-uples of the shape (~mi, ~ni, u, π) ∈ N≤h × N≤h × Λc × Π. If i = h, we say that
the move is final or complete. In a given time j, the set of all ∀-positions reached before
is called the history and is denoted as H j. At each time j, the couple given by the current
∃-position p j and the history H j is called the j-th state. The state evolves throughout the
match according to the following rules:

(1) Eloise proposes a term t0 ∈ PL supposed to defend Φ and Abelard proposes a
stack u0 · π0 supposed to attack the formula Φ. We say that at time 0, the process
p0 := t0 ? u0 · π0 is the current ∃-position and H0 := {(∅, ∅, u0, π0)} is the current
history. This step defines the initial state 〈p0,H0〉.

(2) Assume 〈p j,H j〉 is the jth state. Starting from p j Eloise evaluates p j in order to
reach one of the following situations:
• p j � u ? π for some (final) ∀-position (~mh, ~nh, u, π) ∈ H j. In this case, Eloise

wins ifM |= f (~mh, ~nh) = 0.
• p j � u ? m · t · π for some (not final) ∀-position (~mi, ~ni, u, π) ∈ H j where

i < h. If so, Eloise can decide to play by communicating her answer (t,m) to
Abelard and standing for his answer, and Abelard must answer a new integer
n together with a new stack u′ ·π′. The ∃-position becomes p j+1 := t?n ·u′ ·π′

and we add the ∀-position to the history: H j+1 := H j ∪ {(~mi ·m, ~ni · n, u′, π′)}.
This step defines the next state 〈p j+1,H j+1〉

If none of the above moves is possible, then Abelard wins.

Intuitively, a state 〈p,H〉 is winning for Eloise if and only if she can play in such a way
that Abelard will lose anyway, independently of the way he might play.
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Start with a term t is a “good move” for Eloise if and only if, proposed as a defender of
the formula, t defines an initial winning state (for Eloise), independently from the initial
stack proposed by Abelard. In this case, adopting the point of view of Eloise, we just say
that t is a winning strategy for the formula Φ.

Since our characterization of realizers will be in terms of winning strategies, we might
formalize this notion. We define inductively the set of winning states –which is a syntactic
object– by means of a deductive system:

• if ∃(~mh, ~nh, u, π) ∈ H s.t. p � u ? π andM � f (~mh, ~nh) = 0 :

〈p,H〉 ∈W1
Φ

(Win)

• for every (~mi, ~ni, u, π) ∈ H, m ∈ N s.t. p � u ? m · t · π :

〈t ? n · u′ · π′,H ∪ {(~mi · m, ~ni · n, u′, π′)}〉 ∈W1
Φ
∀(n′, u′, π′) ∈ N × Λ × Π

〈p,H〉 ∈W1
Φ

(Play)

A term t is said to be a winning strategy for Φ if for any handle (u, π) ∈ Λ ×Π, we have
〈t ? u · π, {(∅, ∅, u, π)}〉 ∈W1

Φ
.

Proposition 10 (Adequacy). If t is a winning strategy for G1
Φ

, then t � Φ

Proof. We will see a more general game in the following section for which we will prove
the adequacy property (Proposition 15) and which admits any winning strategy of this
game as a winning strategy (Proposition 14), thus proving the adequacy in the current
case. Furthermore, the proof we give for Proposition 15 is suitable for this game too. �

6.2. Completeness of G1
Φ

in presence of interaction constants. In this section we will
show the completeness of G1

Φ
by substitution over the thread of execution of a universal

realizer of Φ. As observed in section 5.4, the successive ∃-positions form a tree. We
give thereafter a formal statement for this observation, which will allow us to prove the
completeness of this game. We shall now give a formal definition of a tree.

Definition 10. A (finite) tree T is a (finite) subset2 of N<ω such that if τ ·c ∈ T and c ∈ N,
then τ ∈ T and ∀c′ < c, τ · c′ ∈ T , where the · operator denotes the concatenation. If
τ = c0 · · · ck, we use the notation τ|i = c0 · · · ci, and we note τ @ σ ( σ extends τ) when :

τ @ σ ≡ σ|k = c0 · · · ck = τ

We call characteristic function of a tree T any partial function ϕ : N → P(N<ω) such
that:

(1) ∀n ∈ dom(ϕ), {ϕ(m) : m ≤ n} is a tree
(2) ϕ(|T |) = T

Lemma 3. Assume the calculus of realizers is deterministic, and let t0 be a universal
realizer of Φ ∈ Σ0

2h. Consider (n j) j∈N an infinite sequence of integers, (κ j) j∈N an infinite
sequence of (pairwise distinct) interaction constants that do not occur in t0 and if (α j) j∈N

is an infinite sequence of substitutive and non-generative stack constants. Then there exists
two integers f , s ∈ N, two finite sequences t0, . . . , t f ∈ Λ and m1, . . . ,m f ∈ N as well as a
tree characteristic function ϕ : J0, f K→ N<ω such that:

t0 ? κ0 · α0 � κ0 ? m1 · t1 · α0

∀i ∈ J1, f − 1K ti ? ni · κi · αi � κ j ? mi+1 · ti+1 · α j

(
with j ≤ i
ϕ( j) @ ϕ(i + 1)

)
t f ? n f · κ f · α f � κs ? αs

where |ϕ(s)| = h andM � f (~mϕ(s), ~nϕ(s)) = 0

2Observe that |T | (the cardinality of T ) coincides with the usual definition of the size of T .
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Example 3. Before doing the proof, let us have a look at an example of such a thread
scheme for a formula Φ ∈ Σ0

4 (as we considered in Example 2) and to the corresponding
tree and characteristic function.

t0 ? κ0 · α0 � κ0 ? m1 · t1 · α0
t1 ? n1 · κ1 · α1 � κ0 ? m2 · t2 · α0
t2 ? n2 · κ2 · α2 � κ2 ? m3 · t3 · α2
t3 ? n3 · κ3 · α3 � κ2 ? m4 · t4 · α2
t4 ? n4 · κ4 · α4 � κ0 ? m5 · t5 · α0
t5 ? n5 · κ5 · α5 � κ1 ? m6 · t6 · α1
t6 ? n6 · κ6 · α6 � κ4 ? α4

0

1

6

2

3 4

5

ϕ : 1 7→ 0
ϕ : 2 7→ 1
ϕ : 3 7→ 1 · 0
ϕ : 4 7→ 1 · 1
ϕ : 5 7→ 2
ϕ : 6 7→ 0 · 0

Figure 3. A thread scheme for Φ ∈ Σ0
4

We observe that we could actually labeled any node of the tree using its order of appari-
tion in the enumeration of T with ϕ.

