N

N

Modelling a Distributed Cached Store for Garbage
Collection: the algorithm and its correctness proof

Paulo Ferreira, Marc Shapiro

» To cite this version:

Paulo Ferreira, Marc Shapiro. Modelling a Distributed Cached Store for Garbage Collection: the
algorithm and its correctness proof. Euro. Conf. on Object-Oriented Pging. (ECOOP), 1998,
Brussels, Belgium. pp.234-259, 10.1007/BFb0054094 . hal-01248219

HAL Id: hal-01248219
https://inria.hal.science/hal-01248219
Submitted on 24 Dec 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01248219
https://hal.archives-ouvertes.fr

Modelling a Distributed Cached Store for
Garbage Collection: the algorithm and its
correctness proof*

Paulo Ferreira! and Marc Shapiro?

! INESC/IST, R. Alves Redol N° 9, Lisboa, Portugal
paulo.ferreira@inesc.pt
2 INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
marc.shapiro@inria.fr

Abstract. Caching and persistence support efficient, convenient and
transparent distributed data sharing. The most natural model of persis-
tence is persistence by reachability, managed automatically by a garbage
collector (GC). We propose a very general model of such a system (based
on distributed shared memory) and a scalable, asynchronous distributed
GC algorithm. Within this model, we show sufficient and widely appli-
cable correctness conditions for the interactions between applications,
store, memory, coherence, and GC.

The GC runs as a set of processes (local to each participating machine)
communicating by asynchronous messages. Collection does not interfere
with applications by setting locks, polluting caches, or causing [/O; this
requirement raised some novel and interesting challenges which we ad-
dress in this article. The algorithm is safe and live; it is not complete,
i.e. it collects some distributed cycles of garbage but not necessarily all.

1 Introduction

We present a system, Larchant, which provides a distributed and persistent s-
tore, intended for interactive cooperative tasks. A program shares data with
others, possibly running at different sites and at different times, by mapping
the Larchant store in memory via a Distributed Shared Memory (DSM) mecha-
nism [18]. Programmers may concentrate on application development; low-level
issues related to distribution, replication, coherence, input/output, and memo-
ry management are handled automatically. Thus, we call Larchant a Persistent
Distributed Store; it consists essentially of a large-scale DSM that is persistently
backed to disk and garbage collected.

1.1 Motivation

In a centralized program, sharing consists simply of using a pointer. So-called

Single Address Space Operating Systems (SASOS) such as Monads [15], Opal

* This work was supported in part by the Esprit Project PerDiS N° 22533.

[8] or Grasshopper [10] extend this simple model elegantly to distribution and
persistence. In a SASOS, an object is mapped at the same address in every
process ever accessing it, ensuring that pointers remain valid across address
spaces and time. It uses DSM techniques to ensure consistency of distributed
replicas, and memory is mapped to backup storage for persistence. However
the SASOS design has two flaws. First, since every object has a fixed address
for all eternity, fragmentation of the store is a serious risk. Second, it relies on
programmer discipline to deallocate objects properly.

Relying on programmer discipline to deallocate objects may lead to the dele-
tion of an object that is still referenced. This would make the store unsafe: some
other program may fail mysteriously when using the remaining reference, possi-
bly much later in time. Such errors are very hard to detect, and when they are,
it is too late. Furthermore, failure to delete unreachable objects causes memory
leaks, which clog up the store persistently.

The deallocation problem is fixed by the model of Persistence By Reacha-
bility [3]. Programs have access to a persistent root (e.g., a name server), from
which they can navigate the pointer graph. Those objects that are transitively
reachable from the persistent root must remain in persistent memory; any others
are garbage and must be reclaimed. This is the task of the GC algorithm. Then,
the fragmentation problem is solved by recycling storage and using a compacting
GC.

GC techniques are well known in centralized systems [29]. Many researchers
have proposed GC extensions to message-passing distributed systems [25]. In
contrast, there is little previous work applicable to the problem of supporting
PBR in a distributed cached store [1, 17, 19, 30] such as Larchant. This is a hard
problem because:

— Applications modify the pointer graph concurrently by simply performing a
pointer assignment. This is a very frequent operation, which should not be
slowed down (by inserting reference counting code, for instance).

— Replicas are not instantly coherent. Observing a consistent image of the
graph is difficult and costly.

— The pointer graph may be very large and distributed. Much of it resides on
disk. Tracing the whole graph in one blow is unfeasible.

— A localized change to the pointer graph can affect remote portions of the
graph. This has consequences on the global ordering of operations.

— The GC should not compete with applications. For instance, it should not
take locks, cause coherence operations, or cause 1/0.

GC in a large-scale distributed system is hard, especially with replication. It
is tempting to apply standard consistency algorithms to the GC problem. For
instance, one could layer a centralized GC algorithm above a coherent DSM, but
this approach ignores the scalability and non-competition issues.

Some object-oriented databases run their collector as a transaction; this es-
sentially blocks all useful work for the duration of the collection, and ignores
the scalability issue. Another possible approach would be to collect a consistent

snapshot [7] off-line; this is correct because being garbage is a stable property;
unfortunately it is an expensive and non-scalable solution.

1.2 Overview

The main goals of our distributed GC algorithm are correctness, scalability, low
overhead, and independence from a particular coherence algorithm. Secondary
goals are avoiding source code and compiler changes.

Our approach divides the global GC into small, local, independent pieces,
that run asynchronously, hence can be deferred and run in the background:

— The store is partitioned (each partition is called a bunch; more details in
Section 2.2), and partitions are replicated. GC is a hybrid of tracing within
a partition and counting across partitions.

— Each site runs a collector with a standard tracing algorithm [29] that works
in one or more partitions (on that site) at the same time.

— The cooperation protocol between collectors enables them to run without
any mutual synchronization.

— A collector examines only the local portion of the graph, without causing

any I/0O or taking locks.

A collector may run even when local replicas are not known to be coherent.

This paper presents a distributed GC algorithm and a set of five simple rules
ensuring its correctness. In particular, we show that, in this context, GC is safe
if it conforms to the following rules (presented here informally):

— No collector may reclaim data until it has been declared unreachable at all
replicas.

— A collector sends constructive (reachability) information before destructive
(reclamation) information.

— All constructive information is sent.

— This information is received in the same order by remote collectors.

— The coherence protocol may propagate modified data only after it has been
scanned by the local collector.

We prove our algorithm is safe, i.e. no reachable data is reclaimed; it is also
live, i.e. some garbage is eventually reclaimed. Unfortunately, it is not complete,
i.e. not all garbage is reclaimed (in particular, some distributed cycles) because
completeness is at odds with scalability. An evaluation of the amount of unre-
claimed garbage is the subject of on-going research [24]).

The contributions of this paper are the following. (i) A very simple, general
model of a cached distributed shared store. (ii) Sufficient safety rules for GC
in this context, in particular, for the interactions between coherence and GC.
(iii) A distributed GC algorithm which is adapted to the model, avoids compiler
modifications, is widely applicable, correct, scalable and efficient.

The outline of this paper is as follows. Section 2 presents our model of a
distributed cached store. Section 3 describes the distributed GC algorithm and

\ bunch B /—\ bunch C

a stubs

E
QL@
\

[0 soore

scions

granules

OAZ

/

W stubs
y

Fig. 1. Two bunches containing granules, stubs, and scions.

®
N
\

a set of safety rules for tracing garbage collection in the presence of replication.
Section 4 compares our solution with related work. We summarize our contribu-
tions and future work in Section 5. Appendix A complements the main text; it
provides a proof for the safety and liveness of the distributed GC algorithm.

For brevity, this paper omits some material without compromising its read-
ability and correctness. For a more extensive treatment see Ferreira[12].

