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Abstract

We present algorithmic, complexity and implementation results for the problem of
isolating the real roots of a univariate polynomial in Bα ∈ L[y], where L = Q(α) is a
simple algebraic extension of the rational numbers.

We revisit two approaches for the problem. In the first approach, using resultant
computations, we perform a reduction to a polynomial with integer coefficients and
we deduce a bound of ÕB(N8) for isolating the real roots of Bα, where N is an upper
bound on all the quantities (degree and bitsize) of the input polynomials. The bound
becomes ÕB(N7) if we use Pan’s algorithm for isolating the real roots. In the second
approach we isolate the real roots working directly on the polynomial of the input. We
compute improved separation bounds for the roots and we prove that they are optimal,
under mild assumptions. For isolating the real roots we consider a modified Sturm
algorithm, and a modified version of descartes’ algorithm. For the former we prove
a Boolean complexity bound of ÕB(N12) and for the latter a bound of ÕB(N5). We
present aggregate separation bounds and complexity results for isolating the real roots
of all polynomials Bαk

, when αk runs over all the real conjugates of α. We show that
we can isolate the real roots of all polynomials in ÕB(N5). Finally, we implemented
the algorithms in C as part of the core library of MATHEMATICA and we illustrate their
efficiency over various data sets.

Keywords: real root isolation, algebraic polynomial, field extension, separation bounds,
Sturm sequences, Descartes’ rule of sign

1. Introduction

Real root isolation is a very important problem in computational mathematics. Many
algorithms are known for isolating the real roots of a polynomial having integer or
rational coefficients that are either based solely on operations with rational numbers, see
[27, 9, 14, 36] and references therein, or they follow a numerical, but certified approach,
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see [29, 41] and references therein. In this paper we consider a variation of the problem
where the coefficients of the polynomial are polynomial functions of a real algebraic
number; in other words, the coefficients belong to a simple algebraic extension of the
rationals.

The reader can refer to the end of the Introduction for a thorough presentation of the
Notation that we use in this paper. We consider the following problem:

Problem 1. Let α be a real algebraic number with isolating interval representation
α ∼= (A,I ), where A =

∑m
i=0 ai x

i, I = [a1, a2], a1,2 ∈ Q, deg(A) = m, and
h(A) = τ . By h(A) we denote the maximum bitsize of the coefficients of A. Let
Bα =

∑n
i=0 bi(α) yi ∈ Z(α)[y] be square-free, where bi(x) =

∑ηi
j=0 ci,j x

j ∈ Z[x],
h(ci,j) ≤ σ, bn and A are relatively prime, and ηi < m, for 0 ≤ i ≤ n. What is the
Boolean complexity of isolating the real roots of Bα?

Rump [38], see also [37], presented an algorithm for the problem that is an extension
of Collins and Loos [8] algorithm for integral polynomials. Johnson [20] presented and
compared various algorithms for Problem 1. He considered a norm based algorithm
that reduces the problem to root isolation of integral polynomial (this is the approach
that we consider in Sec. 3) and extended three algorithms used for integral polynomials,
i.e. Sturm (we present it in Sec. 4.3), the algorithm based on a derivative sequence
and Rolle’s theorem [8], and the algorithm based on Descartes’ rule of sign [7] (we
present a modified version in Sec. 4.4). Johnson and Krandick [19] modified the latter
and managed to replace exact arithmetic, when possible, with certified floating point
operations; a novelty that speeds up considerably the computations. Along the same
lines, Rouillier and Zimmermann [36] presented an algorithm for integral polynomials
that exploits adaptive multiprecision techniques that could be used for Problem 1, if we
approximate the real algebraic number up to a sufficient precision. In a series of works
[12, 13, 24] a bitstream version of Descartes’ algorithm was introduced. The coefficients
of the input polynomial are considered to be real numbers that we can approximate
up to arbitrary precision. We use a version of this approach, which is due to Sagraloff
[39], see also [25], to tackle Problem 1. We also refer the reader to [40] for an exact
approach with improved complexity bounds. Last but not least, let us also mention the
numerical algorithms due to Pan [29] and Schönhage [41], that could be also used if we
approximate α in our problem up to a sufficient precision.

Rioboo [35] considered various symbolic algorithms for operations with real alge-
braic numbers, based on quasi-Sylvester sequences. These algorithms could be used
for Problem 1, and they are closely connected with the Sturm algorithm that we present
(Sec. 4.3). However, we use different subalgorithms for sign evaluations and solving
polynomials. The focus in [35] is on an efficient implementation of the real closure in
axiom.

Problem 1 is closely related to real root isolation of of triangular systems and regular
chains. In [6, 46, 45, 23] algorithms and implementations are presented for isolating
the real roots of triangular polynomial systems, based on interval arithmetic and the
so-called sleeve polynomials. In the case of two variables the problem at study is similar
to Problem 1. In this line of research the coefficients of the algebraic polynomial are
replaced with sufficiently refined intervals, hence obtaining upper and lower bounds (i.e.
a sleeve) for the polynomial. Isolation is performed using evaluations and exclusion
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predicates that involve the non-vanishing of the derivative. To our knowledge there is
no complexity analysis of the algorithms. Nevertheless in [6] evaluation bounds are
presented, which are crucial for the termination of the algorithm, based on separation
bounds of polynomial systems. However, the systems used for the bounds involve the
derivative of the polynomial (this is needed for the exclusion criterion), which is not
the case for our approach. In [4] the problem of real root isolation of 0-dim square-free
regular chains is considered. A generalization of Vincent-Collins-Akritas (or Descartes)
algorithm is used to isolate the real roots of of polynomials with real algebraic numbers
as coefficients. This approach is similar to the direct strategy that we study. To our
knowledge the authors do not present a complexity analysis since they focus on efficient
algorithms and implementation in MAPLE.

