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A common symmetrization framework for

iterative (linear) maps

Alain Sarlette

QUANTIC, Paris Sciences Lettres University, INRIA Rocquencourt, France

Abstract. This paper highlights some more examples of maps that fol-
low a recently introduced “symmetrization” structure behind the average
consensus algorithm. We review among others some generalized consen-
sus settings and coordinate descent optimization.

1 Introduction

The linear consensus algorithm [1]

xk(t+ 1) = xk(t) +
∑N

j=1 ajk(xj(t)− xk(t)) , k = 1, 2, ..., N, (1)

with ajk ≥ 0, or equivalently for xk ∈ R, x(t + 1) = A(t)x(t) where
the matrix A has off-diagonal components Ajk = ajk and diagonal component

Akk = 1 − ∑N

j=1 ajk, features several geometric structures that could serve as
a basis for generalization. In previous work we have considered the structure
of (1) on a cone space, associated to the Hilbert metric, which generalizes (1)
e.g. towards “non-commutative consensus” and the Kraus maps of quantum
dynamics [2]. More recently [3], we have explored a structure related to the
network interaction and generalized (1) into a “symmetrization” class of iterative
maps, which is restricted to linear procedures but allows to cover consensus on
(quantum) probability spaces and some geometric control design algorithms.

In the present paper, we want to give a few more examples of applications
covered by the former approach. In particular:

– In Section 3 we show how symmetrization readily applies to the modeling of
some direct variants of (1).

– In Section 4 we slightly relax the symmetrization assumptions to model
gradient and coordinate descent (for a quadratic cost function to stay in the
linear context).

The intended message of this paper is in showing the possibility to model a set
of a priori different maps as one class of dynamics.

We denote by I the identity matrix and by e the identity element of a group;
when numbering group elements we use the convention g1 = e.



2 Symmetrization

Let us first recall the symmetrization framework developed in [3]. The main
point is to write an iterative map

x(t+ 1) = Φ(x(t), t) (2)

as a stochastic combination of actions of a discrete group G, i.e.

Φ(·, t) =
∑|G|

i=1wi(t)a(gi, ·) (3)

where gi ∈ G are the elements of the group, a(gi, ·) is a linear action associated

to gi on the space X ∋ x, and the wi satisfy: wi(t) ≥ 0 for all i,
∑|G|

i=1wi(t) = 1.
The iterative map (2) can then be lifted, possibly non-uniquely, to dynamics

on the stochastic weights of group elements. I.e. we can write

x(t) =
∑|G|

i=1 pi(t) a(gi, x(0))

and describe the evolution of the pi(t). Explicitly, defining πi(k) such that
gπi(k) = g−1

i gk in the group sense, we have

pk(t+ 1) =
∑|G|

i=1 wi(t) pπi(k)(t) , k = 1, 2, ..., |G| , (4)

starting with p1(0) = 1 for g1 = e and pk(0) = 0 for k 6= 1. In general, |G| can
be much larger than the dimension of X . Yet the interesting point is that (4)
is completely independent of X and of the particular action a(gi, ·). This has
allowed us to cover with one single model, consensus on variables belonging to
vector spaces, so-called “symmetric consensus” on probabilities over a discrete
set and similarly “symmetric quantum consensus”. In the two latter applications,
not only marginal probabilities but also all multi-partite correlation probabilities
converge to the same values for all agents.

It is not difficult to see that the |G|×|G| state matrix describing (4) is doubly
stochastic. It is hence stable and features as a particular stationary point the
uniform weight distribution p = p̄ where p̄k = 1/|G| for all k. For this stationary
point, in the X space, we have

x̄ = 1
|G|

∑|G|
i=1 a(gi, x(0)) .