2 System model

In this section we present a general model for a garbage-collected distribut-
ed cached store, with sub-models for: network and processes, memory, coher-
ence, mutator (application), and garbage collection. It incorporates only those
elements that are relevant to the distributed garbage collection problem. It is
extremely stylized with respect to any actual implementation.

Our model is based on a minimal set of coherence operations that are the
same for any replicated memory. It does not dictate when such operations take
place. (In a practical system, these operations are related to mutator activity.)

The model is also independent of the local garbage collection algorithm,
pointer representation, or secondary storage technology. It applies to a large
number of distributed sharing architectures, for instance a DSM, a SASOS, a
client-server or peer-to-peer object-oriented database, or a client-server CORBA
system.

2.1 Network and process model

The distributed system is composed of a set of sequential processes, communi-
cating only by messages.

An event E that is atomic at some process i is noted <E>;. For some message
M, we note <send.M>; the sending event at process i, and <deliver. M>; the
delivery of M at receiver process j. For GC safety, we assume causally-ordered
delivery [5] of some messages; this will be justified in Section 3.2.

A process is composed of a mutator (application code), a collector, and a
coherence engine. It’s important to note that messages between processes flow
only on behalf of collectors or coherence engines. Mutators do not send messages
directly, i.e. they communicate only via updates to the shared memory. 3

2.2 Memory model

The memory is structured at two levels of granularity (see Figure 1). (i) It is
partitioned into (relatively large) bunches. A bunch is the unit of caching and
tracing; it contains any number of granules. Each bunch may be traced inde-
pendently of the others, which is what makes garbage collection scalable. (ii)
The (rather small) granule is the unit of allocation, deallocation, identification,
and coherence.* A granule resides entirely within a single bunch and allows fine-
grained coherence.

A granule may contain any number of references, pointing to other granules.
A reference may also be null (represented here as value zero), i.e. not pointing
to anything. The model does not constrain the representation of references; for
instance a raw pointer is supported.Hereafter, we indifferently use the words
reference or pointer.

Bunches are noted X, Y, etc.; granules are noted x, y, etc. When x contains the
address of y, x is said to point to y. To simplify the presentation, and without loss
of generality, this article only considers pointers that cross bunch boundaries;
the mechanisms for intra-bunch pointers are similar.

2.3 Coherence model

Bunches and granules are replicated in processes. The image of X (resp. x) in
process i, noted Xj (resp. xj), is called i’s replica of X (resp. x). An invalidated
replica is modeled by the null value.

In each process, a coherence engine provides the shared memory abstrac-
tion, by managing replicas of granules. The coherence engine sends and receives
messages according to some coherence algorithm.

A process may disseminate the value of x to other processes, by sending
propagate messages. Event <send.propagate(x)>; puts the current value of x; in
the message; event <deliver.propagate(x)>j assigns x; with the value from the
message. There is no assumption to which process, if any, or in what order
propagate messages are delivered.

? If mutators were allowed to exchange messages, the pointers they contain must be
taken into account by the GC algorithm. This is probably straightforward, using
techniques such as SSP Chains [26], but has not been considered yet.

* It is convenient to think of a granule as an object, but note that granules are not
necessarily the same as language-level objects, which can be larger or smaller.

After a granule replica changes value, either by assignment or by being the
target of a propagate, it is said GC-dirty. A replica remains GC-dirty until it is
subjected to a scan operation (see Section 2.5).

Many coherence algorithms define a owner process for a granule. Ownership
does not appear in our model; however, in such coherence algorithms, the “Union
Rule” (presented in Section 3.1) can make use of the properties of owners for a
more efficient implementation.

The coherence model presented above is unconstrained enough to apply to
any cached or replicated architecture. For concreteness, we show the mapping of
entry consistency [4], the coherence protocol used in the current implementation
of Larchant, to the model just described.

Mapping entry consistency to the coherence model Entry consistency
uses tokens to schedule access to shared data and to ensure its consistency. A
program precedes every use of a shared variable with an acquire primitive, and
follows it with the corresponding release. Acquire asks for a token, and is param-
eterized with the type of access, either read or write; the protocol maintains a
single writer, multiple readers semantics.

At any point in time, each granule has a single owner which is defined as the
process that holds the write token or was the last one to hold it.

Sending a token also sends the most current version of the granule. Only
the owner may send the write token. Sending a write token (i) invalidates the
sender’s replica and any reader tokens and replicas, (ii) sends the current value,
and (iii) transfers ownership to the receiver. The owner may transform its write
token into a read token. Any holder of a read token may send another read token
(along with the granule value) to another process.

In this protocol, acquire messages, invalidation messages, and their replies
are all modeled by a propagate. More precisely, the sending of an acquire mes-
sage and the corresponding reply, is modeled as a single propagate (from the
owner to the acquiring process) in which the granule’s data is sent within the
message. Invalidation of a replica is equivalent to a propagate message in which
the granule’s contents is null; thus, once a granule replica becomes invalid it
contains no pointer (it is equivalent to a spontaneous, local assignment of the
whole granule’s data to the value zero).

2.4 Mutator model

For the purpose of GC, the only relevant action of the mutator is pointer as-
signment, which modifies the reference graph, possibly causing some granules to
become unreachable. An application may arbitrarily assign a pointer with any
legal reference value.

Suppose x points to t and y points to z. The result of assignment <x :=y>;
is that x now also points to z, and the previous pointer to t is lost. (The replica
that appears on the left-hand side of an assignment thereafter becomes GC-
dirty.) This operation is atomic at process i, which only means that the model

j i
B; Ci J Cj Cj

both replicas point to z both replicas point to z

Dk

(a) initial situation (b) after <x :=y> i

(c) after <y := 0> i (d) after propagate(y) fromjtoi

O O granule: replica, owner replica D bunch

J ™M stub, scion
process

Fig. 2. Prototypical example of mutator execution. Note that the stubs and
scions become temporarily inconsistent with the pointers. However, as described
in the paper, this does not compromise safety.

does not allow hidden pointers. Granule creation (by some primitive similar to
Unix malloc) is taken as a special case of pointer assignment.

Our reasoning is based on the following prototypical example (see Figure 2).
Consider two granules x and y located in bunches X and Y, respectively. Initially
x is null and y points to granule z located in bunch Z. Now, mutators within
processes i and j execute the following operations: <x := y>;, <y := 0>j, such
that at the end x points to z and all the replicas of y are null.

2.5 GC model

There are two well-known families of GC algorithms [29]. The first, counting, is
invoked each time a reference is assigned; it scales well because it only involves
the process performing the assignment, and the granule(s) referred to. It is con-
sidered expensive and non-portable because the counting operation is inserted
inline by the compiler; furthermore it does not reclaim cycles of garbage. The
second, tracing, is a global operation on the whole memory, and therefore scales
poorly.

Many distributed GCs [25] are hybrids, in an attempt to combine the best of
both worlds. Hybrid GCs partition the memory: they trace references internal to
a partition, and count references that cross partition boundaries. This replaces
the unfeasible global trace with the weaker problem of tracing each partition.’

In previous distributed GCs, a partition was often identified with a process
[26]. This is a natural design option as those GCs were conceived for distributed
systems based on RPC (Remote Procedure Call) in which cross-partition point-
ers were tracked at the process border. However, Larchant is based on DSM,
therefore, memory partitioning is different: (i) a bunch may be replicated in
multiple processes; (ii) a trace partition contains multiple bunches, in order to
reclaim cross-bunch cycles of garbage; (iii) it will do so opportunistically in order
to avoid input/output. This article focuses on the issues associated with point
(i) with emphasis on the algorithm and its safety; points (ii) and (iii) have been
studied in previous articles [13, 27] and are out of the scope of this paper. Fault-
tolerance is also out of the scope; however, there are well known solutions that
can be applied to our system [20].

