Load-Balancing for Large Scale Situated Agent-based Simulations

Abstract : In large scale agent-based simulations, memory and computational power requirements can increase dramatically because of high numbers of agents and interactions. To be able to simulate millions of agents, distributing the simulator on a computer network is promising, but raises some issues like: agents allocation and load-balancing between machines. In this paper, we study the best ways to automatically balance the loads between machines in large scale situations. We study the performance of two different applications with two different distribution approaches, and we show in our experimental results that some applications can automatically adapt the loads between machines and get alone a high performance in large scale simulations with one distribution approach than the other.
Type de document :
Communication dans un congrès
International Conference On Computational Science, ICCS 2015 — Computational Science at the Gates of Nature, Jun 2015, Reykjavik, Iceland. Elsevier, 51, pp.90-99, 2015, Procedia Computer Science. 〈10.1016/j.procs.2015.05.204〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01248794
Contributeur : Cristal Equipe Smac <>
Soumis le : lundi 28 décembre 2015 - 18:34:32
Dernière modification le : vendredi 13 juillet 2018 - 18:00:05

Lien texte intégral

Identifiants

Citation

Omar Rihawi, Yann Secq, Philippe Mathieu. Load-Balancing for Large Scale Situated Agent-based Simulations. International Conference On Computational Science, ICCS 2015 — Computational Science at the Gates of Nature, Jun 2015, Reykjavik, Iceland. Elsevier, 51, pp.90-99, 2015, Procedia Computer Science. 〈10.1016/j.procs.2015.05.204〉. 〈hal-01248794〉

Partager

Métriques

Consultations de la notice

346