Definition 11. Given such a thread scheme and a path τ ∈ T , we define mτ = mϕ−1(τ)
(integer m at the node τ), ~mτ = (mτ|1 ,mτ|2 , . . . ,mτ) (integers m along the path) and the
substitution along τ is :

σ(τ) = {xi := mτ|i }
|τ|
i=1{yi := nτ|i }

|τ|
i=1

For instance, in Figure 3, for τ = 1 · 1 (wich corresponds to the choosen final position
κ4 ? α4), we have :

σ(τ) ≡ {x1 := m2, x2 := m4, y1 := n2, y2 := n4}

Proof of Lemma 3. We build a sequence (Qi)i∈N of sets of processes and a sequence of
characteristic functions (ϕi)i∈N for some trees (Ti)i∈N, such that at each step i ∈ N, Qi is
either empty either of the form th(p) for some p ∈ Λ × Π :

• i = 0 : we set Q0 = th(t0 ? κ0 · α0) and ϕ0 : 0 7→ ∅
• i ∈ N : given Qi and ϕi, if there exist3 j ∈ N,mi+1 ∈ N and ti+1 ∈ Λ such that
κ j ? mi+1 · ti+1 · α j ∈ Qi we set:

Qi+1 := th(ti ? ni+1 · κi+1 · αi+1) ϕi+1 :=
{

k ≤ i 7→ ϕi(k)
i + 1 7→ ϕi( j) · c

where c := min{n ∈ N | ϕi( j)·n < Ti}. It is easy to check that if ϕi is a characteristic
function for Ti, then so is ϕi+1 for Ti ∪ {ϕi( j) · c};

otherwise Qi+1 := ∅ and ϕi+1 := ϕi. We define Q∞ :=
⋃

i∈N Qi, y := Qc
∞ and ϕ := limi∈ω ϕi.

We prove by induction that for any 0 ≤ i ≤ h, the following statement holds:

∃ j ∈ N, |ϕ( j)| = i such that κ j · α j < ‖Ei[σ(ϕ( j))]‖ (IHi)

IH0: From the definition of y, we have t0 ? κ0 · α0 < y. Besides, we know that t0  E0, so
that κ0 · α0 < ‖E0‖.
IHi+1: Assume we have IHi, for 0 ≤ i < h, that is ∃ ji ∈ N, |ϕ( ji)| = i such that

κ ji · α ji < ‖Ei[σ(ϕ( ji))]‖

Recall that Ei = ∀Xi+1(Ai+1 ⇒ Xi+1), hence κ ji 1 Ai+1[Xi+1 := α̇τ][σ(ϕi( ji)]. Therefore
there exists m ∈ N and t  ∀Nyi+1Ei+1[σ(ϕ( ji))]{xi+1 := m} such that κ ji ? m · t · α ji < y.
By definition of y, it means that there is some j ∈ N such that this process belong to Q j,
so that by definition of Q j+1 we have t j+1 = t,m j+1 = m, ϕ( j + 1)|i = ϕ( ji),

t j+1 ? n j+1 · κ j+1 · α j+1 < y

3Note that as the calculus is deterministic and the constants κ j inert, if such j,mi+1, ti+1 exist, they are unique
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Using the fact that t j+1  ∀
Nyi+1Ei+1[σ(ϕ( ji))]{xi+1 := m}, we finally get that

κi+1 · αi+1 < ‖Ei+1[σ(ϕ( j + 1))]‖

since σ(ϕ( j + 1)) = σ(ϕ( ji)){xi+1 := m j+1; yi+1 := n j+1}.
We obtain then for IHh the following statement :

∃s ∈ N, |ϕ(s)| = h such that κs · αs < ‖∀W( f (~mϕ(s), ~nϕ(s)))⇒ W(0)‖

Applying the lemma 3, we get thatM � f ( ~mσ, ~nσ) = 0 and κs ?αs < y. Hence there exists
f ∈ N such that κs ? αs ∈ Q f , thus

t f ? n f · κ f · α f � κs ? αs, withM � f (~mσ, ~nσ) = 0

that is the last line of the expected thread scheme.
Besides, by definition of Q f and ϕ f , we clearly have that for any i ∈ J0, f − 1K, there

exists j ∈ N such that j ≤ i and

ti ? ni · κi · αi � κ j ? mi+1 · ti+1 · α j �

Note that, as the constants κi and αi are substitutive, the function ϕ and the integers f
and s only depend on the sequence (ni)i∈N. In other words, the threads scheme is entirely
defined by this sequence.

