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Abstract We study a scheduling problem in which

jobs may be split into parts, where the parts of a split

job may be processed simultaneously on more than one

machine. Each part of a job requires a setup time,

however, on the machine where the job part is pro-

cessed. During setup a machine cannot process or set

up any other job. We concentrate on the basic case in

which setup times are job-, machine-, and sequence-

independent. Problems of this kind were encountered

when modelling practical problems in planning disas-

ter relief operations. Our main algorithmic result is a

polynomial-time algorithm for minimising total com-

pletion time on two parallel identical machines. We

argue why the same problem with three machines is

not an easy extension of the two-machine case, leav-

ing the complexity of this case as a tantalising open
problem. We give a constant-factor approximation al-

gorithm for the general case with any number of ma-

chines and a polynomial-time approximation scheme for

a fixed number of machines. For the version with the
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objective to minimise total weighted completion time,

we prove NP-hardness. Finally, we conclude with an

overview of the state of the art for other split scheduling

problems with job-, machine-, and sequence-independent

setup times.

Keywords Scheduling · Job splitting · Setup times ·
Complexity theory · Approximation algorithms

1 Introduction

We consider a scheduling problem with setup times and

job splitting. Given a set of identical parallel machines

and a set of jobs with processing times, the goal of

the scheduling problem is to schedule the jobs on the

machines such that a given objective, for example the

makespan or the sum of completion times, is minimised.

With ordinary preemption, feasible schedules do not al-

low multiple machines to work on the same job simul-

taneously. In job splitting, this constraint is dropped.

Without setup times, allowing job splitting makes many

scheduling problems trivial: both for minimising make-

span and for minimising total (weighted) completion

time, an optimal schedule is obtained by splitting the

processing time of each job equally over all machines,

and processing the jobs in arbitrary order on each ma-

chine in case of makespan, and in (weighted) shortest

processing time first ((W)SPT) order in case of total

(weighted) completion time. See Xing and Zhang [12]

for an overview of several classical scheduling problems

which become polynomially solvable if job splitting is

allowed.

In the presence of release times, minimising total

completion time with ordinary preemption is NP-hard

[5], whereas it is easy to see that if we allow job splitting,

then splitting all jobs equally over all machines and
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applying the shortest remaining processing time first

(SRPT) rule gives an optimal schedule.

Triviality disappears when setup times are present,

i.e., when each machine requires a setup time before it

can start processing the next job (part). During setup,

a machine cannot process any job nor can it set up the

processing of any other job (part). Problems for which

the setup times are allowed to be sequence-dependent

are usually NP-hard, as such problems tend to exhibit

routinglike features. For example, the Hamiltonian path

problem in a graph can be reduced to the problem of

minimising the makespan on a single machine, where

each job corresponds to a node in the graph, the pro-

cessing times are 1, and the setup time between job

i and j is 0 if the graph contains an edge between i

and j, and 1 otherwise. However, as we will see, adding

setup times leads to challenging algorithmic problems,

already if the setup times are assumed to be job-, ma-

chine-, and sequence-independent.

We encountered such problems in studying disaster

relief operations [11]. For example in modelling flood

relief operations, the machines are pumps and the jobs

are locations to be drained. Or in the case of earthquake

relief operations, the machines are teams of relief work-

ers and the jobs are locations to be cleared. The setup

is the time required to install the team on the new loca-

tion. Although, in principle, these setup times consist

partly of travel time, which is sequence-dependent, the

travel time is negligible compared to the time required

to equip the teams with instructions and tools for the

new location. Hence, considering the setup times as be-

ing location- and sequence-independent was in this case

an acceptable approximation of reality.

