Stabilized Galerkin for transient advection of differential forms

Abstract : We deal with the discretization of generalized transient advection problems for differential forms on bounded spatial domains. We pursue an Eulerian method of lines approach with explicit timestepping. Concerning spatial discretization we extend the jump stabilized Galerkin discretization proposed in [ H. HEUMANN and R.HIPTMAIR, Stabilized Galerkin methods for magnetic advection, Math. Modelling Numer. Analysis, 47 (2013), pp.1713--1732] to forms of any degree and, in particular, advection velocities that may have discontinuities resolved by the mesh. A rigorous a priori convergence theory is established for Lipschitz continuous velocities, conforming meshes and standard finite element spaces of discrete differential forms. However, numerical experiments furnish evidence of the good performance of the new method also in the presence of jumps of the advection velocity.
Type de document :
Article dans une revue
Discrete and Continuous Dynamical Systems - Series S, American Institute of Mathematical Sciences, 2016, 9 (1), pp.185 - 214. 〈10.3934/dcdss.2016.9.185〉
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01248140
Contributeur : Holger Heumann <>
Soumis le : jeudi 8 décembre 2016 - 11:56:41
Dernière modification le : vendredi 12 janvier 2018 - 11:02:24
Document(s) archivé(s) le : mardi 21 mars 2017 - 03:07:22

Fichier

paperDCDS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Holger Heumann, Ralf Hiptmair, Cecilia Pagliantini. Stabilized Galerkin for transient advection of differential forms. Discrete and Continuous Dynamical Systems - Series S, American Institute of Mathematical Sciences, 2016, 9 (1), pp.185 - 214. 〈10.3934/dcdss.2016.9.185〉. 〈hal-01248140〉

Partager

Métriques

Consultations de la notice

248

Téléchargements de fichiers

35