We revisit two approaches for isolating the real roots of a square-free polynomial
with coefficients in a simple algebraic extension of the rational numbers. The first,
indirect, approach (Sec. 3), already presented in [20], aims to find a polynomial with
integer coefficients which is zero at all roots of Bα, isolate its real roots, and identify
the intervals which contain the roots of Bα. We compute separation bounds for the
resulting polynomial (Lem. 10) similar to Rump’s [38] and a new aggregate version.
The complexity of the algorithm is ÕB(N8), where N is an upper bound on all the
quantities (degrees and bitsizes) of the input. Using Pan’s algorithm [29] for solving
the bound becomes ÕB(N7). The second approach (Sec. 4.1) is to isolate the roots of
the input polynomial directly, using either Sturm’s algorithm or a modified Descartes
algorithm. We analyze the worst-case asymptotic complexity of both algorithms and we
obtain Boolean complexity bounds ÕB(N12) and ÕB(N5), respectively. To achieve
these complexity bounds, we estimate improved separation bounds for the roots (Sec. 4.1
and Lem. 12); we also establish the optimality of the separation bounds (Sec. 4.2). The
bounds are better than the previously known ones [37, 20] by, at least, a factor of N . We
also present new aggregate separation bounds (Lem. 15), and consider the complexity of
isolating the real roots of Bα, when α runs over all the real roots of A, see the definition
of Problem 1. The derived worst case complexity bound for isolating the roots of a
single polynomial matches that of isolating the roots of all polynomials Bα.

We empirically compare the performance of the indirect approach and the direct
approach based on Sagraloff’s modified Descartes algorithm [40]. The algorithms were
implemented in C as part of the core library of MATHEMATICA, and we illustrate their
behavior on various datasets (Sec. 6). The complexity bounds that we present are many
factors better than the previously known ones. However, a fair and explicit comparison
with the bounds in [20] is rather difficult, if possible at all, since, besides the improved
separation bounds that we present, the complexity bounds of many sub-algorithms that
are used have been dramatically improved over the last 20 years, and it is not clear how
to take this into account in the comparison. Nevertheless, the separation and complexity
bounds of Sec. 5 are, to the best of our knowledge, new.

A preliminary version of our work appeared in [42]. In the current version we
present improved bounds using fast algorithms for univariate real root isolation. We fix
an error in the complexity of sturm solver and we analyze the complexity of solving all
possible polynomials Bαk

. Finally, we give more details in our experimental section.
The rest of the paper is structured as follows: First we introduce our notations, and

in Sec. 2 we present some preliminaries and known results that we will use throughout
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the paper. In Sec. 3 we present our first, indirect, approach for tackling Problem 1 and in
Sec. 4 the two direct algorithms. In Sec. 5 we present new aggregate separation bounds.
Finally, in Sec. 6 we present our implementation and experiments.

Notation. OB means bit complexity and the ÕB-notation means that we are ignoring
logarithmic factors. For A =

∑d
i=1 aix

i ∈ Z[x], deg(A) denotes its degree. h(A)
denotes an upper bound on the bitsize of the coefficients of A, including a bit for the
sign. For a ∈ Q, h(a) ≥ 1 is the maximum bitsize of the numerator and the denominator.

Let α1, . . . , αd be the distinct complex roots of A. The Mahler’s measure, e.g. [2,
47, 26], of A isM (A) = |ad|

∏d
i=1 max {1, |αi|}. It holdsM (A) ≤ ‖A‖2.

Let ∆i = |αi−αci |, where αci is the root closest to αi. ∆(A) = mini ∆i(A) is the
separation bound, that is the smallest distance between two (real or complex, depending
on the context) roots of A. By Σ(A) = −

∑n
i=1 lg ∆i(A), we denote an upper bound

on the numbers of bits needed to represent isolating rational numbers for all the roots of
A.

We represent a real algebraic number, α, by the isolating interval representation.
It includes a square-free polynomial which vanishes on α and a (rational) interval
containing α and no other root.

Given two polynomials, possibly multivariate, f and g, let resx(f, g) denote their
resultant with respect to x.

2. Preliminaries

Real algebraic numbers are the real roots of univariate polynomials with integer
coefficients; let their set be Ralg. We represent them in the so-called isolating interval
representation. If α ∈ Ralg then the representation consists of a square-free polynomial
with integer coefficients,A ∈ Z[x], that has α as a real root, and an isolating interval with
rational endpoints, I = [a1, a2], that contains α and no other root of the polynomial.
We write α ∼= (A,I ).

The following proposition provides bounds on the roots of a univariate polynomial.
Various versions of the proposition could be found in e.g. [11, 9, 43]. We present
a (simplified) version an aggregate bound from of a variant due to [17, Thm. 11].
Regarding the multivariate case, we refer the reader to [16].

Theorem 2. Let f =
∑d
i=0 aix

i ∈ R[x] be such that a0ad 6= 0, not necessarily
square-free. Let the distinct roots of f be α1, . . . , αr. For any nonzero root αk it holds

|a0|
2 ‖f‖∞

≤ |αk| ≤ 2
‖f‖∞
|ad|

. (1)

Let K be any subset of {1, . . . , r} with cardinality |K|. It holds∏
k∈K

∆k ≥ 2−2d(lg d+1)|ad|−1M (f)
−2(r−1) |srd−r(f, f ′)| , (2)

where srd−rr(f, f ′) is the (d−r)-th subresultant coefficient of the subresultant sequence
of f and its derivative f

′
. If f is square-free, then we can replace sr0 with the resultant

of f and f ′, res(f, f ′).
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If f has integer coefficients, then we have the following bounds:

Corollary 3. With the above notation, if f ∈ Z[x], then let h(f) = τ . In this case
Eq. (1) simplifies to

2−τ−1 ≤ 1

2 ‖f‖∞
≤ |αk| ≤ 2 ‖f‖∞ ≤ 2τ+1 , (3)

following Eq. (2) we get∏
k∈K

∆k ≥ 2−4d lg d ‖f‖−2d+2
2 ⇒ − lg

∏
k∈K

∆k ≤ 8 d lg d+ 4 dτ = Õ(dτ) .

Proposition 4. Let f ∈ Z[x] have degree d and bitsize τ . We compute the isolating
interval representation of its real roots and their multiplicities in ÕB(d3τ) [40, 41, 28]
or ÕB(d2τ) [29]. The endpoints of (all) the isolating intervals have bitsize O(d τ) and
h(fred) = O(d+ τ), where fred is the square-free part of f . If N = max{d, τ} then
complexity bounds become ÕB(N4) and ÕB(N3), respectively.

Proposition 5. [31, 33] Let f ∈ Z[x] have degree d and bitsize τ . We can compute
isolating intervals for all the real roots of f with width less than or equal to 2−L in
ÕB(d2τ + dL).

Proposition 6. Given a real algebraic number α ∼= (f, [a, b]), where deg(f) = d,
h(f) = τ , h(a) = h(b) = O(dτ), and g ∈ Z[x], such that deg(g) = d, h(g) = τ , we
compute sign(g(α)) in bit complexity ÕB(d3 + d2τ).

If we are given isolating intervals for all the roots of f , then we can compute the
sign of g evaluated at all of the roots of f at the same Boolean cost.