In order to make the tracing of a bunch independent from other bunches,
each bunch replica is provided with data structures that describe the references
that cross its boundaries (see Figure 1): a stub describes an outgoing reference, a
scion an incoming one; scions have an associated counter that counts references
to some granule.® Note that Larchant’s stubs and scions are not indirections
participating in the mutator computation, but auxiliary data structures of the
collector.

5 Of course, the weaker formulation does not allow to collect cross-partition cycles of
garbage.

5 For simplicity, we speak of reference counting. In reality, we use the “reference listing”
variant: instead of just a count, there is a list of scions, one per bunch containing
a pointer to this granule, that records the identity of the originating bunch. This
makes the increment messages idempotent, i.e. redundant increments have no effect.

A granule x in bunch X is said protected if and only if x 1s pointed directly or
indirectly by a scion in X.

In the case of a reference from x contained in X, to z contained in Z, the stub
is noted stub(Xx, Zz) and the corresponding scion scion(Xx, Zz).

The elementary collection operation is scan. At times a single granule replica
xi is scanned. Operation scanj(x) returns the list of granules z, t, ..., that are
pointed to by x;. At other times, a whole bunch replica X; is traced, noted
trace;(X), scanning all reachable granules that it contains. The roots of the trace
are the scions in X;.

A trace of Xj produces: (i) a set of granules contained in X, transitively
reachable from its scions, and (ii) a set of stubs describing the outgoing pointers
of the set of granules (mentioned in the previous point). Then, this generated
set of stubs can be compared to the previous set (before the trace) in order to
find which scions should have its counter incremented or decremented. This will
be addressed with more detail in Section 3.2.

A GC-dirty replica remains GC-dirty until scanned. Then, u.e. after being
scanned, it becomes GC-clean.

For concreteness, now we show the mapping of a mark-and-sweep collector
[22], one of the GC algorithms used in the current implementation of Larchant,
to the model just described.

Mapping mark-and-sweep to the GC model A mark-and-sweep collector
has two phases: (i) trace the pointer graph starting from the root and mark every
granule found, and (i) sweep (i.e., examine) all the heap reclaiming unmarked
granules.

During the mark phase every reachable granule is marked (setting a bit in
the granule’s header, for example) and scanned for pointers. This phase ends
when there are no more reachable granules to mark.

During the sweep phase the collector detects which granules are not marked
and inserts their memory space in the free-list. When the collector finds a marked
granule it unmarks it in order to make it ready for the next collection. This phase
ends when there is no more memory to be swept.

Our model describes this algorithm through the operations scan and trace.
The first operation models the scanning for pointers on each reachable granule,
during the mark phase. The second operation, trace, models the entire mark
phase in which all reachable granules are found (i.e., marked and scanned).

3 GC algorithm and safety rules

Having exposed our model, we now turn to the solution of the main issues. This
section describes the distributed GC algorithm, ¢.e. tracing a bunch and counting
references that cross bunch boundaries, and the corresponding safety rules.
Tracing a bunch causes stubs to be created or deleted; the purpose of the
counting algorithm is to adjust scions accordingly. As a simplification, we address

the tracing of a single bunch, ignoring the fact that a partition may in fact contain
any number of bunches in order to collect cross-bunch cycles of garbage [27].

When a mutator performs an assignment such as <x := y>;, up to three
processes are involved in the corresponding counting. Say granules x, y, z and
t are located in bunches X, Y, Z and T respectively. Suppose that prior to the
assignment, x pointed to z and y pointed to t. As a consequence of the above as-
signment operation, the collector of process i increments the reference count for
t by performing the local operation <create.stub(Xx, Tt)>; and sending message
increment.scion(Xx, Tt) to the collector in some process j, managing T. In addi-
tion, it decrements the reference count for z by performing the local operation
delete.stub(Xx, Zz), and sending message decrement.scion(Xx, Zz) to the collector
in some process k, managing 7.

An obvious solution to perform reference counting would be to instrument
applications in order to track every pointer assignment. However, this solution
would be extremely expensive in terms of performance because pointer assign-
ment is a very frequent operation and counting might imply remote communica-
tion. This leads us to a fundamental insight of our design: instead of instrument-
ing the application, as suggested above, we observe that counting may be deferred
to a later tracing. This removes counting from the application path, avoids re-
liance on compiler support, and enables batching optimizations. It in turn puts
requirements on tracing, which will be addressed in the following sections.

3.1 Tracing in the presence of replicas: the union rule

Each process runs a standard centralized tracing collector. The issue we raise
now is how collectors cooperate, in order to take replication into account. It is
desirable that a collector remain independent, both of remote collectors, and of
the coherence algorithm. In our design, a collector may scan a local replica, even
if it is not known to be coherent, and independently of the actions of remote
collectors.

Thus, the collector at process i might observe x; to be pointing to z, whereas
collector at process j concurrently observes xj to be pointing to t. The coherence
protocol will probably eventually make both replicas equal, but the collector
cannot tell which value of x is correct. In the absence of better information, the
collector must accept all replicas as equally valid, and never reclaim a granule
until it is observed unreachable in the union of all replicas. This is captured by
the following rule.

Safety Condition I: Union Rule. If some replica x; points to z, and
some replica x; is reachable, then z is reachable.

The above rule makes reachable some granule pointed only by an unreachable
replica x;, if some other replica x; is reachable. This very conservative formulation
is necessary in the absence of knowledge of the coherence algorithm.

It’s worthy to note that, instead of adopting the Union Rule, we could con-
sider each replica as a separate granule, implicitly connected to its peer replicas.

processi —e@

@ c o
(owner of x) é,” ‘2 %‘
T ‘e ®
Q 2 3
g z
process j ® L ?.5
(owner of y) <y :=0> GC. (C) Q.
J])
>
2
process k) ®
(owner of z) = GC (D)

* note: propagate (y) models the invalidation of y in site i

Fig. 3. Prototypical example of Figure 2 restrained to the case of entry consis-
tency.

Pointers from different replicas would be counted separately. For instance, sup-
pose x has three replicas, two of which point to z; then the reference count of
z is at least 2. However, this solution has the drawback that every replica of x
must send a number of counting messages.

A simpler and more efficient solution applies to coherence protocols where
a granule has a single owner process (such as entry consistency, for example).
The collectors centralize the information about pointers from x at the owner of
x, using what we call union messages. In other words, a process holding replica
x; sends a union message, to x’s owner, after detecting a change in the pointers
from x;. (Note that this detection is achieved by tracing x;’s enclosing bunch.)

Now, suppose that x points to z, and x is assigned a new value (for instance
0). It is only when all the replicas of x have the new value, and the corresponding
collectors have informed x’s owner (by sending it a union message) that there
are no pointers from x to z, that the owner of x sends a message to the owner of
z, to decrement the corresponding scion’s reference count. This technique moves
some of the responsibility for reference counting to the owner of the granules
where references originate.

For concreteness, in the next section we show how the Union Rule can be
enforced in a system supporting a specific coherence protocol, entry consistency.

Adapting the union rule to entry consistency In some DSM coherence
protocols (for instance, sequential consistency and entry consistency) only the
current owner of granule x is allowed to assign to x. In this case, a non-owner
replica x; cannot cause a granule unreachable from x; to become reachable (be-
cause to do so would require assigning to x;j). Then, the implementation of the
Union Rule is straightforward as explained now.