We hence call x̄ the symmetrization of x0 with respect to (G, a(·, ·) ), and a

fortiori if Φ can be written as (3) then x̄ is a stationary point of Φ.
In general the goal of Φ is to make x converge to x̄. A sufficient condition

for this is that the associated lift (4) makes p converge to p̄. In some situations,
especially with time-varying Φ, the lift might provide more insights, e.g.:

Proposition 1: Given δ > 0, T > 0, denote S(t) ⊆ G the set of gi for which
∑t+T

t′=t wi(t
′) > δ. If there exist δ > 0, T > 0 and H ⊆ G generating G such that

• g1 = e ∈ S(t) for each t and • H ⊆ S(t) for each t,
then the dynamics (4) makes p converge to p̄.



With different choices of the lift, Proposition 1 can prove convergence of
several different linear iterative maps at once, instead of having to repeat a
“similar” proof argument for each specific map separately. In [3] a few examples
are given. In the following we present a few others. Note that each of these
examples has been efficiently solved on its own in the respective literature; our
point here is that a common framework is established for all of them.

3 Variations on consensus

Let us first review how (1) can be cast into the symmetrization framework, at
least for the usual case where A is doubly stochastic, implying a.o.

∑

j ajk ≤ 1 for

all k. Take Ḡ = PermN the group of permutations on N elements. The easiest
case is “gossip”, where at each t a single pair (m,n) of agents interacts with
amn = anm 6= 0: we can then write w1 = 1 − am,n for g1 = e and wi = am,n for
gi the pairwise permutation of (m,n), all other wi zero. Several variations that
allow several interactions at once, admit a similarly direct treatment.

For a general situation with A doubly stochastic, we use a result by Birkhoff
[4] to decompose Φ into a convex sum of permutations. If there exists α > 0 such
that akk > α for all k, then Ã = 1

1−α
(A − αI) is also doubly stochastic and by

applying the Birkhoff result to Ã, we obtain a decomposition of A = αI+(1−α)Ã
into permutation matrices weighted by wi and where w1 ≥ α. Except for special
time dependencies of the ajk(t), generally an element for which wi > δ at some

t satisfies
∑t+T

t′=t wi(t
′) > δ for all t, for T large enough. We then say that all

elements are recurrent. In this case, Proposition 1 ensures that p(t) converges
to the uniform distribution p̄ over all elements of the group G ⊆ Ḡ generated by
the elements that appear in the decomposition. Concretely, for instance:

– For pairwise gossip, if the interaction graph corresponding to the ājk =
∑t+T

t′=t ajk(t
′) is connected, then the associated pairwise permutations gen-

erate all of Ḡ = PermN . A generalization to the case where the interaction
graph is composed of several connected components is immediate.

– When ajk = β/N for all j 6= k and some β ∈ (0, 1), an associated lift would
be w1 = 1 − β and wi = β/N for all gi which are a power 1 to N -1 of
the circular permutation gc : (1, 2, 3, ..., N) → (N, 1, 2, ..., N -1). These form
a closed subgroup G ⊂ PermN . But still, having p converge to the uniform
distribution over these N elements is sufficient to have the xk converge to
1/N

∑N

k=1 xk(0) for each k. Problems with the lift could arise if an element of
PermN \G appears rarely, i.e. without belonging to the set S(t) of Proposition
1 for any large T . This seems unlikely in practical situations.

In this setting, whether xk is a scalar, vector or other object of a linear
space X does not matter, it just affects the group actions. Another action allows
to apply the same group dynamics to the symmetrization of joint probability
distributions, both classical and quantum, over a finite set [3]. We now turn to
different variants of (1) for xk ∈ R.



3.1 Consensus with antagonistic interactions

A variant of consensus proposed e.g. in [5] considers that agents might be at-
tracted to the opposite of the values of some neighbors, i.e. the dynamics become

xk(t+ 1) = akk xk(t) + ajkxj(t) (5)

with akk = 1−∑

j 6=k |ajk| > 0, but possibly some negative ajk for j 6= k.