Proposition 11 (Completeness of G1
Φ

in presence of interaction constants). If the calcu-
lus of realizers is deterministic and contains infinitely many interaction constants as well
as infinitely many substitutive and non generative stack constants, then every universal
realizer of an arithmetical formula Φ ∈ Σ0

h is a winning strategy for the game G1
Φ

Proof. Consider Φ ∈ Σ0
h and a closed term t0 � Φ. Given any infinite sequence of (pairwise

distinct) non generative constants (κi)i∈N that do not occur in t0 and any sequence of stack
constants (αi)i∈N, we have shown that for any sequence (ni)i∈N of integers, there exists
two integers f , s ∈ N, two finite sequences of integers m0, . . . ,m f ∈ N and closed terms
t0, . . . , t f ∈ Λ and a finite tree T whose characteristic function ϕ verifies |ϕ(s)| = h:

t0 ? κ0 · α0 � κ0 ? m1 · t1 · α0
∀i ∈ J1, f − 1K ti ? ni · κi · αi � κ j ? mi+1 · ti+1 · α j (with j ≤ i and ϕ( j) @ ϕ(i + 1))

t f ? n f · κ f · α f � κs ? αs (withM � f (~mϕ(s), ~nϕ(s)) = 0)

We assume t0 is not a winning strategy, that is there exists a term u0 and a stack π0 such
that

〈t0 ? u0 · π0, ∅〉 <W
1
Φ

and try to reach a contradiction.
We build by induction four infinite sequences (ni)i∈N, (ui)i∈N, (πi)i∈N, (Hi)i∈N such that for

any index i ∈ N, we have Hi =
⋃

j≤i{(~mϕi( j), ~nϕi( j), u j, π j)} and the following statement:

〈ti{κ j := u j, α j := π j}
i−1
j=0 ? ni · ui · πi,Hi〉 <W

1
Φ (IHi)

where ti is the term taken from the thread scheme we obtain for the sequence (ni)i∈N.

• IH1 : by substitution over the first line of the scheme, we get

t0 ? u0 · π0 � u0 ? m1 · t1{κ0 := u0, α0 := π0} · π0

As 〈t0 ? u0 · π0, ∅〉 < W
1
Φ

, that implies by the second rule of induction that there
exists n1, u1, π1 such that

〈t1{κ0 := u0, α0 := π0} ? n1 · u1 · π1, (∅, ∅, u0, π0)〉 <W1
Φ
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• IHi+1 : assume we have built n j, u j, π j,H j for all 0 ≤ j ≤ i, such that IH j holds.
Hence by hypothesis, we have

〈ti{κ j := u j, α j := π j}
i−1
j=0 ? ni · ui · πi,Hi〉 <W

1
Φ

By substitution over the threads scheme, we get an index j ≤ i such that :

ti{κ j := u j, α j := π j}
i−1
j=0 ? n1 · ui · πi � u j ? mi+1 · ti+1{κ j := u j, α j := π j}

i
j=0 · π j

Furthermore we know from the hypothesis IHi that there is a pair (~mϕi( j), ~nϕi( j))
such that (~mϕi( j), ~nϕi( j), u j, π j) ∈ Hi. As the second rule of induction fails, it implies
the existence of n j, u j, π j such that :

〈ti+1{κ j := u j, α j := π j}
i
j=0 ? ni+1 · ui+1 · πi+1,Hi+1〉 <W

1
Φ

where, taking the very same definition of ϕi+1 we used in the proof of lemma 3,
Hi+1 = Hi ∪ {((~mϕi+1(i+1), ~nϕi+1(i+1)), ui+1, πi+1)}, so we prove IHi+1.

Now, if we consider the sequence (ni)i∈N we built, and define ϕ = limi∈N ϕi, it is clear
that ϕ is the very same function that we obtain by Lemma 3. Moreover, according to this
Lemma we know there exists f , s ∈ N such that

t f {κ j := u j, α j := π j}
f
j=0 ? n f · u f · π f � us ? πs

withM � f (~mϕ(s), ~nϕ(s)) = 0. As (~mϕ(s), ~nϕ(s), us, πs) ∈ H f , the first rule of G1
Φ

applies, and

〈t f {κ j := u j, α j := π j}
f−1
j=0 ? n f · u f · π f ,H f 〉 ∈W

1
Φ

which is obviously a contradiction with IH f . �

6.3. A wild realizer. The previous section gives a specification of arithmetical formulæ in
the particular case where the language of realizers is deterministic4 and provides infinitely
many interaction constants and infinitely many substitutive and non generative stack con-
stants. These assumptions are actually incompatible with the presence of instructions such
as eq or quote, as stated by the Proposition 1, since this break the property of substitu-
tivity. It would be pleasing to be able to extend such a characterization to a more general
framework that would allow such instructions. Nevertheless, we know from (Guillermo
and Miquel 2011) that it was not possible for the Law of Peirce, and it is not possible
either in this case, for the very same reason: the instruction eq (that could be simulated
with quote, see Section 2.3) allows to define some wild realizers for some formulæ, that
is realizers of some Φ that are not winning strategies for the game G1

Φ
.

If we consider f≤ : N2 → N such that ∀x, y ∈ N, ( f≤(x, y) = 0⇔ x ≤ y), and the formula
Φ≤ ≡ ∃

Nx∀Ny( f≤(x, y) = 0), here is an example of such a wild realizer. We define the
following terms

T2[y,m] ≡ quote (λnu.eq nat n m (eq u (y y) I u) u)
T1[u,m] ≡ λy.u 0 T2[y,m]
T0[u,m] ≡ T1[u,m] T1[u,m]

t≤ ≡ λu.quote (λm.T0[u,m])

From these definitions we get for all u ∈ Λ and π ∈ Π:

t≤ ? u · π � T0[u, nπ] ? π � u ? 0 · T2[T1[u, nπ], nπ] · π

and moreover, for all n ∈ N, u′ ∈ Λ and π′ ∈ Π:

T2[T1[u, nπ], nπ] ? n · u′ · π′ �
{

I ? π′ if u′ ≡ T0[u, nπ] and π ≡ π′

u′ ? π′ otherwise

4Actually, this assumption is not necessary, and has been made only for convenience in the proof of Lemma
3. In fact, we could adapt this proof to a non-deterministic case, by defining Qi+1 as the union of the threads
th(ti ? ni+1 · κi+1 · αi+1) for all j ∈ N,mi+1 ∈ N and ti+1 ∈ Λ such that κ j ? mi+1 · ti+1 · α j ∈ Qi. But in this case
the characteristic function of the tree describing the thread scheme is more subtle to construct.
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Proposition 12. t≤ � ∃Nx∀Ny( f≤(x, y) = 0)

Proof. Let us consider a fixed pole y and a stack u · π ∈ ‖∃Nx∀Ny( f≤(x, y) = 0)‖, that is a
falsity value S such that π ∈ ‖Ṡ ‖ and u ∈ |∀Nx(∀Ny( f≤(x, y) = 0) ⇒ Ṡ )|. We distinguish
two cases:

• either T0[u, nπ]?π ∈ y. As we have t≤?u ·π � T0[u, nπ]?π, we get t≤?u ·π ∈ y
by anti-evaluation.