Consider Figure 3; it illustrates the prototypical example of Figure 2 re-

promptness

C <xXi=y> S GC, (C)
rocess i —@ 0@ —
; & 2 % 3
(owner of x) & 2 >.)
Q ‘e ®
$ EX 3
Q >, Q:/ (%
process j L Y Cal ‘ =
(owner of y) <y = OT GC]- © % %.
> >
% G
process k ‘: \40 °
(owner of z) ‘ = = GCy (D)
situation (b) situation (d) causal delivery
_——=

of Fig. 2 of Fig. 2

Fig. 4. Timeline showing the effect of some of the safety rules for the prototypical
example of Figure 2. On site i, the sending of increment.scion(Bx, Dz) may be
delayed at most until sending union(y). Note the causal dependence (indicated
by the thick lines) between the increment.scion and decrement.scion messages,
carried by the union message.

strained to a system with the entry consistency coherence protocol. The owner
of y (site j) maintains a copy-count for each stub corresponding to a pointer
originating in y. Let us consider the stub for a pointer from y to z; the stub’s
copy-count is equal to the number of replicas of y. Now, suppose the mutator at j
performs <y := 0>;. Note that, given the entry consistency protocol, previous to
this assignment all replicas of y have been invalidated (in particular, y;). Later,
on site i, when the collector discovers that y; does not point to z (because the
invalidation has nulled the whole data of y;), it sends a union message to j. This
decrements the corresponding stub’s copy-count. After all the collectors (whose
processes cache a replica of y) have sent their union message to j, the stub’s
copy-count at j is zero; therefore, a decrement.scion(Cy, Dz) is sent from j to the
owner of z (site k) in order to decrement the reference count of scion(Cy, Dz).

An attentive reader could argue that there is a simpler solution, in which the
Union Rule is not needed, because as soon as a granule replica is invalidated we
safely know that such a replica does not point to any other granule. We now
describe this (apparent) solution and show why it is wrong.

When the mutator at j performs <y := 0>; all the other replicas of y are
invalid, thus they contain no pointer to any granule, in particular y; does not
point to z anymore. For this reason, as soon as <y := 0> is performed, the
collector at j could safely reach the conclusion that there is no replica of y that
still points to z. This is in fact true. However, note that this does not mean that
decrement.scion(Cy, Dz) can be safely sent from j to k. The reason is that on site
i, before y; has became invalid, the mutator might have performed <x := y>;

(as indicated in Figure 3) therefore creating a new pointer to z. In this case,
performing decrement.scion(Cy, Dz) could lead to the deletion of the last scion
to z and later to its reclamation. This situation would be an error because there
1s still a reference from x; to z.

Note that this scenario shows the Union Rule is effectively needed. In ad-
dition, it raises a safety problem which is the following: how to guarantee that
increment.scion(Bx, Dz) reaches site k before decrement.scion(Cy, Dz). In the next
section we provide a solution to this problem, and present a few more safety
rules which are valid for any coherence protocol.

3.2 Cross-bunch counting and more safety rules

As already mentioned, the standard approach to reference counting is to instru-
ment assignments in order to immediately increment/decrement the correspond-
ing counts. This approach requires compiler modification, and is expensive when
assignments are frequent and counting is a remote operation, as is the case in
Larchant.

Our solution consists of deferring the counting to a later tracing. In fact,
the counts need not be adjusted immediately. Consider assignment <x := y>,
where y points to z. At the time of the assignment, z is reachable by definition,
and is guaranteed to remain reachable as long as y; is not modified and remains
reachable. It is not necessary for (a process managing) x to increment z’s reference
count, as long as (some process managing) y does not decrement it.

Let us return to the prototypical example of Figure 2. At the time of <x :=
y>i, granule z is reachable (from both replicas of y) and is protected by some
scion, say scion(Tt, Zz); presumably, but not necessarily, T = Y and t = y. As
long as z’s scion has a non-zero count, it is safe to delay the increment (possibly,
the creation) of scion(Bx, Dz). (Recall that, in our system, it is the trace of bunch
X which updates X’s set of stubs, that causes the corresponding scions count to
be adjusted.)

There is a problem with this approach, however. In the prototypical example,
once situation (d) has been reached, it is possible that decrement.scion(Cy, Dz)
reaches site k before increment.scion(Bx, Dz); then z could be incorrectly re-
claimed. To avoid this unsafe situation, it suffices to give precedence to in-
crement.scion over decrement.scion and union messages. This is illustrated in
Figure 4: the interval named promptness, shows how much the message incre-
ment.scion(Bx, Dz) can be delayed w.r.t. the moment when the corresponding
assignment operation (<x :=y>;) has been performed.

The following rules say how late counting can be deferred, while still sending
messages in a safe order.

Safety Condition II: Increment Before Decrement Rule. Scan-
ning a granule (i.e., making it GC-clean) causes the corresponding incre-
ment.scion messages to be sent immediately.

Safety Condition III: Comprehensive Tracing Rule. When pro-
cess i sends a union or decrement.scion message, all replicas at i\ must be

GC-clean.

Safety Condition IV: Clean Propagation Rule. When process i
sends propagate(x), xi must be GC-clean.

Safety Condition V: Causal Delivery Rule. Garbage-collection
messages (increment.scion, union and decrement.scion) are delivered in
causal order.

Rule II allows a granule replica to be scanned at any time; scanning a granule
that contains a new pointer immediately sends an increment.scion message to
the referent. It’s important to mention that any message is asynchronous, so its
actual transmission might take place later, as long as messages are delivered in
the order sent (more on this later).”

Rule III ensures that union and decrement.scion messages are sent after incre-
ment.scion messages. In conjunction with Rule II, it ensures all increment.scion
messages that the unions and decrement.scions might depend on have indeed been
sent.

Rule IV ensures that when a process receives a new granule via a propagate
operation, any increment.scions corresponding to its new value have already been
sent.

If delivery order is no better than FIFO, races can appear between incre-
ment.scion and decrement.scion messages. Rule V solves this problem. Note that
coherence messages do not need causal delivery, thus limiting the cost.

Rules I through V are sufficient for the safe coexistence of replicated data and
a hybrid garbage collector. They are independent of the coherence and tracing
algorithms, and impose very few interactions between collection and coherence.

In the following sections we explain these rules in more detail, and provide
some examples in which their need is clear and easily understandable.

Comprehensive tracing rule This section provides an explanation of the
Comprehensive Tracing Rule. We show the need for this rule by giving an ex-
ample of what happens when this rule is not enforced.

Consider Figures 2 and 4 after mutators have executed <x :=y>;, <y := 0>j,
and y propagated to site i, i.e. once situation (d) has been reached. (Note that
scion(Bx, Dz) has not been created yet.) Suppose that tracej(C) runs and the
Comprehensive Tracing Rule is not fulfilled. This means that the collector sends
a union message to j (owner of y) indicating that stub(Cy, Dz) has disappeared in
process i, but scan;j(x) is not performed; therefore increment.scion(Bx, Dz) is not
sent. As a result, j applies the Union Rule and <send.decrement.scion(Cy, Dz)>;
is executed. Thus, scion(Cy, Dz) is deleted in k. Then, if tracex (D) runs, granule
z is unsafely reclaimed.

" In fact, sending a message immediately means put it in the sending queue.

The Comprehensive Tracing Rule prevents the above scenario as it forces x;
to be GC-cleaned before i sends the union message to j. Then, according to the
Increment Before Decrement Rule, <send.increment.scion(Bx, Dz)>; is performed
before the union message is sent (and j applies the Union Rule and executes
<send.decrement.scion(Cy, Dz)>;). Since we assumed causal delivery (Rule V)
scion(Bx, Dz) is created before scion(Cy, Dz) is deleted. Consequently, z is not
reclaimed by traceg (D).