To cover this possibility, we take G̃ the group corresponding to all permuta-
tion matrices with arbitrary sign ±1 on each component; we call this “general-
ized” permutations. This can be viewed as a particular product of the group of
permutations with the group {−1, 1}N . We then lift (5) as follows.

– Take the Birkhoff decomposition associated to the corresponding standard
consensus algorithm, where each ajk in (5) is replaced by |ajk|. This gives
nonzero weights w̃i on the gi ∈ G corresponding to permutation matrices.

– Then sequentially consider each pair (j, k) for which ajk < 0 and swap the
weights attributed to the generalized permutation matrices which are equal
up to the sign of their element (j, k).

Convergence of (5) is efficiently characterized a.o. in [6].We just provide an
informal summary on the basis of G̃. As for standard consensus, we may generally
assume that all the elements appearing in the lift are recurrent. The generated
group G over which we get p = p̄ at convergence then depends (only) on the
group generated by the appearing elements. Three main situations can occur:

– The interaction graph is not connected.
– The component (k, k) takes the same sign in the matrices associated to all

the generated group elements. By group properties, this implies that all
components (j, j) have the same sign in all the generated group elements,
provided the interaction graph is connected. Then in terms of xk, the agents
split into two communities with opposite component values as t → ∞.

– The component (k, k) can take opposite signs in the generated group ele-
ments. Then, thanks to group properties, for each j, k there should be an
equal number of elements with negative component (j, k) as with positive
component (j, k) in the generated group G. This implies that when p con-
verges to p̄ uniform over G, the corresponding xk converge to 0.

Our lift can involve many elements but still a finite number, i.e. it abstracts
away the exact values of the aj,k(t) in (5). While our framework may appear
more cumbersome than the graph analysis of [6], it can also yield more precise
results in some cases. Indeed, we can exactly cover the following example which
[6] provides as an inconclusive case of their graph-conditions-based theorem:

xk(t+ 1) = 1/2 (x1(t) + x2(t)) , k = 1, 2; t even

xk(t+ 1) = (−1)k/2 (x2(t)− x1(t)) , k = 1, 2; t uneven .

The dynamics can be explicitly solved and converges to x1 = x2 = 0 after
iterations t = 0, t = 1, yet the theorem of [6] cannot tell this. In terms of our



lift, we have three recurrent elements

g1 =

(

1 0
0 1

)

; g2 =

(

0 1
1 0

)

; g3 =

(

0 −1
−1 0

)

with weights w1 = 1/2, w2(t) = 1/4 + (−1/4)t, w3(t) = 1/4 − (−1/4)t. These
weights are in fact irrelevant, we only need to compute that g1, g2, g3 generates
a 4-group element, together with g4 = −g1. We then readily conclude that the
system converges to x̄ = 1

4

∑4
i=1 gi x = 0.

At this stage we do not claim that the group lift approach is efficiently
scalable to larger problems. Yet it might suggest e.g. how to adapt the graph
analysis argument of [6] towards covering the above example.

3.2 Doubly sub-stochastic matrices

Consensus is a particular linear dynamics which features a one-dimensional in-
variant space. In iterative maps, the most common situation is when there is
only one target invariant point. This happens with “smaller than stochastic” A.
Shifting the invariant point to x = 0, we define the following class of systems:

xk(t+ 1) =
∑N

j=1 ajk(t) xj(t) with 1 ≥ ∑

j |ajk(t)| for all k, t (6)

1 ≥ ∑

k |ajk(t)| for all j, t .

Such system can be straightforwardly rewritten as consensus with (possibly an-
tagonistic interactions and) a virtual leader x0(t) = 0, hence proving convergence
is not a big issue. Again our intended contribution is more to show that this dy-
namics, as well, can be cast into the class of symmetrization algorithms. For
simplicity of notations we describe the following assuming ajk ≥ 0 for all j, k.