• either T0[u, nπ]?π < y. In this case, we have t≤?u ·π � u?0 ·T2[T1[u, nπ], nπ] ·π,
hence it suffices to prove that T2[T1[u, nπ], nπ]  ∀Ny( f≤(0, y) = 0). Let us then
consider n ∈ N and a stack u′ · π′ ∈ ‖∀W(W( f≤(0, n))⇒ W(0))‖. First remark that
f≤(0, n) = 0, hence by Corollary 3 u′ ? π′ ∈ y, thus by assumption, we know that
(u′, π′) . (T0[u, nπ], π). Thus we have T2[T1[u, nπ], nπ] ? n · u′ · π′ � u′ ? π′ ∈ y,
which allows to conclude by anti-evaluation. �

Notice that the subterm I that appears in the definition of the term T2 never comes to
active position in the proof of Proposition 12, so that we could actually have chosen any
other closed λc-term instead. The point is that it can only occur if (u′, π′) ≡ (T0[u, nπ], π),
and when it is the case, we are no more interested in the end of the execution of the process
T0[u, nπ] ? π, that is in a way allowed to do anything in the rest of its execution. Before
giving a game-theoretic interpretation of this phenomena, we first check that t≤ is not a
winning strategy for the game G1

Φ≤
.

Proposition 13. Let us assume that the relation of one step evaluation �1 is only defined
from the rules (Grab), (Push),(Save),(Restore),(Quote),(Eq). Then the universal realizer
t≤ of Φ≤ is not a winning strategy for the game G1

Φ≤

Proof. The following is a valid match for G1
Φ≤

that Eloise loses :
• Abelard starts with the initial handle (I, α) for the empty position, where α is a

stack constant.
• The only pair (m, t) such that t≤ ? I · α � I ? m · t · α is t1 ≡ T2[T1[I, nα], nα] and

m1 = 0. Thus Eloise is forced to play that pair (0, t1)
• Abelard replies with n1 = 0, u1 ≡ T0[I, nα] and π1 ≡ α.
• Then Eloise loses, as the thread th(t1 ? n1 · u1 · π1) contains no process of the form

I ? m · t · α (to continue to play) or of the form u1 ? π1 (to win the game). �

7. Non-substitutive case

7.1. G2
Φ

: cumulative game. Despite the wild realizer t≤ of the formula Φ≤ is not a winning
strategy for the corresponding game G1

Φ≤
, we can still think its computational behaviour in

game-theoretic terms as follows. If we observe closely what happens in the match we
described in the proof of the previous Proposition, if Abelard starts with (u, π), to which
Eloise answers (0,T2[T1[u, nπ], nπ]), Eloise then does somehow the distinction between
two cases over the next Abelard answer (n1, u1, π1).

• if (u1, π1) . (T0[u, nπ], π), Eloise simply pursues the execution to reach u1 ? π1,
which is a final winning position, as 0 ≤ n1.

• if (u1, π1) ≡ (T0[u, nπ], π), as no interesting move can be obtained from the current
position, Eloise backtracks to the former ∃-position t≤ ? u · π, and now wins since

t≤ ? u · π � T0[u, nπ] ? π ≡ u1 ? π1

That is to say that the term t≤ can still be seen as a winning strategy if we give the right to
Eloise to compute its move from any former ∃-position. This gives us a new game G2

Φ
, in

which Eloise keeps track of all the previous ∃-positions encountered during the game.
We thus define a G2

Φ
-state as a pair 〈P,H〉, where P is now a finite set of processes

(intuitively, all ∃-positions, including the current one), and H is exactly as in G1
Φ

. The set
W2

Φ
of winning positions is inductively defined as follows:
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• if there is p ∈ P and (~mh, ~nh, u, π) ∈ H such that p � u ? π andM � f (~mh, ~nh) = 0

〈P,H〉 ∈W2
Φ

(Win)

• if there is p ∈ P, i < h, (~mi, ~ni, u, π) ∈ H and m′ ∈ N such that p � u ? m′ · t · π:

〈P ∪ {t ? n′ · u′ · π′},H ∪ {(~mi · m′, ~ni · n′, u′, π′)}〉 ∈W2
Φ
∀(n′, u′, π′) ∈ N × Λ × Π

〈P,H〉 ∈W2
Φ

(Play)

A term t is say to be a winning strategy for G2
Φ

if for any handle (u, π) ∈ Λ×Π, we have
〈{t ? u · π}, {(∅, u, π)}〉 ∈W2

Φ
.

7.2. Adequacy.

Proposition 14. A winning strategy for G1
Φ

is also a winning strategy for G2
Φ

.

Proof. It suffices to prove that for any G1
Φ

state 〈p,H〉, if we have 〈p,H〉 ∈ W1
Φ

, then
〈{p},H〉 ∈ W2

Φ
. We do it by induction on the derivation of 〈p,H〉 ∈ W1

Φ
, observing for

the second rules of G2
Φ

that if 〈P,H〉 ∈ W2
Φ

and P ⊂ P′, then 〈P′,H〉 ∈ W2
Φ

(which is also
proved by induction). �

Proposition 15 (Adequacy). If t is a winning strategy for G2
Φ

, then t � Φ

Proof. To make the proof easier, we will use the formulæ A and E that we previously
defined in Section 6.1.

Let y be a fixed pole, S1 be a falsity value, u0  ∀
Nx1(E1 ⇒ Ṡ1))⇒ Ṡ1 and π0 ∈ S1, and

let us show that t ? u0 · π0 ∈ y. For that, we more generally prove the following statement:

Fact 1. If 〈P,H〉 ∈ W2
Φ

and ∀(~mi, ~ni, ui, πi) ∈ H, ui · πi ∈ ‖Ei{x j := m j, y j := n j}
i
j=1‖ then

P ∩ y , ∅

In particular, we have 〈{t ? u0 · π0}, {(∅, ∅, u0, π0)}〉 ∈ W2
Φ

, u0 · π0 ∈ ‖E0‖, hence we can
deduce that t ? u0 · π0 ∈ y.