Clean propagation rule This section provides an explanation of the role of
the Clean Propagation Rule, by describing an example of what occurs if this
rule is not enforced.

Consider Figures 2 and 4 after the mutator has executed <x := y>; and be-
fore <y := 0>j, i.e. once situation (b) has been reached. Now, suppose that
granule x; is propagated to some process w in the absence of the Clean Propa-
gation Rule, i.e. without performing scani(x). Then, x; is assigned in such a way
that it no longer points to z (e.g., <x := 0>;). At this moment, the only scion
that protects z is scion(Cy, Dz). Suppose that both replicas of y are modified
in processes i and j such that they no longer point to z. Hence, by the collec-
tion algorithm, scion(Cy, Dz) is deleted. Thus, z may be unsafely reclaimed by
tracex (D) (xy still points to z).

The Clean Propagation Rule prevents the above scenario as it forces x; to
be GC-cleaned. Thus, by Rule II, <send.increment.scion(Bx, Dz)>; is performed
immediately, i.e. before x; is propagated to site w.

Causal delivery rule This section shows the need for the Causal Delivery Rule
by giving an example of what happens when this rule is not enforced.

Consider the prototypical example of Figure 2 after mutators have executed
<x :=y>j, <y := 0>, and y propagated to site i, i.e. once situation (d) has been
reached. (Note that scion(Bx, Dz) has not been created yet.) Then, the collectors
on sites i and j perform as follows: i executes <send.increment.scion(Bx, Dz)>,
while] executes <send.decrement.scion(Cy, Dz)>;. In an asynchronous system,
the former may be delivered after the latter, causing z to be incorrectly reclaimed.
In fact, there is a hidden causality relation through the shared variable y. In our
algorithm, this causal relation is captured by the union message, as apparent in
Figure 4. Thus, given the Causal Delivery Rule, there is at all times at least a
scion protecting z from being reclaimed.

4 Related work

The concept of persistence by reachability (PBR) was first proposed by Atkinson
[3] in the early 1980’s. EOS [14] is an early example of a DSM providing PBR.
It has a copying GC that takes into account user placement hints to improve
locality. However, its GC is quite complex and has not been implemented.
Much previous work in distributed garbage collection, such as SSP Chains
[26] or Network Objects [6], considers processes communicating via RPC, and

uses a hybrid of tracing and counting. Each process traces its internal pointers;
references across process boundaries are counted as they are sent/received in
messages.

Some object-oriented databases (OODB) use a similar approach [1, 9, 23, 30]
i.e. a partition can be collected independently from the rest of the database. In
particular, Thor [20, 21] is a research OODB with PBR. In Thor, data resides at
a small number of servers and is cached at workstations for processing. A Thor
server counts references contained in objects cached at a client. Thor defers
counting references originating from some object x cached at a client, until x is
modified at the server. However, their work does not address the issue of GC
interaction with coherence and replication in a DSM based system.

The work most directly related to ours is Skubiszewski and Porteix’s GC-
consistent cuts [28]. They consider asynchronous tracing of an OODB; however
they consider neither distribution nor replication. The collector is allowed to
trace an arbitrary database page at any time, subject to the following ordering
rule. For every transaction accessing a page traced by the collector, if the trans-
action copies a pointer from one page to another, the collector either traces the
source page before the write, or traces both the source and the destination page
after the write. The authors prove that this is a sufficient condition for safety
and liveness.

It’s worthy to note that the solutions mentioned above do not consider a DSM
based system, such as Larchant, in which cross-partition pointers are created by
a simple assignment operation.

Most previous work on garbage collection in shared memory deals either with
multiprocessors [2, 11] or with a small-scale DSM [17]. These authors make strong
coherence assumptions, and they ignore the issues of scale and of persistence.

Yu and Cox [31] describe a conservative collector for the TreadMarks [16]
DSM system. It uses partitioned GC on a process basis; all messages are s-
canned for possible contained pointers. Like Larchant, their GC does not rely on
coherence. However, their solution is specific to TreadMarks, ¢.e. it is not widely
applicable.

5 Conclusion

Larchant is a Cached Distributed Shared Store based on the model of a DSM with
Persistence By Reachability. Data is replicated in multiple sites for performance
and availability. Reachability is assessed by tracing the pointer graph, starting
from the persistent root, and reclaiming unreachable data. This is the task of
Garbage Collection.

This paper focused on the interactions between garbage collection on the one
hand, and caching and replication on the other. We show that both the tracing
and the distributed counting garbage collector run independently of coherence.
Garbage collection does not need coherent data, never causes coherence messages
nor input/output, and it does not compete with applications’ locks or working
sets. However, coherence messages must at times be scanned before sending.

Using an extremely stylized model of an application (reduced to uncon-
strained pointer assignments) and of a coherence protocol (reduced to uncon-
strained propagation messages), we give rules for the safe coexistence of garbage
collection with replication.

Our GC is a hybrid (or partitioned) algorithm. It combines tracing within
a partition, with reference-counting across partition boundaries. Each process
may trace its own replicas, independently of one another and of other replicas.
Counting at some process is asynchronous to other processes, and asynchronous
to the local mutator. In addition, counting is deferred and batched.

We presented five safety rules that guarantee the correctness of the distribut-
ed reference-counting algorithm. Along with these rules, we provided a proof that
the algorithm is safe and live (see Appendix A). These safety rules are minimal
and generally applicable given the asynchrony to applications, and the minimum
assumptions we made concerning coherence:

— Union Rule: a granule may be reclaimed only if it is unreachable from the
union of all replicas (of the pointing granules);

— Increment before Decrement Rule: when a granule is scanned, the corre-
sponding increment.scion messages must be sent immediately (i.e., put them
in the sending queue);

— Comprehensive Tracing Rule: when a union or a decrement.scion message is
sent, all replicas (on the sending site) must be GC-clean;

— Clean Propagation Rule: a granule must be scanned before being propagated;
and

— Causal Delivery Rule: GC messages must be delivered in causal order.

Measurements of our first (non-optimized) implementation, which can be
found in Ferreira[12], show that the cost of tracing is independent of the number
of replicas, and that there is a clear performance benefit in delaying the counting.

Causal delivery, imposed by Rule V| is non-scalable in the general case; how-
ever, we do not consider this to be a serious problem in real implementations
because causality can be ensured by taking advantage of the specific coherence
protocols. For example, in our current implementation (supporting entry con-
sistency) causal delivery is ensured by a mixture of piggy-backing and acknowl-
edgments.

We are currently working on a follow-up of Larchant in Esprit Project PerDiS
[24], where it will be used for a large-scale cooperative engineering CAD applica-
tion. This will enable us to measure and characterize the behaviour of real persis-
tent applications, to fully study the performance of the distributed GC algorithm
and to evaluate its completeness in a real-world environment. A first prototype of
the PerDiS implementation is freely available in http://www.perdis.esprit.ec.org.

References
1. L. Amsaleg, M. Franklin, and O. Gruber. Efficient Incremental Garbage Collection

for Client-Server Object Database Systems. In Proc. of the 21th VLDB Int. Conf.,
Zurich, Switzerland, September 1995.

~1

10.

11.

12.

13.

14.

15.

16.

17.

Andrew W. Appel. Simple Generational Garbage Collection and Fast Allocation.
Software Practice and Ezperience, 19(2):171-183, February 1989.

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison.
An approach to persistent programming. The Computer Journal, 26(4):360-365,
1983.

B. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway distributed shared
memory system. In Proc. of the 1993 CompCon Conf., 1993.

Kenneth Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and
atomic group multicast. ACM Transactions on Computer Systems, 9(3):272-314,
August 1991.

Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Net-
work objects. Software Practice and FEzperience, S4(25):87-130, December
1995. http://gatekeeper.dec.com/pub/DEC/SRC /research-reports/abstracts/src-
rr-115.html.

K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global
states of distributed systems. ACM Transactions on Computer Systems, 3(1):63—
75, February 1985.

J. S. Chase, H. E. Levy, M. J. Feely, and E. D. Lazowska. Sharing and adressing
in a single address space system. ACM Transactions on Computer Systems, 12(3),
November 1994.

Jonathan E. Cook, Alexander L. Wolf, and Benjamin G. Zorn. Partition selection
policies in object database garbage collection. In Proc. Int. Conf. on Management
of Data (SIGMOD), pages 371-382, Minneapolis MN (USA), May 1994. ACM
SIGMOD.

Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, Anders Lindstrom,
John Rosenberg, and Francis Vaughan. Grasshopper: An orthogonally persistent
operating system. Computing Systems, 7(3):289-312, 1994.

Damien Doligez and Xavier Leroy. A concurrent, generational garbage collector
for a multithreaded implementation of ML. In Proc. of the 20th Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Lang., pages 113-123,
Charleston SC (USA), January 1993.

Paulo Ferreira. Larchant: ramasse-miettes dans une mémoire partagée
répartie avec persistance par atteignabilité. These de doctorat, Université
Paris 6, Pierre et Marie Curie, Paris (France), May 1996. http://www-
sor.inria.fr/SOR/docs/ferreira_thesis96.html.

Paulo Ferreira and Marc Shapiro. Garbage collection and DSM consistency. In
Proc. of the First Symposium on Operating Systems Design and Implementation
(OSDI), pages 229-241, Monterey CA (USA), November 1994. ACM. http://www-
sor.inria.fr/SOR/docs/GC-DSM-CONSIS_OSDI94.html.

Olivier Gruber and Laurent Amsaleg. Object grouping in EOS. In Proc. Int.
Workshop on Distributed Object Management, pages 184-201, Edmonton (Cana-
da), August 1992.

James Leslie Keedy. Support for objects in the MONADS architecture. In
J. Rosenberg, editor, Proc. Workshop on persistent object systems, pages 202-213,
Newcastle NSW (Australia), January 1989.

P. Keleher, A. Cox, and W. Zwaenepoel. TreadMarks: Distributed shared memory
on standard workstations and operating systems. Proceedings of the 1994 Winter
USENIX Conference, January 1994.

T. Le Sergent and B. Berthomieu. Incremental multi-threaded garbage collection
on virtually shared memory architectures. In Proc. Int. Workshop on Memory

18.

19.

20.

21.

22.

23.

24.

25.

26.

28.

29.

30.

31.

Management, number 637 in Lecture Notes in Computer Science, pages 179-199,
Saint-Malo (France), September 1992. Springer-Verlag.

Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems, 7(4):321-359, November 1989.

Barbara Liskov, Mark Day, and Liuba Shrira. Distributed object management
in Thor. In Proc. Int. Workshop on Distributed Object Management, pages 1-15,
Edmonton (Canada), August 1992.

Umesh Maheshwari and Barbara Liskov. Fault-tolerant distributed garbage
collection in a client-server, object database. In Proc. Parallel and
Dist. Info. Sys., pages 239-248, Austin TX (USA), September 1994.
ftp://pion.cs.mit.edu/pub/thor/dgc.ps.gz.

Umesh Maheshwari and Barbara Liskov. Partitioned garbage collection of a large
object store. In Proc. Int. Conf. on Management of Data (SIGMOD), Montreal,
Canada, 1996.

John McCarthy. Recursive functions of symbolic expressions and their computa-
tion by machine. Communications of the ACM, 3(4):184-195, April 1960.

J. Eliot B. Moss, David S. Munro, and Richard L. Hudson. PMOS: A complete
and coarse-grained incremental garbage collector for persistent object stores. In
Proc. of the 6th Int. Workshop on Persistent Object Systems, Cape May NJ (USA),
May 1996.

PerDiS ESPRIT Project - LTR 22533. The PerDiS project: a Persistent Distribut-
ed Store, 1997. http://www.perdis.esprit.ec.org.

David Plainfossé and Marc Shapiro. A survey of distributed garbage collection
techniques. In Proc. Int. Workshop on Memory Management, Kinross Scotland
(UK), September 1995. http://www-sor.inria.fr/SOR/docs/SDGC_iwmm95.html.

Marc Shapiro, Peter Dickman, and David Plainfossé. SSP chains: Robust, dis-
tributed references supporting acyclic garbage collection. Rapport de Recherche
1799, Institut National de Recherche en Informatique et Automatique, Roc-
quencourt (France), November 1992. http://www-sor.inria.fr/SOR/docs/SSPC_-
rr1799.html.

. Marc Shapiro and Paulo Ferreira. Larchant-RDOSS: a distributed shared per-

sistent memory and its garbage collector. In J.-M. Hélary and M. Raynal, ed-
itors, Workshop on Distributed Algorithms (WDAG), number 972 in Springer-
Verlag LNCS, pages 198-214, Le Mont Saint-Michel (France), September 1995.
http://www-sor.inria.fr/SOR /docs/ LRDSPMGC_wdag95.html.

Marcin Skubiszewski and Patrick Valduriez. Concurrent garbage collection in Os.
In 24th International Conference on Very Large Data Bases, Athens, Greece, 1997.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Proc. In-
t. Workshop on Memory Management, number 637 in Lecture Notes in Com-
puter Science, Saint-Malo (France), September 1992. Springer-Verlag. ft-
p://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps.

V. Yong, J. Naughton, and J. Yu. Storage reclamation and reorganization in client-
server persistent object stores. In Proc. Data Engineering Int. Conf., pages 120—
133, Houston TX (USA), February 1994.

Weimin Yu and Alan Cox. Conservative garbage collection on distributed shared
memory systems. In 16th Int. Conf. on Distributed Computing Syst., pages 402—
410, Hong Kong, May 1996. IEEE Computer Society.

A Proofs of safety and liveness

This appendix provides a proof that the distributed GC algorithm is safe and
live.

A.1 Safety
To understand this proof, note that:

— the phrase “scion(Xx, Yy) exists” means that the reference count of the scion
is non-zero;

— event <deliver.decrement.scion(Xx, Yy)>j deletes scion(Xx, Yy) at j if and only
if the scion’s counter becomes zero as a result of the decrement.scion message;

— event <deliver.increment.scion(Xx, Yy)>j creates scion(Xx, Yy) at j if and only
if that scion does not exist yet; otherwise, it increments that scion’s counter;

— a granule is created with an initial scion (this is guaranteed by the granule
creation primitive) in order to ensure that the Base Case assumptions, in
our proofs, are always verified;

— we assume a coherence protocol in which each granule has a owner as defined
in Section 2.3; and

— we represent a pointer from granule x in bunch B to granule z in bunch D as
Bx — Dz.

The distributed GC algorithm must satisfy the following obvious safety in-
variant:

Safety Invariant 1 No reachable granule is reclaimed.

Since we are considering only cross-bunch pointers, the above invariant is
equivalent to:

Safety Invariant 2 :
(VB,¥x € B:3Bx — Dz) = (3T,3t € T : Iscion(Tt, Dz))

This reads “if a granule x in B points to z in D, then some scion protects z.”
Note that this is weaker than the more intuitive “if x points to z, then scion-
(Bx, Dz) exists”; indeed, the scion that protects z does not need to match the
pointer.

We prove the safety of the distributed GC algorithm by showing that it
maintains the above safety invariant. We start by proving two lemmas; these
will be needed to prove a theorem.