Take the same group G̃ as in Section 3.1. We first define bjk = ajk + cjk
with cjk ≥ 0 and such that

∑N

j=1 bjk =
∑N

j=1 bkj = 1 for all k, i.e. the state
matrix associated to the bjk is doubly stochastic. Such a construction is always
possible for a sub-stochastic matrix, e.g. as follows:
0. Let a′jk := ajk for all j, k.

1. Compute ack =
∑N

j=1 a
′
jk and ark =

∑N

j=1 a
′
kj for all k.

2. Since
∑

k a
c
k =

∑

j,k a
′
jk =

∑

k a
r
k: if a

c
k < 1 for some k then there exists k′

such that ark′ < 1, and vice versa. Else ack = ark = 1 for all k, i.e. the a′jk
matrix is already doubly stochastic and we can stop.

3. Find arm = max(ark : ark < 1) and acn = max(ack : ack < 1). Then let bmn =
a′mn+cmn with cmn = 1−max(arm, acn), and bjk = a′jk for all (j, k) 6= (m,n).

4. Define a′jk := bjk for all j, k and iterate the procedure starting again from 1.
This procedure converges to a doubly stochastic matrix. Indeed, at each iteration:
if the a′jk are doubly sub-stochastic then also the bjk are; and the bjk matrix has
at least one more row or column whose elements sum to 1 than the a′jk matrix.

Define by {w̃i} a lift of the dynamics associated to the standard consensus

xk(t + 1) =
∑N

j=1 bjk(t)xj(t) . We then sequentially go through all (j, k) for
which cjk > 0 and transform the weights as follows.



0. Let w′
i = w̃i for all i and choose some (j, k) for which cjk > 0.

1. Denote f−
jk(m) = n such that gn is identical to gm except that the matrix

element (j, k) associated to gm has an opposite sign in gn. Then for all i for
which gi has a positive element (j, k), apply

wi = (1 − cjk
2bjk

)w′
i , wf

−

jk
(i) =

cjk
2bjk

w′
i .

2. Let w′
i = wi, choose a different (j, k) with cjk > 0 and iterate from point 1.

The weight modification in point 1 above preserves the total weight,
∑

i wi =
∑

iw
′
i. The wi remain non-negative, since cjk ≥ 0, bjk ≥ 0, ajk ≥ 0 and 1− cjk

2bjk
=

1− cjk
2cjk+2ajk

> 0. Summing up the effect on
∑

i wia(gi, ·), we see that when point

1 treats (j, k), the matrix components different from (j, k) undergo no change
while the component on (j, k) is modified:

from
∑

i∈Fj,k
w′

i =: B1 to
∑

i∈Fj,k
w′

i

(

(1− cjk
2bjk

)− cjk
2bjk

)

=: B2 ,

where Fj,k ⊂ G̃ is the subset of group elements whose associated matrix have a
coefficient +1 at position (j, k). By definition of the lift, we have B1 = bjk. We
then get B2 = B1(1− cjk

bjk
) = ajk, thus indeed the matrix that we had to model.

From there, we can go on and analyze convergence of the resulting group dy-
namics. By construction, if G contains gi then also contains gf−

jk
(i) for each (j, k)

for which cjk > 0. Hence if p(t) converges to p̄ uniform over G, then the corre-

sponding (j, k) elements will be zero in the matrix associated to 1
|G|

∑|G|
i=1a(gi, ·).

4 Gradient Descent and Coordinate Descent

In optimization, the gradient descent method consists in iteratively searching for
min f(x) by applying

x(t + 1) = x(t)− α gradx f(x(t)) , α > 0 , x ∈ R
N . (7)

For a local quadratic expansion f = 1
2x

TAx around the minimum, A sym-
metric positive definite, approximating (7) by a linear map, there is a trivial
symmetrization viewpoint on the resulting x(t+ 1) = x(t) − αAx(t).