Proof. Let h be the gcd of f and g. If α is a common root of f and g, then it is a root of
h. We can compute h in ÕB(d2τ); it holds deg(h) = O(d) and h(h) = Õ(d+ τ) [21].

Consider the polynomial p = f g. It holds deg(f) = O(d), h(p) = Õ(τ) and
− lg

∏
k ∆k(p) = Õ(dτ) (Prop. 3 and Cor. 3). The polynomial p has as roots the roots

of f and the roots of g. Thus, its separation bound provides a bound on how close are
the (non-common) roots of f and the roots of g. The isolating intervals of the roots of p
are are isolating intervals for the roots of f , for the roots of g, and for the roots h. Each
such interval has endpoints of bitsize sj . Moreover,

∑
j sj = Õ(dτ), by the aggregate

version of the separation bound (Cor. 3). Naturally, sj = Õ(dτ) for all j, where j runs
over all distinct roots of p.

If we refine the isolating interval, I , of α up to this accuracy, then we are certain
that α is the only root of f and g that is contained in it. Using Prop. 5 we can do this
ÕB(d2τ).

Next, we evaluate h, that represents the common roots of f and g, at the endpoints
of this refined interval. Each evaluation costs ÕB(dτ + ddτ) = ÕB(d2τ), using a
divide and conquer approach [5, Lemma 6], see also [3, 18]. The output bitsize of this
evaluation is Õ(d2τ).

Then, we have one the following two cases. If α is a root of h, and thus a com-
mon root of f and g, then the two evaluations will have different signs. In this case
sgn(g(α)) = 0.
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If α is not a root of h, and thus not a root of g, then the two evaluations have the
same sign. As there is no root of g in this refined interval, g has a constant sign at this
interval. Hence, it suffices to evaluate g at one of the endpoints to obtain sgn(g(α)).

To compute the sign of g evaluated at all the roots of f , we proceed as follows.
Let γj be all the distinct roots of p, and let sj be the bitsize of their isolating intervals.
Recall that

∑
j sj = Õ(dτ). We obtain these intervals in ÕB(d2τ) [29].

Next, we compute the sign of h at the endpoints of these intervals, to identify
the common roots of f and g. Each evaluation costs ÕB(d(d + τ) + dsj) [3, 18, 5].
Therefore, all the evaluations cost ÕB(d3 + d2τ + d

∑
j sj) = ÕB(d3 + d2τ). Then,

we perform the same evaluations for g, with the same cost, to identify the sign of g at
the non-common roots. The overall cost is ÕB(d3 + d2τ).

Let us also mention another strategy that does not involve, at least explicitly, the
evaluation of g and has the same complexity bound, when g is square-free. We notice the
following. Assume that we have the isolating intervals for the real roots of a polynomial.
Then we can determine the sign of this polynomial at the endpoints of the isolating
interval by considering the sign of its leading coefficient. For example, if the leading
coefficient is positive the signs of the evaluation of the polynomial at the isolating
interval of the biggest real root are [−,+]. At the second biggest is [+,−], and so
on. The sign of the polynomial evaluated at a point outside of the isolating intervals
is constant, and can be easily deduced; it is the same as the sign at the endpoint at
the closest isolating interval. In our example between the two largest real roots, the
polynomial is positive.

Recall, that the separation bound for all the polynomials is Õ(dτ). We isolate and
refine the roots of p, f , g, and h, up to accuracy Õ(dτ). This costs ÕB(d3 + d2τ).

At this point, each isolating interval of h intersect at most one isolating interval of p.
These intervals corresponds to the common roots. The same holds for f , and g.

As we have mentioned we can estimate the sign g at the endpoint of its isolating
intervals. The sign of g outside these intervals is constant and also provides the sign for
the non-common roots with f . The dominating cost is the cost of the refinement, which
is ÕB(d3 + d2τ).

If g is no square-free, then we also need to compute its square-free factorization and
to identify the isolating intervals of the real roots of its factor.

For the proofs of the following results and for the related work we refer the reader to
[10]. Let f, g ∈ (Z[x])[y] be such that degx(f) = p, degx(g) = q, degy(f),degy(g) ≤
d, τ = max(h(f), h(g)). By SR(f, g ; a) we denote the evaluation of the signed
polynomial remainder sequence of f and g with respect to x over a, and by SRj(f, g ; a)
we denote the j-th element in this sequence.

Proposition 7. We can compute res(f, g) w.r.t. x in ÕB(p qmax{p, q}dτ).

Proposition 8. We compute SR(f, g ; a), where a ∈ Q ∪ {∞} and h(a) = σ, in
ÕB(pqmax{p, q}dmax{τ, σ}). For the polynomials SRj(f, g ; a) ∈ Z[y], except for
f, g, we have degy(SRj(f, g ; a)) = O((p+q)d) and h(SRj(f, g ; a)) = O(max{p, q}τ+
min{p, q}σ).
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3. Reduction to integer coefficients

3.1. Some useful bounds

The roots of Bα in Problem 1 are algebraic numbers, hence they are roots of a
polynomial with integer coefficients. We estimate bounds on the degree and the bitsize
of this polynomial and we use them to analyze the Boolean complexity of the real root
isolation algorithm.

Consider a real algebraic number α ∈ Ralg, in isolating interval representation
α ∼= (A,I ), where A =

∑m
i=0 ai x

i, I = [a1, a2], a1,2 ∈ Q, deg(A) = m, and
h(A) = τ . SinceA is square-free, it hasm, possible complex, roots, say α1, α2, . . . , αm
and after a (possible) reordering let α = α1.

Let Bα ∈ Z(α)[y], be a univariate polynomial in y, with coefficients that are
polynomials in α with integer coefficients. More formally, let Bα =

∑n
i=0 bi(α) yi,

where bi(x) =
∑ηi
j=0 cij x

j and ηi < m, 0 ≤ i ≤ n. The restriction ηi < m comes
from the fact that Z(α) is a vector space of dimension1 m and the elements of one of
its bases are 1, α, . . . , αm−1. Finally, let h(Bα) = maxi,j h(cij) = σ. We assume that
Bα is square-free.

