D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al., STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Research, vol.43, issue.D1, p.43, 2015.
DOI : 10.1093/nar/gku1003

R. Sharan and T. Ideker, Modeling cellular machinery through biological network comparison, Nature Biotechnology, vol.42, issue.4, pp.427-433, 2006.
DOI : 10.1038/nbt1196

M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-kinoshita, M. Itoh et al., From genomics to chemical genomics: new developments in KEGG, Nucleic Acids Research, vol.34, issue.90001, 2006.
DOI : 10.1093/nar/gkj102

URL : http://doi.org/10.1093/nar/gkj102

U. Alon, Network motifs: theory and experimental approaches, Nature Reviews Genetics, vol.301, issue.6, pp.450-461, 2007.
DOI : 10.1038/nrg2102

A. Elmsallati, C. Clark, and J. Kalita, Global Alignment of Protein-Protein Interaction Networks: A Survey, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.13, issue.4, 2015.
DOI : 10.1109/TCBB.2015.2474391

R. Singh, J. Xu, and B. Berger, Global alignment of multiple protein interaction networks with application to functional orthology detection, Proc. Natl. Acad. Sci, pp.12763-12768, 2008.
DOI : 10.1073/pnas.0307326101

G. W. Klau, A new graph-based method for pairwise global network alignment, BMC Bioinformatics, vol.10, issue.Suppl 1, 2009.
DOI : 10.1186/1471-2105-10-S1-S59

URL : http://doi.org/10.1186/1471-2105-10-s1-s59

O. Kuchaiev, T. Milenkovic, V. Memisevic, W. Hayes, and N. Przulj, Topological network alignment uncovers biological function and phylogeny, Journal of The Royal Society Interface, vol.25, issue.12, pp.1341-54, 2010.
DOI : 10.1093/bioinformatics/btp196

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894889

R. Patro and C. Kingsford, Global network alignment using multiscale spectral signatures, Bioinformatics, vol.28, issue.23, pp.3105-3114
DOI : 10.1093/bioinformatics/bts592

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509496

B. Neyshabur, A. Khadem, S. Hashemifar, and S. S. Arab, NETAL: a new graph-based method for global alignment of protein-protein interaction networks, Bioinformatics, vol.29, issue.13, pp.1654-1662, 2013.
DOI : 10.1093/bioinformatics/btt202

A. E. Alada?-g and C. Erten, SPINAL: Scalable protein interaction network alignment, Bioinformatics 2013, vol.29, pp.917-924

L. Chindelevitch, C. Y. Ma, C. S. Liao, and B. Berger, Optimizing a global alignment of protein interaction networks, Bioinformatics, vol.29, issue.21, pp.2765-2773
DOI : 10.1093/bioinformatics/btt486

S. Hashemifar and J. Xu, HubAlign: an accurate and efficient method for global alignment of protein???protein interaction networks, Bioinformatics, vol.30, issue.17, pp.438-444, 2014.
DOI : 10.1093/bioinformatics/btu450

V. Vijayan, V. Saraph, and T. Milenkovi´cmilenkovi´c, MAGNA++: Maximizing Accuracy in Global Network Alignment via both node and edge conservation, Bioinformatics, vol.31, issue.14, 2015.
DOI : 10.1093/bioinformatics/btv161

C. Clark and J. Kalita, A multiobjective memetic algorithm for PPI network alignment, Bioinformatics, vol.31, issue.12, 1988.
DOI : 10.1093/bioinformatics/btv063

N. Malod-dognin and N. Przulj, L-GRAAL: Lagrangian graphlet-based network aligner, Bioinformatics, vol.31, issue.13, pp.2182-2189, 2015.
DOI : 10.1093/bioinformatics/btv130

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481854

M. El-kebir, B. W. Brandt, J. Heringa, and G. W. Klau, NatalieQ: A web server for protein-protein interaction network querying, BMC Systems Biology, vol.8, issue.1, pp.10-1186
DOI : 10.1093/bioinformatics/btq675

URL : http://doi.org/10.1186/1752-0509-8-40

R. M. Karp, Reducibility Among Combinatorial Problems, Complexity of Computer Computations, pp.85-103, 1972.
DOI : 10.1007/978-1-4684-2001-2_9

E. L. Lawler, The Quadratic Assignment Problem, Management Science, vol.9, issue.4, pp.586-599
DOI : 10.1287/mnsc.9.4.586

W. P. Adams and T. Johnson, Improved linear programming-based lower bounds for the quadratic assignment problem, DIMACS Ser. Discr. Math. Theor. Comput. Sci, vol.16, pp.43-77, 1994.
DOI : 10.1090/dimacs/016/02

H. W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, vol.3, issue.1-2, pp.83-97, 1955.
DOI : 10.1002/nav.3800020109

J. Munkres, Algorithms for the Assignment and Transportation Problems, Journal of the Society for Industrial and Applied Mathematics, vol.5, issue.1, pp.32-38, 1957.
DOI : 10.1137/0105003

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.228.3911

J. Edmonds and R. M. Karp, Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems, Journal of the ACM, vol.19, issue.2, pp.248-264
DOI : 10.1145/321694.321699

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.228.3560

J. Edmonds, Path, trees, and flowers. Can, J Math, vol.17, pp.449-467, 1965.

M. Guignard, Lagrangean relaxation, Top, vol.4, issue.2, pp.151-200, 2003.
DOI : 10.1007/BF02579036

M. Held and R. M. Karp, The traveling-salesman problem and minimum spanning trees: Part II, Mathematical Programming, vol.6, issue.1, pp.6-25, 1971.
DOI : 10.1007/BF01584070

A. Caprara, M. Fischetti, and P. Toth, A Heuristic Method for the Set Covering Problem, Operations Research, vol.47, issue.5, pp.730-743, 1999.
DOI : 10.1287/opre.47.5.730

K. Dolinski, S. S. Dwight, and J. T. Eppig, Tool for the unification of biology, Nat. Genet, vol.25, pp.25-29, 2000.

F. M. Couto, M. J. Silva, and P. M. Coutinho, Measuring semantic similarity between Gene Ontology terms, Data & Knowledge Engineering, vol.61, issue.1, pp.61-137, 2007.
DOI : 10.1016/j.datak.2006.05.003

I. Wohlers, R. Andonov, and G. W. Klau, Algorithm engineering for optimal alignment of protein structure distance matrices, Optimization Letters, vol.14, issue.5, pp.421-433, 2011.
DOI : 10.1007/s11590-011-0313-3

URL : https://hal.archives-ouvertes.fr/inria-00586067