In this paper we concentrate on a basic scheduling

problem and consider the variation where we allow job

splitting with setup times that are job-, machine-, and

sequence-independent, to which we will refer here as

uniform setup times; i.e., we assume a uniform setup

time s. There exists little literature on this type of

scheduling problem. The problem of minimising make-

span on parallel identical machines is in the standard

scheduling notation of Graham et al. [6] denoted as

P ||Cmax (see Section 8 for an instruction on this nota-

tion). This problem P ||Cmax, but then with job splitting

and setup times that are job-dependent, but sequence-

and machine-independent, is considered by Xing and

Zhang [12], and Chen, Ye and Zhang [3]. Chen et al. [3]

mention that this problem is NP-hard in the strong

sense, and only weakly NP-hard if the number of ma-

chines is assumed constant. Straightforward reductions

from the 3-Partition and Subset Sum problem show

that these hardness results continue to hold if setup

times are uniform. Chen et al. provide a 5/3-approxi-

mation algorithm for this problem and an FPTAS for

the case of a fixed number of machines. A PTAS for the

version of P ||Cmax with preemption and job-dependent,

but sequence- and machine-independent setup times

was given by Schuurman and Woeginger [10]. It remains

open whether a PTAS exists with job splitting rather

than preemption, even if the setup times are uniform.

See [8] and [9] for a more extensive literature on prob-

lems with preemption and setup times.

Our problem is related to scheduling problems with

malleable tasks. A malleable task may be scheduled on

multiple machines, and a function fj(k) is given that

denotes the processing speed if j is processed on k ma-

chines. If k machines process task j for L time, then

fj(k)L units of task j are completed. What we call job

splitting is referred to as malleable tasks with linear

speedups, i.e., the processing time required on k ma-

chines is 1/k times the processing time required on a

single machine. We remark that job splitting with setup

times is not a special case of scheduling malleable tasks,

because of the discontinuity caused by the setup times.

We refer the reader to Drozdowski [4] for an extensive

overview of the literature on scheduling malleable tasks.

The main algorithmic result of our paper consid-

ers the job splitting variant of the problem of minimis-

ing the sum of completion times on identical machines,

with uniform setup times: given a set of m identical

machines, n jobs with processing times p1, . . . , pn, and

a setup time s, the objective is to schedule the jobs on

the machines to minimise total completion time (
∑
Cj)

(where the chosen objective is inspired by the disaster

relief application). The version of this problem with or-

dinary preemption and fixed setup time s is solved by

the Shortest Processing Time first rule (SPT); the op-

tion of preemption is not used by the optimum. How-

ever, the situation is much less straightforward for job

splitting. If s is very large, then an optimal schedule

minimises the contribution of the setup times to the

objective, and a job will only be split over several ma-

chines if no other job is scheduled after the job on these

machines. It is not hard to see that the jobs that are not

split are scheduled in SPT order. If s is very small (say

0), then each job is split over all machines and the jobs

are scheduled in SPT order. However, for other values

of s, it appears to be a non-trivial problem to decide

how to schedule the jobs, as splitting a job over multi-

ple machines decreases the completion time of the job

itself, but it increases the total load on the machines,

and hence the completion times of later jobs.

Consider the following instance as an example. There

are 3 machines and 6 jobs, numbered 1, 2, . . . , 6, with

processing times 1, 2, 3, 5, 11, 12, respectively, and set-

ting up a machine takes 1 time unit. One could con-
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1 4
2 5

3 6

(a)

1 4 6
2 5

3 6

(b)

1 4 6
2 5
2 3 6

(c)

1 4 5 6
2 4 5 6

3 5 6

(d)

Fig. 1: Gantt charts depicting the schedules for the instance described in Section 2. The grey blocks indicate the

setup times, the numbered blocks are scheduled job parts. Each row of blocks gives the schedule for a machine.

sider filling up a schedule in round-robin style, assign-

ing the jobs to machine 1, 2, 3, 1, 2, 3, respectively. This

schedule is given in the Gantt chart in Figure 1(a). The

schedule has objective value 49.

By splitting job 6 over machines 1 and 3, instead of

processing it on machine 3 only, we can lower the com-

pletion time of job 6, and this improves the objective

value since there are no jobs scheduled after job 6. In

fact, to get the best improvement in objective value,

we make sure that both job parts of job 6 finish at the

same time, see Figure 1(b). The objective value of the

schedule is 45.