�

Proof of Fact1. We proceed by induction on the derivation of 〈P,H〉 ∈W2
Φ

, distinguishing
two possible cases:

(1) 〈P,H〉 ∈ W2
Φ

because of the first induction rule: there exists (~mh, ~nh, u, π) ∈ H
and p ∈ P such that p � u ? π and M � f (~mh, ~nh) = 0. If we assume that
u · π ∈ ‖Eh‖ = ‖∀W(W( f (~mh, ~nh)) ⇒ W(0))‖, asM � f (~mh, ~nh) = 0, we get that
u ? π ∈ y (Corollary 3) and by anti-reduction, p ∈ y.

(2) 〈P,H〉 ∈ W2
Φ

because of the second induction rule : there is some pi ∈ P,
(~mi, ~ni, ui, πi) ∈ H and m ∈ N such that pi � ui ? m · ξ · πi, and for any (n, u, π),
〈P ∪ {ξ ? n · u · π},H ∪ {(~mh, ~nh, u, π)}〉 ∈ W2

Φ
. We prove that we can not have

P ∩ y = ∅. Indeed, assuming it is the case, we can show that ui ? m · ξ · πi ∈ y.
Besides, we know by hypothesis that

ui · πi ∈ ‖∀Xi+1(∀Nxi+1(∀Nyi+1Ei+1{x j := m j, y j := n j}
i
j=1 ⇒ Xi+1)⇒ Xi+1)‖

so that it is sufficient to prove that ξ  ∀Nyi+1Ei+1{x j := m j, y j := n j}
i
j=1{xi+1 := m}

to conclude. So pick n ∈ N, u · π ∈ ‖Ei+1{x j := m j, y j := n j}
i
j=1{xi+1 := m}{yi+1 :=

n}‖, and let us prove that ξ ? n · u · π ∈ y. We have by hypothesis that

〈P ∪ {ξ ? n · u · π},H ∪ {(~mi · m, ~ni · n, u, π)}〉 ∈W2
Φ

from which we deduce by induction (the premises are verified) that

(P ∪ {ξ ? n · u · π}) ∩ y , ∅

As P ∩ y = ∅, we get that ξ ? n · u · π ∈ y, which conclude this case. �
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7.3. Completeness of G2
Φ

.

Proposition 16 (Completeness of G2
Φ

). If t � Φ then t is a winning strategy.

Proof. Let us reason by contradiction by assuming that there exists a handle (u0, π0) ∈
Λ×Π such that 〈t?u0 ·π0, {(∅, ∅, u0, π0)}〉 <W2

Φ
. We will construct an increasing sequence

(〈P j,H j〉) j∈N such that for any j ∈ N, 〈P j,H j〉 < W
2
Φ

. For that, let us pick a fixed enumer-
ation φ : N → N × Λ such that every pair (m, t) appears infinitely many times in the range
of φ. The sequence (〈P j,H j〉) is then defined as follows:

• We set P0 = {t ? u0 · π0} and H0 = {(∅, ∅, u0, π0)}.
• Assume we have built a state 〈P j,H j〉 <W

2
Φ

. Writing (m, t) = φ( j), we distinguish
the two following cases:
(1) Either there exists p ∈ P j and ((~mi, ~ni, u, π) ∈ H j) such that p � u ? m · t · π.

From the second rule of induction we get the existence of n ∈ N, u′ ∈ Λ,
π′ ∈ Π such that 〈P ∪ {t ? n · u′ · π′},H ∪ {(~mi · m, ~ni · n, u′, π′)}〉 < W2

Φ
.

We pick such a tuple (n, u′, π′) and define P j+1 = P j ∪ {t ? n · u′ · π′} and
H j+1 = H j ∪ {(~mi · m, ~ni · n, u′, π′)}.

(2) Either there is no such process, and we set P j+1 = P j and H j+1 = H j.
In both cases, we have construct P j+1 and H j+1 such that P j ⊂ P j+1, H j ⊂ H j+1

and 〈P j+1,H j+1〉 <W
2
Φ

. We set P∞ =
⋃

j∈N P j, Q =
⋃

p∈P∞ th(p) and y = Qc.

By construction, we have t ? u0 · π0 < y, and as t � ∀X(∀Nx1(∀Ny1E1 ⇒ X) ⇒ X),
we get u0 1 ∀

Nx1(∀Ny1E1 ⇒ {π0}). Thus there exists m1 ∈ N and ξ1  ∀
Ny1E1{x1 := m1}

such that u0 ? m1 · ξ1 · π0 < y, that is exists an index j ∈ N and a process p ∈ P j such that
p � u0 ? m1 · ξ1 · π0. Let k ≥ j be such that φ(k) = (m1, ξ1), then by construction there is
some n1, u1, π1 such that Pk+1 = Pk ∪ {ξ1 ? n1 · u1 · π1} and Hk+1 = Hk ∪ {((m1, n1, u1, π1)}

As ξ1  ∀
Ny1E1{x1 := m1} ≡ ∀

Ny1∀X((∀Nx2∀
Ny2E2{x1 := m1} ⇒ X) ⇒ X) and

ξ1 ? n1 · u1 · π1 < y, we deduce than u1 1 ∀
Nx2∀

Ny2E2{x1 := m1, y1 := n1} ⇒ {π1}).
Iterating this very same reasoning, we obtain that for every i ∈ J1, hK, there exists an

index ki ∈ N and a closed term ξi ∈ Λ, such that Hki contains a tuple (~mi, ~ni, ui, πi), with
ξi ? ni · ui · πi < y and ξi  ∀

NyiEi{x j := m j}
i
j=1{y j := n j}

i−1
j=1.