Our goal is to isolate the real roots of Bα (Problem 1). Since Bα has algebraic
numbers as coefficients, its roots are algebraic numbers as well. Moreover, there is a
polynomial with integer coefficients that has as roots the roots of Bα, and possible other
roots as well. To construct this polynomial, e.g. [20, 9, 22], we consider the following
resultant w.r.t. x

R(y) = resx(A(x), B(x, y)) = aηm

m∏
j=1

B(αj , y), (4)

where η = max{ηi}, and B(x, y) ∈ Z[x, y] is obtained from Bα after replacing all the
occurrences of α with x. Interpreting the resultant using the Poisson formula, R(y)
is the product of polynomials B(αj , y), where j ranges over all the roots of A. Our
polynomial Bα ∈ Z(α)[y] is the factor in this product for j = 1. Hence, R has all the
roots that Bα has and maybe more.

Remark 9. Notice that R(y) is not square-free in general. For example consider the
polynomial Bα = y4 − α2, where α is the positive root of A = x2 − 3. In this case
R(y) = resx(A(x), B(x, y)) = resx(x2 − 3, y2 − x2) = (y4 − 3)2.

Using Prop. 8 and by taking into account that ηi < m, we get deg(R) ≤ mn
and h(R) ≤ m(τ + σ) + 2m lg(4mn). We may also write deg(R) = O(mn) and
h(R) = Õ(m(σ + τ)).

To construct an isolating interval representation for the real roots of Bα, we need
a square-free polynomial. This polynomial, C(y) ∈ Z[y], is a square factor of R(y),

1IfA is the minimal polynomial ofα then the dimension is exactlym. In general, it is not (computationally)
easy to compute the minimal polynomial of a real algebraic number. Thus, we usually work with a square-free
polynomial that has it as real root.
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and so it holds deg(C) ≤ mn and h(C) ≤ m(τ + σ) + 3m lg(4mn), where the last
inequality follows from Mignotte’s bound [26].

Using the Prop. 2, we deduce the following lemma:

Lemma 10. Let Bα be as in Problem 1. The minimal polynomial, C ∈ Z[x], of
the, possible complex, roots of Bα, γi, has degree ≤ mn and bitsize ≤ m(τ + σ) +

3m lg(4mn)) or Õ(m(τ + σ)). Moreover, it holds

|γi| ≤ 2Õ(m(τ+σ)) ,(5)

Σ(C) = −
∑
i

lg ∆i(C) ≤ Õ(m2n(n+ τ + σ)) .(6)

3.2. The algorithm

The indirect algorithm for Problem 1 follows closely the procedure described in the
previous section to estimate the various bounds on the roots of Bα. First, we compute
the univariate polynomial with integer coefficients, R, such that the set of its real roots
includes those of Bα. We isolate the real roots of R and we identify the ones that are
also roots of Bα.

Let us present in detail the three steps and their complexity. We compute R using
resultant computation, as presented in (4). For this we consider B as a bivariate
polynomial in Z[x, y] and we compute resx(B(x, y), A(x)), using Prop. 7. Since
degx(B) < m, degy(B) = n, h(B) = σ, degx(A) = m, degy(A) = 0, and h(A) = τ ,
this computation costs ÕB(m3n(σ + τ)), using Prop. 7.

Now we isolate the real roots of R. This can be done in ÕB(m4n3(τ + σ)), resp.
ÕB(m3n2(τ + σ)) using the first, resp. second, bound from Prop. 4. In the same
complexity bound we can also compute the multiplicities of the real roots, if needed
[15].

The rational numbers that isolate the real roots of R have bitsize bounded by
Õ(m2n(σ + τ)), and the bitsize of all of them is the somewhat similar quantity
Õ(m2n(n+ σ + τ)), as Prop. 2 and Lem. 10 indicate.

It is possible that R has more roots that Bα. Thus, it remains to identify which real
roots of R are roots of Bα. For sure all the real roots of Bα are roots of R. Consider a
real root γ of R and its isolating interval [c1, c2]. If γ is a root of Bα, then since Bα is
square-free, by Rolle’s theorem it must change signs if we evaluate it over the endpoints
of the isolating interval of γ. Therefore, to identify the real roots of R that are roots of
Bα it suffices to compute the sign of Bα over all the endpoints of the isolating intervals.

It is possible to avoid the non-relevant roots of R by applying the algorithm for
changing the ordering of a bivariate regular chain [34]. However, we do not elaborate
this approach further.

Consider an isolating point of R, say cj ∈ Q, of bitsize sj . To compute the sign of
the evaluation of Bα over it, we proceed as follows. First we perform the substitution
y = cj , and after clearing denominators, we get a number in Z[α], for which we want
to compute its sign. This is equivalent to consider the univariate polynomial B(x, cj)
and to compute its sign if we evaluate it over the real algebraic number α. We have
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deg(B(x, cj)) = O(m) and h(B(x, cj)) = Õ(σ + nsj). The computation of each
coefficient of B(x, cj) costs ÕB(σ + nsj) and all of them cost ÕB(mσ +mnsj).

The sign evaluation costs ÕB(m2(τ + σ + nsj) using Prop. 6. Summing up over
all sj’s, there are O(mn), and taking into account that

∑
j sj = Õ(m2n(σ + τ + n))

(Lem. 10), we conclude that the overall complexity of identifying the real roots of Bα is
ÕB(m4n2(n+ σ + τ)), or ÕB(N7).

The overall complexity of the algorithm is dominated by that of real solving. We
can state the following theorem:

Theorem 11. The complexity of isolating the real roots of B ∈ Z(α)[y] using the
indirect method is ÕB(m4n3(τ + σ)), resp. ÕB(m4n2(n + σ + τ)), using the first,
resp. the second bound of Prop. 4. If N = max{m,n, σ, τ}, then the previous bounds
become ÕB(N8) and ÕB(N7), respectively.

If the polynomialBα is not square-free then we can apply, for example, the algorithm
of [44] to compute its square-free factorization and then we apply the previous algorithm
either to the square-free part or to each polynomial of the square-free factorization.

4. Two direct approaches

The computation of R, the polynomial with integer coefficients that has the real
roots of Bα is a costly operation that we usually want to avoid. If possible, we would
like to try to solve the polynomial Bα directly, using one of the well-known subdivision
algorithms, for example strum or descartes and bernstein, specially adopted to
handle polynomials that have coefficients in an extension field. In practice, this is
accomplished by obtaining, repeatedly improved, approximations of the real algebraic
number α and subsequently apply descartes or bernstein for polynomials with
interval coefficients, e.g. [36, 19].

The fact that we compute the roots using directly the representation of Bα allows
us to avoid the complexity induced by the conjugates of α. This leads to improved
separation bounds, and to faster algorithms for real root isolation.

4.1. Separation bounds for Bα
We compute various bounds on the roots of Bα based on the inequalities of Thm. 2.

For this we need to compute a lower bound for |RB(α)| and upper bounds for |bi(α)|
and ‖Bα‖2.