Lemma 1 Let n different granules x',...,x" located respectively in bunches
B!,...,B", all cached in process p, be the set of all protected granules point-
ing to z € D cached in process k. Then, Vi,1 < i< n:

— x! is GC-clean A 3 scion(Bix?, Dz), or
— 3j,1<j <n, xt is GO-dirty A 3 scion(B/x/, Dz)

This lemma says that as long as there is a granule pointing to z, cached in
some process p, there exists at least a scion protecting z. We prove this lemma by
induction over the size of the set containing granules pointing to z, for a single
process.

Base case:

Initially a single protected granule x' points to z: x' € B! cached in process p,
and scion(B!x!, Dz) exists. Let x> € B2, also cached in p, initially not pointing
to z This initial situation obviously verifies the lemma as x! is GC-clean and
scion(Bx!, Dz) exists.

Now, consider that <x* := x'>, is performed (now x? also points to z);
therefore x ? is GC-dirty. If x! is not assigned to thereafter, the lemma remains
trivially true since x? is GC-dirty and scion(B!x!, Dz) exists.

Therefore consider that x! is changed by an assignment such as <x! := 0>,.
(The actual value of the right-hand side does not matter for the proof, except
that when the right-hand side is a pointer to z it is as if the assignment did not
take place.) Hence, x ! is GC-dirty. Until a bunch tracing takes place at p, no
<send.increment.scion> or <send.decrement.scion> is performed at p, and the
lemma remains trivially true since x? is GC-dirty and scion(B'x!, Dz) exists.

When a bunch tracing does execute in process p, both x? (containing the
new pointer) and x! (previously containing the pointer to z) are GC-cleaned
(they were both GC-dirty); therefore stub(B%x?, Dz) is created and stub(B!x!, Dz)
disappears (i.e., it is no longer in the new set of stubs).

According to Rule IT (Increment Before Decrement) and Rule ITI (Compre-
hensive Tracing), <send.increment.scion(B?x?, Dz)>, precedes <send.decrement.-
scion(B!x!, Dz)>,.

We assumed that messages are delivered in causal order (Rule V), hence
<deliver.increment.scion(B?x?, Dz) > precedes <deliver.decrement.scion(B!x!, D-
z)>k. Thus, at any moment, there exists at least a scion protecting z: either
scion(Bx!, Dz), or scion(B%x?, Dz), or both.

Induction case:

Assume a set of different granules x',...,x’ located respectively in bunches
B!,...,B7 all cached in process p, pointing to z with the corresponding scions
already created. Consequently, granule x', 1 <1 < j, points to z: x* € B! cached
in process p, and scion(B'x!, Dz) exists. This initial situation obviously verifies
the lemma as x! is GC-clean and scion(B'x!, Dz) exists.

Let x/*1 € B/t1 also cached in p, initially not pointing to z. Now, consider
that <x/*! = xl>p is performed (thus, x}*1 also points to z) therefore x Jt1
is GC-dirty. If x' is not assigned to thereafter, the lemma remains trivially true
since x7t1 is GC-dirty and scion(B!x!, Dz) exists.

Therefore consider that x' is changed by an assignment such as <x' := 0>,.
(The actual value of the right-hand side does not matter for the proof, except
that when the right-hand side is a pointer to z it is as if the assignment did not
take place.) Hence, x 'is GC-dirty. Until a bunch tracing takes place at p, no
<send.increment.scion> or <send.decrement.scion> is performed at p, and the
lemma remains trivially true since x/*! is GC-dirty and scion(B'x!, Dz) exists.

When a bunch tracing does execute in process p, both x/*! (containing the
new pointer) and x' (previously containing the pointer to z) are GC-cleaned (they
were both GC-dirty); therefore stub(B/+!x/*1 Dz) is created and stub(B!x!, Dz)
disappears (i.e., no longer in the new set of stubs).

According to Rule IT (Increment Before Decrement) and Rule ITI (Compre-
hensive Tracing), event <send.increment.scion(B/T1x/+1 Dz)>, precedes <send.-
decrement.scion(B'x!, Dz)>,.

We assumed that messages are delivered in causal order (Rule V), hence
<deliver.increment.scion(B/t1x/*1 Dz)> precedes <deliver.decrement.scion(B!x! -
Dz)>k. Thus, at any moment, there exists at least a scion protecting z: either
scion(B!x!, Dz), or scion(B/*1x/*1 Dz), or both.

This terminates the induction over the size of the set containing granules
pointing to z, for a single process. O

Now, we present the second lemma.

Lemma 2 Let n different granules x*, ... x* be the set of all protected granules,
located in bunch B, pointing to z € D owned by k. Let m different processes
pl,...,p™ be the set of all processes caching a replica of x'. Then, Vi,1 < i< n:

— x' is GC-clean A 3 scion(Bx!, Dz), or '
— 3j,1<j<n,x is GC-dirty A 3 scion(Bx’, Dz)

This lemma says that, as long as there is a replica of some granule x located
in B, pointing to z, cached in some process, there exists a scion protecting z. We
prove this lemma by induction: (i) over the size of the set containing granules
pointing to z, and (ii) over the size of the set containing processes caching replicas
of the granules pointing to z.

Base case:

Initially there is a single granule x! € B pointing to z, x* is owned by process p!,
scion(Bx!, Dz) exists, x? € B does not point to z and is also owned by p!, and
neither x! nor x? are cached in p?. This initial situation obviously verifies the
lemma as x! is GC-clean and scion(Bx!, Dz) exists.

Now, perform <x? := x1>p1; thus, x? points to z and is GC-dirty. If x! is not
assigned to thereafter, the lemma remains trivially true as x' is GC-clean and
scion(Bx!, Dz) exists.

Therefore, consider that x' is changed by an assignment such as <x! := 0>1.
(The actual value of the right-hand side does not matter for the proof, except
that when the right-hand side is a pointer to z it is as if the assignment did not
take place.) Hence, x ! is GO-dirty. Until a bunch tracing or a propagate op-
eration takes place at p', no <send.increment.scion> or <send.decrement.scion>
is performed at p !, and the lemma remains trivially true since x? is GC-dirty
and scion(Bx!, Dz) exists. We examine these two cases now: bunch tracing and
propagate operation, both performed at p !.

When a bunch tracing does execute in process pl, both x? (containing the
new pointer) and x! (previously containing the pointer to z) are GC-cleaned
(they were both GC-dirty); therefore stub(Bx?, Dz) is created and stub(Bx!, Dz)
disappears (i.e., no longer in the new set of stubs).

1

According to Rule IT (Increment Before Decrement) and Rule ITT (Compre-
hensive Tracing), event <send.increment.scion(Bx?, Dz)>,: precedes <send.decre-
ment.scion(Bx', Dz)> 1.

We assumed that messages are delivered in causal order (Rule V), hence
<deliver.increment.scion(Bx?, Dz)> precedes <deliver.decrement.scion(Bx!, Dz)>y.
Thus, at any moment, there exists at least a scion protecting z: either scion(Bx!, Dz),
or scion(Bx?, Dz), or both. Therefore, the lemma remains true when a bunch col-
lection occurs in process pl.

Now, we consider a propagate operation. Before a <send.propagate(x2)>p1
(possibly sent to p?) takes place,® according to Rule IV (Clean Propagation), x?
is GC-cleaned. Therefore x? is scanned, stub(Bx?, Dz) is created and <send.in-
crement.scion(Bx?, Dz)>,: is performed. Therefore, the lemma remains true as
x? is GC-clean and scion(Bx?, Dz) exists.