For i = h, we get then an index kh ∈ N and a closed term ξh, such that Hkh contains a
tuple (~mh, ~nh, uh, πh), with ξh?nh·uh·πh < y and ξh  ∀

Nyh∀W(W( f (~mh, ~nh−1·yh))⇒ W(0)).
If we consider the following predicate

∆ :


N → P(Π)
0 7→ {πh}

n ≥ 1 7→ ∅

we get in particular that ξh  {nh} ⇒ ∆( f (~mh, ~nh)) ⇒ ∆(0), from which we deduce that
uh · πh < ‖∆( f (~mh, ~nh)) ⇒ ∆(0)‖. Obviously πh ∈ ‖∆(0)‖, so that necessarily we have
uh 1 ∆( f (~mh, ~nh)). Hence there exists π ∈ ‖∆( f (~mh, ~nh))‖, which implies that π = πh and
M � f (~mh, ~nh) = 0, such that uh ? πh < y, that is to say there is some j ∈ N and p ∈ P j

such that p � uh ? πh. Taking l = max( j, kh), this contradicts the fact that (Pl,Hl) < W2
Φ

because of the first rule of induction. �

Theorem 2. If Φ is an arithmetical formula, there exists t � Φ if and only if t implements
a winning strategy for G2

Φ
.

8. A barrier for realizability models

8.1. A universal realizer for every formulæ. We show here that if an arithmetic formula
Φ ≡ ∃Nx1 . . .∀

Nyh f (~mh, ~nh) = 0 is true in the ground model, as soon as we dispose of a
term computing f , we can implement a winning strategy, hence a universal realizer. The
idea of the strategy for Eloise is to enumerate ”smartly” Nh, in the following sense: when
playing a tuple ~mh, we first look as deep as possible in the tree of formers positions for the
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tuple ~mi, and then go with corresponding Abelard answer. In doing so we ensure that any
tuple ~mi will always be played with the same answers ~ni. Then it is clear that isM � Φ,
we will reach sooner or later a winning position.

To implement such a strategy, we consider a term computing f on a given position :

Θ f ? 〈m〉h · t1 · t2 · π �

t1 ? π ifM � f (~m, ~n) = 0
t2 ? π ifM � f (~m, ~n) , 0

where 〈m〉i is a λc-implementation5 for the tuple ~mi, and that we also have a term next
acting as a successor for Nh.

next ? 〈m〉ih · t · π � t ? 〈m〉i+1
h · π

where ~m0
h = (0, . . . , 0) and the sequence (~mi

h)i∈N is an enumeration of Nh. We also define
the relation ~mi

h ≤h 〈m〉
j
h ≡ i ≤ j, which is total on Nh. Furthermore, we assume that we

dispose of a λc-implementation of histories as lists of tuples, and for a given history H, we
will denote by Ĥ its implementation6.

Definition 12. We say that a history H is functional if for any ~mi, there exists at most one
tuple (~ni, u, π) such that (~mi, ~ni, u,kπ) ∈ H.

Then we build7 several λc-terms according to their reductions rules. These terms will
all take as parameter a λc-history Ĥ. For 1 ≤ i < h, we define a term Ti who is intended to
gets Abelard‘ ith answer (ni, ui, πi), save it in Ĥ and plays the next integer with Ti+1:

Ti[~mh, ~ni−1, Ĥ] ? ni · ui · π1 � ui ? mi+1 · Ti+1[~mh, ~ni, Ĥ(i)] · πi

where Ĥi ≡ [~m1, ~ni, ui,kπi ] · Ĥ. The term Th gets Abelard’s answer as Ti does, but then
computes f to know if it has reached a winning position or should either initiate the next
step of enumeration:

Th[~mh, ~nh−1, Ĥ] ? nh · uh · πh � Θ f ? 〈m〉h · 〈n〉h · uh · N[~mh, Ĥ(h)] · πh

with Ĥh ≡ [~mh, ~nh, uh,kπh ] · Ĥ. Then N computes the next tuple in the enumeration and L
looks in the tree for the maximum former partial position similar to an initial segment of
this tuple:

N[〈m〉h, Ĥ] ? π � next ? 〈m〉h · (λm′1 · · ·m
′
h.L[〈m′〉h, Ĥ]) · π

L[〈m〉h, Ĥ] ? π � ui ? mi+1 · Ti+1[〈m〉h, 〈n〉i, Ĥ] · πi

with (〈m〉i, 〈n〉i, ui,kπi ) ∈ Ĥ and ∀ j > i,∀~n j ∈ N j,∀u ∈ Λ,∀π ∈ Π(〈m〉 j, 〈n〉 j, u,kπ) < Ĥ.
Finally we consider tΦ that would be the winning strategy, such that:

tΦ ? u0 · π0 � u0 ? 0 · T1[〈0〉h, 〈·〉, Ĥ0] · π0

with H0 ≡ (·, ·, u0,kπ0 )

Proposition 17. IfM � Φ, then tΦ is a winning strategy for G1
Φ

.

The proof does neither present any conceptual difficulty nor any interest in itself, but still
remains quite technical. The idea is to propagate the contradiction along the enumeration
of Nh in order to contradict M � Φ at the limit. To do so, we define the proposition
P(i, ~mh,H) as the following statement :
P(i, ~mh,H) :”there exists ~ni ∈ Ni, ui ∈ Λ, πi ∈ Π such that

• {(~mi, ~ni, ui, πi)} ∪ H is functional
• 〈Ti[〈m〉h, 〈n〉i−1, Ĥ] ? ni · ui · πi, {(~mi, ~ni, ui, πi)} ∪ H〉 <W1

Φ
”

5We could chose for instance to use a list representation for tuples, in which case 〈m〉i ≡ [m1, . . . ,mi], but
here the data-type would not be relevant, we only pay attention to some ”big” steps of reduction independently
of technical representation of data

6H ∪ {(~mi, ~ni, u, π)} will so correspond to [〈m〉i, 〈n〉i), u, kπ] · Ĥ .
7We let the reader check the existence of such terms, which is a straightforward λc-calculus exercise
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and prove two technical lemmas.