In the eigenbasis of A, (7) becomes xk(t + 1) = (1 − α ak)xk(t) with ak
the associated eigenvalues. For stable algorithms, (1− αak) ∈ (−1, 1) such that
the associated state transition matrix is (diagonal and) doubly substochastic. A
simplified version of section 3.2 then rewrites this iteration as symmetrization
over the group G represented by diagonal N × N matrices with elements ±1.
This abstract definition does not require to actually compute the eigenbasis –
only assume it exists and the ak are small enough. Yet this viewpoint must be
adapted to address the following.



4.1 Coordinate Descent

Coordinate descent selects some k ∈ { 1, 2, ..., N } at each step and applies gra-
dient descent to minimize f(x) along a line where only xk varies, assuming fixed
all xj with j 6= k. This comes closer to a (possibly stochastically) time-varying
map as in consensus. It links to symmetrization as follows, e.g. for N = 2: define

y =

(√
a1 0
0

√
a2

) (

cos θ sin θ
− sin θ cos θ

)

x

such that f(x) = 1
2 x

TAx = 1
2 y

T y. This simplifies the cost function, but coor-
dinate descent now implies iterative optimization along two arbitrary lines, of
slopes tanφ1 = tanθ a2/a1 and tanφ2 = −cotanθ a2/a1. In general those lines
are not orthogonal, but f will still be quadratic along each of them. It is not
difficult to see that we can then write, if k ∈ {1, 2} is chosen at time t:

y(t+ 1) = (1− λ) y(t) + λ (reflection of y(t) around axis of slope cotanφk)

= (1− λ) y(t) + λ

(

− cos 2φk sin 2φk

sin 2φk cos 2φk

)

y(t) ,

for some λ ∈ (0, 1). In general, (1 − λ) + λ(cos+ sin) > 1 and the associated
transition matrix is not sub-stochastic. Nevertheless, we were able to write this
as symmetrization with respect to the 8-element group G =
{

g±1 = ±
(

1 0
0 1

)

, g±2 = ±
(

1 0
0 −1

)

, g±3 = ±
(

0 1
1 0

)

, g±4 = ±
(

0 1
−1 0

)}

.

Explicitly, y(t+ 1) = (w1+g
+
1 + w2−g

−
2 + w2+g

+
2 + w3−g

−
3 + w3+g

+
3 ) y(t) with

w1+ = 1− λ ; w2− = λ (14 + cosφk

2 ) ; w3+ = λ (14 + sin φk

2 )

w2+ = λ (14 − cosφk

2 ) ; w3− = λ (14 − sin φk

2 ) .

By construction
∑

gi∈G wi = 1. However we do not have wi > 0 for all i. This
requires to slightly generalize the class of dynamics accepted on the group. In
the present case:

The state transition matrix for the weights pi(t) on the group G is symmetric

and doubly stochastic, up to having possibly negative off-diagonal components.

Hence it still features p̄ as a stationary point. Its convergence is not as straight-

forward to analyze as standard consensus. However thanks to symmetry, in a

time-varying context it suffices for convergence to examine the common Lya-

punov function V (t) =
∑

i (pi(t))
2.

For this particular example, i.e. a two-dimensional x, the state transition
matrices for the pi(t) further admit an efficient tensor product decomposition
such that convergence conditions can be easily formalized. At this point we can-
not claim that the symmetrization framework is efficient to study convergence
for high-dimensional x. Yet, the possibility to model the system as symmetriza-
tion, with generalized (possibly negative) weights, could suggest a way to include
coordinate descent in versatile theoretical formalizations that exploit the sym-
metrization structure.



5 Conclusion

We have abstractly defined a “symmetrization” class of linear iterative maps.
This class comprises a great variety of algorithms, as illustrated in [3]. The
present paper highlights some further elements of the class. Although each in-
stance encountered so far, admits a relatively easy specific convergence proof,
the common symmetrization framework allows to treat them all at once, modulo
a finite group analysis step. In the future we hope that further properties of this
symmetrization class can be exploited in general analyzes.
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