First we compute bounds on the coefficients of Bα. Let α1 = α, α2, . . . , αm be the
roots of A. We consider the resultants

ri := resx(A(x), z − bi(x)) = resx

A(x), z −
ηi∑
j=0

ci,jx
j

 ∈ Z[z] .

It holds that

ri(z) = aηim

m∏
k=1

(z − bi(αk)) , (7)
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where ηi < m. The roots of ri are the numbers bi(αk), where k runs over all the roots
of A. We use Prop. 8 to bound the degree and bitsize of ri. The degree of ri is bounded
by m and their coefficients are of bitsize ≤ mσ + mτ + 5m lg(m). Using Cauchy’s
bound, we deduce that either bi(αk) = 0 or

2−T = 2−mσ−mτ−5m lg(m) ≤ |bi(αk)| ≤ 2mσ+mτ+5m lg(m) = 2T , (8)

for all i and k. Note that since bn and A are relatively prime, bn(αk) 6= 0. To bound
|sr0| that appears in Thm. 2 we consider the identity

|sr0| = |(−1)
1
2n(n−1)resy(Bα, ∂Bα(y)/∂y)| = |(−1)

1
2n(n−1)RB(α)| ,

where the resultant, RB ∈ Z[α], can be computed as the determinant of the Sylvester
matrix of Bα and ∂Bα(y)/∂y.

The Sylvester matrix is of size (2n− 1)× (2n− 1), the elements of which belong
to Z[α]. The determinant consists of (2n− 1)! terms. Each term is a product of n− 1
polynomials in α of degree at most m− 1 and bitsize at most σ, times a product of n
polynomials in α of degree at most m− 1 and bitsize at most σ+ lg n. The first product
results a polynomial of degree (n−1)(m−1) and bitsize (n−1)σ+ (n−1) lgm. The
second product results polynomials of degree n(m− 1) and bitsize nσ lg n+ n lgm.
Thus, any term in the determinant expansion is a polynomial in α of degree at most
(2n − 1)(m − 1), or O(mn), and bitsize at most 4(2n − 1)σ lg(mn) or Õ(nσ). The
determinant itself, is a polynomial in α of degree at most mn and of bitsize 4(2n −
1)σ lg(mn) + (2n− 1) lg(2n− 1) ≤ 5(2n− 1)σ lg(mn) = Õ(nσ).

To compute a bound on RB(α) we consider RB as a polynomial in Z[y], and we
compute a bound on its evaluation over α. For this we use resultants. It holds

D = resx(A(x), y −RB(x)) = adeg(RB)
m

m∏
i=1

(y −RB(αi)) . (9)

We notice that the roots of D ∈ Z[x] are the evaluations of RB over the roots of A.
So it suffices to compute bounds on the roots of D. Using Prop. 8 we deduce that
deg(D) ≤ m and h(D) ≤ 13mnσ lg(mn) +mnτ or h(D) = Õ(mn(σ+ τ)). We use
Eq. (1) to compute an upper and lower bound for |RB(α)|, and so

2−O(mnτ+mnσ lg(mn)) ≤ |RB(α)| ≤ 2O(mnτ+mnσ lg(mn)) . (10)

It remains to boundM (Bα) using ‖Bα‖2. From Eq. (8) we get

‖Bα‖22 ≤
n∑
i=0

(bi(α))2 ≤ (n+ 1) 22m(σ+τ+5 lg(m)) . (11)

We substitute Eq. (8), (10), and (11) to the inequalities of Thm. 2, and we derive the
following lemma:

Lemma 12. Let Bα be as in Problem 1, and ξi be its roots. Then, it holds

|ξi| ≤ 2Õ(m(σ+τ)) ,(12)

Σ(Bα) = −
∑
i

lg ∆i(Bα) ≤ Õ(mn(σ + τ)) .(13)

10



4.2. Almost tight separation bounds

The separation bounds of the previous lemma are close to optimal.
Let α be the root of A(x) = xm − axm−1 − 1, in (a, a + 1), for a ≥ 3, m ≥ 3.

Then the Mignotte-like polynomial

Bα(y) = yn − 2(αky − 1)2,

where k = b(m− 1)/2c, has two roots in (1/αk − h, 1/αk + h), where

h = α−k(n+2)/2 < a−(m−2)(n+2)/4.

If a ≤ 2τ and τ = Ω(lg(mn)), then − lg ∆(Bα) = Ω(mnτ), which matches the
upper bound in (13) of Lem. 12. This quantity, Ω(mnτ), is also a tight lower bound
for the number of steps that a bisection-based algorithm, like sturm or descartes,
performs. To establish the lower bound on the number of steps it suffices to reproduce
the arguments from [14] made for polynomials with integer coefficients.

4.3. The STURM algorithm

Let us first study the sturm algorithm. We assume Bα as in Problem 1 to be square-
free. To isolate the real roots of Bα using the sturm algorithm, we need to evaluate
the Sturm sequence of B(α, y) and its derivative with respect to y, ∂B(α, y)/∂y, over
various rational numbers. For the various bounds needed we will use Lem. 12.

The number of steps that a subdivision-based algorithm, and hence sturm algorithm,
performs to isolate the real roots of a polynomial depends on the separation bound.
To be more specific, the number of steps, (#T ), that sturm performs is (#T ) ≤
2r + r lgB + Σ(Bα) [9, 11], where r is the number of real roots and B is an upper
bound on the real roots. Using (12) and (13) we deduce that (#T ) = Õ(mn(τ + σ)).

To complete the analysis of the algorithm it remains to compute the complexity of
each step, i.e. the cost of evaluating the Sturm sequence over a rational number, of the
worst possible bitsize. The latter is induced by the separation bound, and in our case is
Õ(mn(τ + σ)).

We considerB as polynomial in Z[x, y] and we evaluate the Sturm-Habicht sequence
ofB and ∂B

∂y , over rational numbers of bitsize Õ(mn(τ+σ)). The cost of this operation

is ÕB(m2n4(τ + σ)) (Prop. 8).
It produces O(n) polynomials in Z[x], of degrees O(mn) and bitsize Õ(mn2(σ +

τ)). For each polynomial we have to compute its sign if we evaluate it over α. Us-
ing Prop. 6 each sign evaluation costs ÕB(m3n4(σ + τ)), and so the overall cost
is ÕB(m3n5(σ + τ)). If we multiply the latter bound with the number of steps,
Õ(m4n6(σ + τ)2), we get the following theorem.