Lemma 4. For any i ∈ J1, hK, ~mh ∈ Nh and any history H, P(i, ~mh,H) implies there exists
an history H′ such that H ⊂ H′ and P(h, ~mh,H′)

Proof. It suffices to see that because of the reduction rule defining Ti, if P(i, ~mh,H) holds
then the second rule of G1

Φ
has to fail, hence there exists ni+1, ui+1 ∈ Λ, πi+1 ∈ Π such that

〈Ti+1[〈m〉h, 〈n〉i, Ĥi] ? ni+1 · ui+1 · πi+1, {(~mi+1, ~ni+1, ui+1, πi+1)} ∪ Hi〉 <W1
Φ

where Hi ≡ {~m1, ~ni, ui,kπi }∪H, which is still a functional environment. Therefore P(i, ~mh,H)
⇒ P(i + 1, ~mh,Hi), and P(i, ~mh,H) ⇒ P(h, ~mh,H′)) follows by easy decreasing induction
on i ∈ J1, hK. �

Lemma 5. For any history H, P(h, ~m j
h,H) implies that

(1) there exists ~nh ∈ Nh such thatM 2 f (~m j
h, ~nh) = 0

(2) there exists a history H′ such that H ⊂ H′ and P(h, ~m j+1
h ,H′)

Proof. Given a history H, if P(h, ~m j
h,H) holds, then it means that the first rule of induc-

tion of G1 fails, hence necessarily M 2 f (~m j
h, ~nh) = 0 and by definition of Th, using the

notations Hh = {(~m j
h, ~nh, uh, πh)} ∪ H and 〈m′〉h = 〈m〉 j+1

h , we get that

Th[〈m〉 j
h, 〈n〉h−1, Ĥ] ? nh · uh · πh � ui ? m′i+1 · Ti+1[〈m′〉h, 〈n′〉i, Ĥh] · πi

with (〈m′〉i, 〈n′〉i, ui,kπi ) ∈ Ĥ and ∀ j > i,∀(~n j, u, π) ∈ N j × Λ × Π(〈m′〉 j, 〈n〉 j, u,kπ) <
Ĥ. Note that this condition ensures the functionality of Hh ∪ {(~m j+1

h , ~n′i, ui, πi)}. From
P(h, ~m j

h,H) once more, we get that the second rule of induction of G1 fails too, and so that
P(i + 1, ~m j+1

h ,Hh). Hence by Lemma 4 we get the existence of H′ such that H ⊂ Hh ⊂ H′

and P(h, ~m j+1
h ,H′) holds. �

Proof of Proposition 17. By contraposition. We show that if tΦ is not a winning strategy,
then there exists a growing sequence of history (H j) j∈N such that for all j ∈ N, P(h, ~m j

h,H j)
holds.

Indeed, assume tΦ is not a winning strategy, that is to say there is u0 ∈ Λ, π0 ∈ Π such
that 〈tΦ?u0 ·π0, ∅〉 <W

1
Φ

Then because of the reduction rule of tΦ, it means that the second
rule of G1

Φ
fails, thus there exists (n1, u1, π1 ∈ N × Λ × Π, such that

〈T1[〈0〉h, 〈·〉, Ĥ] ? n1 · u1 · π1, {(~m1, ~n1, u1, π1)} ∪ H〉 <W1
Φ

with H ≡ (·, ·, u0, π0), that is P(1, ~m0
h,H). Then by Lemma 4 we get that there exists

H0 such that P(h, ~m0
h,H0) holds, and the claim follows by easy induction. Then we set

H =
⋃

j∈N H j, that is functional (because each H j is, and H j ⊂ H j+1).
Applying the first clause of Lemma 5, we get that for all j ∈ N, there exists ~n j

h such that
(~m j

h, ~n
j
h, u, π) ∈ H for some u ∈ Λ and π ∈ Π andM 2 f (~m j

h, 〈n〉
j
h) = 0.

Furthermore, asH is functional, it easily implies that:

∀m1∃n1 . . .∀mh∃nh(M 2 f (~mh, ~nh) = 0)

and thus we finally getM 2 Φ. �

Combining the results we obtained at this point, we get the following theorem:

Theorem 3. If Φ is an arithmetical formula, thenM � Φ if and only if there exists t � Φ.

Proof. The first direction is a consequence of Propositions 17 and 15, the reverse directly
comes from Proposition 4. �
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8.2. Leibniz equality vs primitive non-equality. Here we have chosen to consider for-
mulæ based on equalities, and we should wonder what happens if we use instead formulæ
based on disequalities:

∃x1∀y1 . . .∃xn∀yn f (~xn, ~yn) , 0 .
We know that both definitions are equivalent from a model-theoretic point of view. Indeed,
if we define the following function h:

h =

x 7→ 1 if x = 0
x 7→ 0 otherwise

then for all ~x ∈ Nn, M � f (~x) = 0 if and only if M � (h ◦ f )(~x) , 0. In other words,
formulæ based on a non-equality have the same expressiveness, and we also might have
chosen it as definition for the arithmetical formulæ (see Definition 9).

In classical realizability the disequality can be a given a simple semantic:

‖e1 , e2‖ =

‖>‖ ifM � e1 , e2

‖⊥‖ otherwise

which is equivalent to the negation of equality. Indeed, one can easily check that we have
λxt.(t)x  e1 , e2 ⇒ ¬(e1 = e2) and λt.(t)I  ¬(e1 = e2)⇒ e1 , e2.

Yet using these definitions, the rules of the game would have slightly changed. Indeed,
if we observe closely what happens at the last level of the game (with every variable already
instantiated but the one of the last universal quantifier), that is a formula ∀Ny( f (y) , 0), if
the formula is true in the model, then the falsity value is empty, so that the opponent can
not give any answer:

‖∀y( f (y) , 0)‖ =
⋃
n∈N

‖ f (n) , 0‖ = ‖>‖ = ∅ (∀n ∈ N,M � f (n) , 0)

Hence Eloise does not have to compute the formula f to know whether she can win or
not, she only has to wait for a potential answer of Abelard, and keep on playing if she
eventually gets one.