Induction case:

Let h different process p',...,p", 1 < h < m be the only processes caching
granules x',...,x/,1 < j < n, all € B, all pointing to z € D owned by k. The
scions for the pointers from x!,...,x/ to z do exist. Granule x 7 is owned by
p?, 1 < w < m. Let granule x/*t! owned by p%, initially not pointing to z, and
process p"*! initially not caching any granule pointing to z. This initial situation
obviously verifies the lemma as x/ is GC-clean and scion(Bx/, Dz) exists.

Now, perform <x/t! := xj>pw; thus, x/*! points to z and is GC-dirty. If x/
is not assigned to thereafter, the lemma remains trivially true as x/ is GC-clean
and scion(Bx/, Dz) exists.

Therefore, consider that x/ is changed by an assignment such as <x? := 0>pu.
(The actual value of the right-hand side does not matter for the proof, except
that when the right-hand side is a pointer to z it is as if the assignment did
not take place.) Hence, x 7 is GC-dirty. Until a bunch tracing or a propagate
operation takes place at p”, no <send.increment.scion> or <send.decrement.-
scion> is performed at p ¥, and the lemma remains trivially true since x/+?
is GC-dirty and scion(Bx/, Dz) exists. We examine these two cases now: bunch
tracing and propagate operation, both performed at p .

When a bunch tracing does execute in process p¥, x/*1 (containing the new
pointer) and x/ (previously containing the pointer to z) are GC-cleaned (they
were both GC-dirty); therefore stub(Bx7*! Dz) is created and stub(Bx’, Dz) dis-
appears (i.e., no longer in the new set of stubs).

According to Rule IT (Increment Before Decrement) and Rule ITI (Compre-
hensive Tracing), event <send.increment.scion(Bx/*1, Dz)>,: precedes <send.de-
crement.scion(Bx?, Dz)>p1.

We assumed that messages are delivered in causal order (Rule V), hence
<deliver.increment.scion(Bx/*!, Dz)>\ precedes <deliver.decrement.scion(Bx’, D-
z)>k. Thus, at any moment, there exists at least a scion protecting z: either
scion(Bx/, Dz), or scion(Bx/*! Dz), or both. Therefore, the lemma remains true
when a bunch tracing occurs at process p*.

8 Note that the propagation of x' is not relevant because it does not lead to the sending
of any GC specific message, in particular no decrement.scion is performed.

Now, we consider a propagate operation. Before a <send.propagate(xj+1)>pw
takes place, according to Rule IV (Clean Propagation), x?*! is GC-cleaned.
Therefore x/ ! is scanned, stub(Bx/*! Dz) is created and <send.increment.scion-
(BxI+1, Dz)>,w is performed. Therefore, the lemma remains true as xI*t1is GC-
clean and scion(Bx/*! Dz) exists.

This terminates the induction over the size of the set containing granules
pointing to z, and over the size of the set containing processes caching replicas
of the granules pointing to z. O

Now, we prove the following theorem:

Theorem 1 Let n different granules x*, ... x® be the set of all protected gran-
ules pointing to z € D owned by process k, located respectively in bunches B, ... B™.
Let m different processes p*,...,p™ be the set of all processes caching a replica
of all bunches mentioned above. Then, Vi, 1 < i < n, scion(Bix, Dz) ezists at k.

This theorem implies Safety Invariant 2. Whereas the latter states that, what-
ever number of cross-bunch pointers point to z € D, at least one scion protects
z, Theorem 1 is stronger, saying that at least one scion per bunch containing a
pointer to z, protects z. Note that it does not say whether this scion effectively
corresponds to an existing pointer to z.

We prove this theorem by induction: (i) over the size of the set containing
granules pointing to z in a single process, and (7} over the size of the set of
processes caching replicas of granules pointing to z.

Base case:

Assume that initially x! € B! and x? € B2 are both owned by p!, only x! points
to z € D owned by k, scion(Bx!, Dz) exists, and process p? does not cache any
granule pointing to z. This initial situation obviously verifies the theorem as
scion(Bx!, Dz) exists.

Now, consider that <x? := x1>p1 is performed (thus, x? also points to z);
therefore x? is GC-dirty. If x! is not assigned to thereafter, the theorem remains
trivially true, since scion(B!x!, Dz) exists.

Therefore, consider an assignment such as <x' := 0>,1. (The actual value of
the right-hand side does not matter for the proof, except that when the right-
hand side is a pointer to z it is as if the assignment did not take place.) Until a
bunch tracing or a propagate operation takes place at p', no <send.increment.-
scion> or <send.decrement.scion> is performed, and the theorem remains triv-
ially true.

Now, suppose a bunch tracing does occur at p'; by Lemma 1 we have that
at any moment, there exists at least a scion protecting z: either scion(Bx!, Dz),
or scion(B%x?, Dz), or both.

Suppose a propagate(x!) occurs at p!; by Lemma 2 we have that scion(B?x?, Dz)
exists before <send.propagate(x2)>p1.

Induction case:

Let j different granules x', ... x/, located in bunches B!,... B, 1 < j < n, all
pointing to z, all owned by p”,1 < h < m. Initially, x*! € B/*! owned by
p”" does not point to z, scion(B7x/, Dz) exists, and process p"*! does not cache

any granule pointing to z. This initial situation obviously verifies the theorem
as scion(B/x/ Dz) exists.

Now, consider that <xit1 := xj>ph is performed (thus x/*! also points to
z), therefore x7t1 is GC-dirty. If x/ is not assigned to thereafter, the theorem
remains trivially true as scion(B/x/, Dz) exists.

Therefore, consider an assignment such as <x/ := 0>,» (again, the actual
value of the right-hand side does not matter for the proof). Until a bunch tracing
or a propagate operation takes place at p”, no <send.increment.scion> or <send -
decrement scion> is performed at p”, and the theorem remains trivially true
(scion(B7x7, Dz) still exists).

In the first case, i.e. when a bunch tracing takes place at p”, by Lemma 1
we have that at any moment, there exists at least a scion protecting z: either
scion(B7x/ | Dz), or scion(B/+1x/*1 Dz), or both.

In the second case, i.e. when event <send.propagate(xj+1)>ph happens, by
Lemma 2 we have that scion(B/*x/*! Dz) exists. O

A.2 Liveness

Our distributed GC algorithm is clearly not complete because it does not reclaim
all cross-bunch cycles of garbage. Thus, we only consider the existence of acyclic
cross-bunch garbage.

We assume that: (i) every bunch is eventually traced, (i) intra-bunch tracing
is complete w.r.t. that bunch, and (i) increment.scion, decrement.scion, and
union messages are eventually delivered in causal order.

We will not present here the full proof of liveness given its lack of interest.
We simply show the conditions that must hold and how they are ensured.

The obvious liveness condition is:

Liveness Condition 1 A granule not reachable is eventually reclaimed.

Given that we are considering cross-bunch collection, Liveness Condition 1
implies:

Liveness Condition 2 A granule not protected by any scion is eventually re-
claimed.

This condition is obviously ensured by the assumptions that every bunch is
eventually traced, and bunch tracing is complete w.r.t. that bunch.

Note that, for liveness we must ensure that if a granule is no longer reachable
from any incoming cross-bunch pointer, eventually no scion protects it. Thus,
the following liveness condition must hold:

Liveness Condition 3 A granule no longer reachable is eventually not protect-

ed.

This condition is obviously ensured because: (i) we assumed that every bunch
is eventually traced and bunch tracing is complete w.r.t. that bunch, therefore
eventually there will be no stubs for disappearing outgoing pointers, and (i)

we assumed that both messages for deletion of scions and union messages are
eventually delivered.

Therefore, a scion representing a incoming cross-bunch pointer no longer
existing will be eventually deleted, and the corresponding object reclaimed.

This article was processed using the IATEX macro package with LLNCS style