Theorem 13. The complexity of isolating the real roots of B ∈ Z(α)[y] using the
sturm algorithm is ÕB(m4n6(σ + τ)2)), or ÕB(N12), where N = max{m,n, σ, τ}.
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4.4. A modified DESCARTES algorithm
The main idea of the modified version of descartes algorithm is to approximate

the coefficients of Bα up to a specified accuracy that guarantees that the roots of the
resulting polynomial are close to the roots of Bα. Then, we solve the derived univariate
polynomial. Finally, from the isolating intervals of the derived polynomial we can
obtain isolating intervals for the real roots of Bα.

We have implemented the modified version of Descartes’ algorithm due to Sagraloff
[39], that applies to polynomials with bitstream coefficients. We also refer the reader to
[13, 24]. For the analysis of the various bounds we rely on [25], see also [41, 24, 39],
where we also refer the reader for a detailed presentation.

We need to approximate the coefficients of Bα up to accuracy O(Σ(Bα) + nτB) =

Õ(mn(σ + τ)) [39], see also [41, 29, 24]. In this way the number of real roots of the
approximate polynomial is the same as the number of real roots of Bα. Moreover, the
isolating intervals that we compute for the approximate polynomial are also isolating
intervals for the real roots of Bα.

As stated in Problem 1, let α be a real root of A =
∑m
i=0 aix

i ∈ Z[x], where
am 6= 0 and |ai| < 2τ for 0 ≤ i ≤ m, and let Bα =

∑n
i=0 bi(α)yi ∈ Z[α][y], where

bi =
∑ηi
j=0 ci,jx

j ∈ Z[x] , ηi < m and |ci,j | < 2σ for 0 ≤ i ≤ n and 0 ≤ j ≤ ηi.
Recall that we also assume that Bα is square-free.

Let ξ1, . . . , ξn be all the (complex) roots of B, and ∆i(Bα) := minj 6=i|ξj − ξi|.
Let ρ be such that ρ = maxj{1,max{1, |log|ξi||}}, that is a logarithmic root bound
for the roots of Bα. We need to approximate the coefficients of Bα up to accuracy
O(Σ(Bα) + nρ), where Σ(Bα) = −

∑n
i=1 lg(∆i(Bα)). In this way the complexity

of isolating the real roots would be ÕB(n3 + n2τB + nΣ(Bα)), where
∣∣∣ bi(α)bn(α)

∣∣∣ ≤ 2τB ,
based on Proposition 4 and [25].

Let us estimate the various quantities. Lemma 12 indicates Σ(Bα) ≤ Õ(mn(τ+σ)).
To compute a bound on τB , we use Eq. (8). It holds

∣∣∣ bi(αk)
bn(αk)

∣∣∣ ≤ 22mσ+2mτ+10m lg(m),
for all i and k. Hence,

τB ≤ 2mσ + 2mτ + 10m lg(m) = Õ(m(σ + τ)) . (14)

A similar bound holds for ρ using Eq. (1) of Thm. 2.
By combining the previous bounds we deduce that we should approximate the

coefficients of Bα up to accuracy

ÕB(Σ(Bα) + nρ) = ÕB(mn(τ + σ)) .

Thus, we can isolate the real roots of Bα in ÕB(n3 + mn2(σ + τ)). If N =

max{m,n, σ, τ}, then the bound becomes ÕB(N4).
It remains to estimate the cost of computing the successive approximations of

bi(α)/bn(α). The root isolation algorithm requires approximations of bi(α)/bn(α) to
accuracy of O(Σ(Bα) + nτB) bits after the binary point. Since |bi(α)/bn(α)| ≤ 22T ,
to approximate each fraction, for 0 ≤ i ≤ n − 1, to accuracy L, it is sufficient to
approximate bi(α), for 0 ≤ i ≤ n, up to precision O(L+ T ). For the definition of T
refer to Eq. (8). Hence, the algorithm requires approximation of bi(α), for 0 ≤ i ≤ n,
to precision O(Σ(Bα) + nτB + T ).
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Approximation of ci,jαj to accuracy of L bits requires approximation of α to
accuracy of

L+lg |ci,j |+lg(j)+(j−1) lg |α| ≤ L+σ+lg(m)+(m−1)(τ+1) = Õ(L+σ+mτ)

bits. Hence the accuracy of approximations of α required by the algorithm is

O(Σ(Bα) + nτB + T ) = Õ(mn(σ + τ)) .

Using Proposition 5, the bit complexity of approximating all the roots of A, and
hence α, to accuracy L is Õ(m2τ +mL). Therefore, the bit complexity of computing
the required approximations of bi(α)/bn(α) is

Õ(m2τ +m ·mn(σ + τ)) = Õ(m2n(σ + τ)) .

To obtain the approximations of bi(α), for all i, we need to evaluate n polynomials, the
bi’s, of degree at most m each at the approximation of α that has bitsize Õ(mn(σ+ τ)).
Each evaluation costs Õ(m2n(σ + τ)) [3, 18] and all them cost Õ(m2n2(σ + τ)) or
ÕB(N5).

By combining the various bounds we obtain the claimed complexity bound.

Theorem 14. The bit complexity of isolating the real roots of Bα of Problem 1 is
Õ(n3 +m2n2(σ + τ)). If N = max{m,n, σ, τ}, then the bound becomes ÕB(N5).

5. An application: solving all the polynomials

In this section we assume that Bα is square-free for all roots, α, of A. Let r ≤
m = deg(A) be the number of real roots of A. We consider an aggregate version of
the bound (6) for all polynomials Bαk

, where αk runs over all real roots of A, that is
1 ≤ k ≤ r. Consequently, we present a complexity bound for isolating the real roots of
all possible polynomials Bαk

.