We shall bring the reader to notice two important facts. Firstly, it is clear that as Eloise
has no need to compute f , she only needs to do somehow a “blind” enumeration, hence we
can build the very same realizer we built in Proposition 17 without using a term computing
f . In fact, such a realizer would be suitable for any f , even not computable, that is :

Proposition 18. (Krivine 2009) For all n ∈ N, there exists tn ∈ Λc such that for any f :
N2n → N, ifM � ∃x1∀y1 . . .∃xn∀yn f (~xn, ~yn) , 0, then tn � ∃Nx1∀

Ny1 . . .∃
Nxn∀

Nyn f (~xn, ~yn) ,
0.

Secondly, such a result it obviously false if we use equality instead of non-equality.
Going back to the halting problem, if we consider one of the functions f : N2 → N such
that

f (m, n) = 0 iff (n = 0 ∧ ∃N p(Halt(m, p))) ∨ (n , 0 ∧ ∀N p(¬Halt(m, p)))
it is clear that f is not computable and that M � ∀y∃x( f (y, x) = 0) (that only says that
a Turing machine stops or does not stop). We know by Proposition 18 that there is a
term u ∈ Λc such that u � ∀Ny∃Nx(h ◦ f )(y, x) , 0, but there is no term8 t such that
t � ∀Ny∃Nx f (y, x) = 0, and thus no term t′ such that t′ � (∀Ny∃Nx(h ◦ f )(y, x) , 0) ⇒
(∀Ny∃Nx f (y, x) = 0). This phenomena is quite strange9, as both formulæ were perfectly
equivalent in the ground model. As we explained, a game-theoretic interpretation of this
fact is based on the idea on the idea that the use of a non-equality leaves the computation

8Otherwise, using a witness extraction method for Σ1
0-formulæ (Miquel 2010), we would be able for all m ∈ N

to compute nm ∈ N such that f (m, nm) = 0, breaking the halting problem.
9In fact, it already appears when considering the formula ∀x(x = 0 ⇔ h(x) , 0) that is not realized if not

relativized to naturals.
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to the opponent, and making so the game easier. However, in the author’s opinion this does
not furnish a satisfying enough explanation for the model-theoretic point of view, and it
might be interesting to deal with this phenomena more deeply.

8.3. Connection with forcing. In this paper, we only considered the standard realizability
models of PA2 (following the terminology of (Krivine 2011)), that is: the realizability
models parameterized on tuples of the form (Λ,Π,�,y), where (Λ,Π,�) is a particular
instance of the λc-calculus, and where y is a pole. The strong separation between the
calculus (on one side) and the pole (on the other side) is essential to define the notion of
universal realizability, which is at the heart of the specification problem studied in this
paper.

However, the definitions of classical realizability can be extended in many different
ways. First, we may replace second-order arithmetic (PA2) by Zermelo-Fraenkel set theory
(ZF), using a model-theoretic construction (Krivine 2000; Krivine 2012) that is reminiscent
from the construction of forcing models and of Boolean-valued models of ZF. Mutatis
mutandis, all the results presented in this paper remain valid in the framework of classical
realizability models of ZF, provided we consider a representation of arithmetic formulæ in
the language of set theory that preserves their computational interpretation in the sense of
PA2 (see (Krivine 2012)).

Second, we may replace the terms and stacks of the λc-calculus by theA-terms andA-
stacks of an arbitrary classical realizability algebraA, as shown by Krivine (Krivine 2011;
Krivine 2012). Intuitively, classical realizability algebras generalize λc-calculi (with poles)
the same way as partial combinatory algebras (J. R. B. Cockett 2006) generalize the λ-
calculus (or Gödel codes for partial recursive functions) in the framework of intuitionistic
realizability. This broad generalization of classical realizability—in a framework where
terms and stacks are not necessarily of a combinatorial nature—is essential, since it allows
us to make the connection between forcing and classical realizability explicit. Indeed, any
complete Boolean algebra can be presented as a classical realizability algebra, so that all
Boolean-valued models of ZF (or forcing models) can actually seen as particular cases of
classical realizability models of ZF. (In this setting, the combination of realizability and
forcing presented in (Krivine 2011; Miquel 2011) can be seen as a generalization of the
method of iterated forcing.)

In the general framework of classical realizability algebras, the specification problem
studied in this paper does not make sense anymore (due to the loss of the notion of universal
realizability), but we can still use the λc-terms presented in Section 8.1 to show more
generally that every arithmetic formula that is true in the ground model is realized by a
proof-like term.

Theorem 4. LetM be a Tarski model of ZFC,A a classical realizability algebra taken as
a point ofM, andMA the classical realizability model of ZF built from the ground model
M and the classical realizability algebraA. Then for every closed arithmetical formula φ
(expressed in the language of ZF) such thatM |= φ, there exists a proof-like term θ ∈ A
such that θ A φ.

This shows that arithmetical formulæ remain absolute in the framework of classical real-
izability models of set theory, which generalizes a well-known property of forcing models
to classical realizability. Actually, recent work of Krivine (Krivine 2014) shows that this
result extends to the class of Σ1

2- and Π1
2-formulæ as well. By discovering the existence

of an ultrafilter for the characteristic Boolean algebra 2ג (Krivine 2012) of the realizability
modelMA, Krivine succeeded to construct (by quotient and extensional collapse) a proper
class M′ ⊆ MA that constitutes a transitive model of ZF elementarily equivalent to M,
and that contains the same ordinals as MA. Hence the Levy-Schoenfield theorem (Jech
2013, Theorem 25.20) applies toM,M′ andMA, thus proving the absoluteness of Σ1

2-and
Π1

2-formulæ.
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(Étienne Miquey), PPS Laboratory, Univ Paris Diderot, Team PiR2, INRIA
Universidad de la República, IMERL, Facultad de Ingenierı́a, Montevideo, Uruguay

E-mail address: etienne.miquey@ens-lyon.fr