Lemma 15. Let Bαk
be as in Problem 1, and let k run over all the real roots of A, 1 ≤

k ≤ r. Moreover, let τk := max0≤i≤n lg
∣∣∣ bi(αk)
bn(αk)

∣∣∣, and ik = arg max0≤i≤n lg
∣∣∣ bi(αk)
bn(αk)

∣∣∣.
Then, it holds

r∑
k=1

lg

∣∣∣∣bik(αk)

bn(αk)

∣∣∣∣ =

r∑
k=1

τk ≤ 2mσ + 2mτ + 9m lg(m) = Õ(m(σ + τ)) , (15)

−
r∑

k=1

lg
∏
i

∆i(Bαk
) ≤= Õ(mn(σ + τ)) . (16)

Proof. Note that for 0 ≤ i ≤ n and 1 ≤ k ≤ r

|bi(αk)| ≤ m 2σmax{1, |αk|}m−1 . (17)
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Hence
r∏

k=1

|bik(αk)| ≤
r∏

k=1

m 2σmax{1, |αk|}m−1 ≤
m∏
`=1

m 2σmax{1, |α`|}m−1 = mm 2mσ
(
M (A)

|am|

)m−1
,

(18)
whereM (A) = |am|

∏m
`=1 max{1, |α`|} is the Mahler measure of A. By Landau’s

inequality, e.g. [26, 47],

M (A) ≤ ‖A‖2 ≤
√
m+ 1 ‖A‖∞ ≤

√
m+ 1 · 2τ . (19)

Since |am| ≥ 1,

r∏
k=1

|bik(αk)| ≤ mm 2mσ(m+ 1)
(m−1)/2

2(m−1)τ ≤ 2mσ+mτ+2m lg(m) . (20)

Let ri(z), for 0 ≤ i ≤ n, be the resultants considered in (7) and let s(z) := zmrn(1/z).
Since bn and A are relatively prime, bn(α`) 6= 0 for 1 ≤ ` ≤ m, and the roots of s(z)
are the numbers 1/bn(α`). We have

r∏
k=1

|1/bn(αk)| ≤
m∏
`=1

max{1, |1/bn(α`)|} =M (s) /|sm| ≤ M (s) ,

where sm ∈ Z is the leading coefficient of s. Since h(s) = h(rn) ≤ mσ + mτ +
5m lg(m), by Landau’s inequality we obtain

r∏
k=1

|bn(αk)| ≥ 1/(
√
m+ 1 ‖s‖∞) ≥ 2−mσ−mτ−7m lg(m) . (21)

If we combine (20) and (21) we prove (15).
To prove (16) we use inequality (2). Therefore, we need to find an upper bound on∏r

k=1 ‖Bαk
‖2 to boundM (Bαk

), and a lower bound for sr0. For the first quantity we
notice that (17) implies

‖Bαk
‖2 =

√√√√ n∑
i=0

|bi(αk)|2 ≤
√
n+ 1 ·m 2σmax{1, |αk|}m−1 ,

and hence
r∏

k=1

‖Bαk
‖2 ≤ (n+ 1)

m/2
mm 2mσ

r∏
k=1

max{1, |αk|}m−1 ≤ (n+ 1)
m/2

mm 2mσM (A)
m−1

.

By (19)
r∏

k=1

‖Bαk
‖2 ≤ 2mσ+mτ+m lg(n)+2m lg(m) . (22)

To bound sr0 we need to bound the resultantRB(αk). We considerE(z) := zmD(1/z),
where D is the resultant defined in (9). Since Bα`

are square-free for 1 ≤ ` ≤ m, the
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roots ofE are the numbers 1/RB(α`). Taking into account that the leading coefficient of
E is a nonzero integer, h(E) ≤ 13mnσ lg(mn) +mnτ , and using Landau’s inequality
we get that

r∏
k=1

|1/RB(αk)| ≤
m∏
`=1

max{1, |1/RB(α`)|} ≤ M (E) ≤ 214mnσ lg(mn)+mnτ .

(23)
Using r times (2) and summing up all inequalities we get

−
r∑

k=1

lg
∏
i

∆i(Bαk
) ≤

r∑
k=1

4n lg n+ (2n− 2) lg ‖Bαk
‖2 − lg|RB(αk)|

≤ 4mn lg n+ 2n lg

r∏
k=1

‖Bαk
‖2 − lg

r∏
k=1

lg|RB(αk)|

≤ O(mn lg n) +O(nm(σ + τ + lg(mn))) +O(mn(σ lg(mn) + τ))

≤ O(mn(σ lg(mn) + τ)) = Õ(mn(σ + τ)) ,

that concludes the proof.

Theorem 16. Let Bαk
be as in Problem 1 and let αk run over all the roots of A. We can

isolate the real roots of all Bαk
in ÕB(mn3 +m2n2(σ+ τ)). If N = max{m,n, σ, τ},

then the bound becomes ÕB(N5),

Proof. The proof is similar to the proof of Th. 14. For each (real) root αk we need to
approximate the coefficients of each Bαk

up to precision O(Σ(Bαk
) + nρk), where ρk

is the logarithmic bound on the roots of Bαk
(see also the discussion in Section 4.4).

We solve each polynomial in ÕB(n3 + nΣ(Bαk
) + n2τk), where τk is roughly an

upper bound on the roots and is defined in Lemma 15. For all the roots the cost is
ÕB(

∑r
k=1 n

3 +
∑r
k=1 nΣ(Bαk

) +
∑r
k=1 n

2τk), where r ≤ m.
The first term of this bound is ÕB(mn3). The second term, using (16) from

Lemma 15, becomes ÕB(mn2(σ+ τ)). The same bound holds for the third term, using
(15) from Lemma 15.

We can derive bounds for ρk similar to the ones for τk. These bounds affect the
complexity of approximating the roots αk up to the required precision. However, this
complexity is dominated from the cost of obtaining the approximation of the coefficients
bi(αk).

The cost of approximating one root of A up to a desired precision is the same as the
cost of approximating all the roots [31, 33]. It is ÕB(m2n(σ + τ)).

Recall that the complexity of Theorem 14 is dominated by the complexity of eval-
uating the polynomials bi at approximations of the root(s) αk. However, the Boolean
complexity of the evaluation at one point is the same, up to poly-logarithmic factors, as
the complexity of evaluating at many points [32, 30]. Therefore, the complexity of this
step is also ÕB(m2n2(σ + τ)).
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6. Implementation and experiments

We compare implementations of two methods of real root isolation for square-free
polynomials over simple algebraic extensions of rationals. The experiments have been
run on a 64-bit Linux virtual machine with a 3 GHz Intel Core i7 processor and 6 GB of
RAM. The timings are in given seconds. Computations that did not finish in 10 hours of
CPU time are reported as > 36000, computations that took less that 1 millisecond are
reported as 0.

Reduction to integer coefficients

The first method, ICF (for Integer Continued Fractions), performs reduction to inte-
ger coefficients described in Section 3.2. The algorithm consists of three steps. The first
step computes the resultant (4). The reported resultant computation time is the fastest
of three methods implemented in the MATHEMATICA system: subresultant remainder
sequence over the integers, Sylvester matrix determinant and a modular resultant algo-
rithm. Next the algorithm isolates the real roots of the resultant. The method used is the
MATHEMATICA implementation of the Continued Fractions algorithm [1]. Finally, the
intervals isolating roots of the original polynomial are identified using polynomial sign
computation at the interval endpoints.

A modified Descartes’ algorithm

The second method, BMD (for Bitstream Modified Descartes), uses Sagraloff’s
modified version of Descartes’ algorithm ([39], see Section 4.4). The algorithm has
been implemented in C as a part of the MATHEMATICA system. Our implementation
uses a heuristically determined initial accuracy of L = max(2blog2 nc+3, 64) bits for
the DCML algorithm and the accuracy is doubled each time the algorithm returns
“insufficient precision”.

Example sets used in the experiments

Randomly generated polynomials. For given values of m and n each problem was gen-
erated as follows. First, univariate polynomials of degree m with uniformly distributed
random 10-bit integer coefficients were generated until an irreducible polynomial which
had real roots was obtained. A real root r of the polynomial was randomly selected as
the extension generator. Finally, a polynomial in Z[r, y] of degree n in y and degree
m− 1 in r with 10-bit random integer coefficients was generated. Each timing reported
is an average for 10 randomly generated problems.

Generalized Laguerre Polynomials. This example compares the two root isolation
methods for generalized Laguerre polynomials Lαn(x), where α was chosen to be the
smallest root of the Laguerre polynomial Lm(x). Note that Lαn(x) has n positive roots
for any positive α and Lm(x) has m positive roots, so this example maximizes the
number of real roots of both the input polynomial with algebraic number coefficients
and the polynomial with integer coefficients obtained by ICF.
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Generalized Wilkinson Polynomials. This example uses the following generalized
Wilkinson polynomials

Wn,α(x) :=

n∏
k=1

(x− kα)

where α is the smallest root of the Laguerre polynomial Lm(x).

Mignotte Polynomials. The variant of Mignotte polynomials used in this example is
given by

Mn,α(x) := yn − 2(αky − 1)2

where α is the root of
Am(x) := xm − 3xm−1 − 1

in (3, 4), m ≥ 3 and k = b(m− 1)/2c (see Section 4.2).

Experimental results
Tables 1-4 give the total timings for both algorithms for the four example sets. The

experiments suggest that for low degree extensions ICF is faster than BMD, but in all
experiments as the degree of extension grows BMD becomes faster than ICF. Another
fact worth noting is that ICF depends directly on the extension degreem, since it isolates
roots of a polynomial of degree mn. On the other hand, the only part of BMD that
depends directly on m is computing approximations of coefficients, which in practice
seems to take a very small proportion of the running time. The main root isolation loop
depends only on the geometry of roots, which depends onm only through the worst case
lower bound on root separation. Indeed, in all examples the running time of ICF grows
substantially with m, but the running time of BMD either grows at a much slower pace
or, in case of generalized Wilkinson polynomials, it even decreases with m (because the
smallest root α of Lm(x), and hence the root separation of Wn,α(x), increase with m).
The superiority of the direct approach was also observed in [20].

Table 1: Randomly generated polynomials
Algorithm m = 2 m = 3 m = 5 m = 10 m = 20

n = 10 ICF 0.002 0.004 0.010 0.077 0.588
BMD 0.002 0.002 0.004 0.007 0.017

n = 20 ICF 0.003 0.007 0.025 0.260 2.38
BMD 0.006 0.006 0.008 0.014 0.034

n = 50 ICF 0.012 0.029 0.115 1.52 15.9
BMD 0.022 0.024 0.031 0.044 0.093

n = 100 ICF 0.043 0.107 0.407 6.61 65.8
BMD 0.092 0.110 0.081 0.141 0.241

n = 200 ICF 0.132 0.394 1.81 31.7 621
BMD 0.348 0.362 0.508 0.440 1.02

A more detailed timing profile for the ICF algorithm is given in Tables 5-8. Rows
marked Res, Isol, and Ident, give the timings of the three main steps of the ICF algorithm,
namely the resultant computation, the real root isolation of the resultant, and the
identification of the intervals isolating roots of the original polynomial. For random
polynomials within the (m,n) range used in the experiments the resultant computation
dominates the timing. However, one can observe that with a fixed m and increasing n,

17



Table 2: Generalized Laguerre polynomials
Algorithm m = 2 m = 3 m = 5 m = 10 m = 20

n = 10 ICF 0.005 0.008 0.022 0.119 0.822
BMD 0.007 0.006 0.010 0.008 0.010

n = 20 ICF 0.012 0.034 0.098 0.792 10.7
BMD 0.062 0.066 0.070 0.077 0.090

n = 50 ICF 0.105 0.275 1.41 16.6 312
BMD 1.37 1.43 1.54 1.62 1.61

n = 100 ICF 0.762 2.16 14.0 233 10644
BMD 43.5 48.3 46.5 43.7 69.9

n = 200 ICF 6.99 22.7 177 3425 > 36000
BMD 1757 1753 1685 1678 1678

Table 3: Generalized Wilkinson polynomials
Algorithm m = 2 m = 3 m = 5 m = 10 m = 20

n = 10 ICF 0.005 0.006 0.022 0.123 0.966
BMD 0.010 0.009 0.009 0.007 0.007

n = 20 ICF 0.009 0.023 0.093 0.949 12.7
BMD 0.028 0.028 0.026 0.026 0.020

n = 50 ICF 0.085 0.265 1.35 21.4 320
BMD 1.02 0.890 0.757 0.402 0.483

n = 100 ICF 0.590 2.35 14.7 278 6070
BMD 22.4 18.8 15.0 10.1 4.44

n = 200 ICF 5.86 32.0 198 6685 > 36000
BMD 1189 815 606 407 257

the proportion of time used by the real root isolation increases. For the other three sets
of polynomials the computation time is dominated by the real root isolation step.

Tables 9-12 provide more detailed experimental results for the BMD algorithm.
Rows marked Total time, No. of attempts, Isol. time, and Isol. accuracy give, re-
spectively, the total run time of the BMD algorithm, the number of times the DCML

algorithm was run, the run time of the final DCML algorithm call which successfully
isolated the roots, and the accuracy used in the final DCML algorithm call. One
can observe that the approximation accuracy required for root isolation depends only
on n and on the geometry of roots. For a fixed n the geometry of roots of random
polynomials and Laguerre polynomials does not depend on m, and indeed the required
approximation accuracy does not change with m. For Wilkinson polynomials the root
separation increases with m, and hence the required approximation accuracy decreases
with m. For Mignotte polynomials the root separation decreases with m, and hence the
required approximation accuracy increases with m.
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