Splitting jobs early in the schedule, may increase the

objective value, as (many) later jobs may experience

delays. For example, if we choose to split job 2 over

machines 2 and 3, we will cause delays for jobs 3 and 6,

while improving the completion times of jobs 2 and 5.

If we require that job parts of the same job end at the

same time, we get the schedule pictured in Figure 1(c)

with objective value 46. Finally, Figure 1(d) depicts the

optimal schedule with objective value 40.

This example illustrates the inherent trade-off in

this problem mentioned earlier: splitting jobs will de-

crease the completion times of some jobs, but it also

may increase the completion times of other jobs.

In Section 3 we present a polynomial-time algorithm

for the case in which there are two machines. The al-

gorithm is based on a careful analysis of the structure

of optimal solutions to this problem. Properties of opti-

mal solutions that hold under any number of machines

are presented in a preliminary section. Though a first

guess might be that the problem would remain easy on

any fixed number of machines, we will show by some

examples in Section 4 that nice properties, which make

the algorithm work for the 2-machine case, fail to hold

for three machines already. The authors are split be-

tween thinking that we have encountered another in-

stance of Lawler’s “mystical power of twoness” [7], a

phrase signifying the surprisingly common occurance

that problems are easy when a problem parameter (here

the number of machines) is two, but NP-hard when it

is three, or that we just lacked the necessary flash of in-

sight to find a polynomial-time algorithm. We present

a constant-factor approximation algorithm for the gen-

eral case with any number of machines in Section 5,

and in Section 6 we give a polynomial-time approxima-

tion scheme for the case of a fixed number of machines.

We leave the complexity of the problem (even for only

three machines) as a tantalising open problem for the

scheduling research community. We show in Section 7

that introducing weights for the jobs makes the prob-

lem NP-hard, already on 2 machines. We finish the pa-

per by giving a table with the state of the art for other

split scheduling problems with uniform setup times. We
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summarize whether they are known to be NP-hard or

in P, and present the best known approximation ratios.

2 Preliminaries

An instance is given by m parallel identical machines

and n jobs. Job j has processing time pj , for j = 1, . . . , n.

Each job may be split into parts and multiple parts of

the same job may be processed simultaneously. Before

a machine can start processing a part of a job, a fixed

setup time s is required. During setup of a job (part)

the machine cannot simultaneously process or setup an-

other job (part). The objective is to minimise the sum

of the completion times of the jobs (total completion

time), which is equivalent to minimising the average

completion time.

Here we derive some properties of an optimal sched-

ule, which are valid for any number of machines. Some

additional properties for the special case of two ma-

chines, presented in Section 3, will lead us to a poly-

nomial-time algorithm for this special case. We show

in Section 4 that the additional properties that make

the 2-machine case tractable do not hold for the case of

three machines.

Claim Let σ be a feasible schedule with job completion

times C1 ≤ C2 ≤ · · · ≤ Cn. Let σ′ be obtained from σ

by rescheduling the job parts on each machine in order

1, 2, . . . , n. Then C ′j ≤ Cj for j = 1, . . . , n.

Proof Let qij be the time that j is processed on machine

i in σ and let Cij be the time that j finishes on machine

i. Let yij = s + qij if qij > 0 an let yij = 0 otherwise.

Fix some job j and machine i. Let k = arg max{Cik |
1 ≤ k ≤ j}. Then Cj ≥ Ck ≥ Cik ≥

∑j
h=1 yih = C ′ij ,

where the first inequality is by assumption and the last

one by the fact that all work on jobs smaller than or

equal to j has been done on machine i at time Cik. Since

Cj ≥ C ′ij for any machine i on which j is scheduled the

proof follows. ut

The claim above has several nice corollaries. First,

note that if in an optimal schedule C1 ≤ C2 ≤ · · · ≤ Cn,

then we maintain an optimal schedule with the same

completion time for each job by scheduling the job parts

on each machine in the order 1, 2, . . . , n. This allows

to characterize an optimal schedule by a permutation

of the jobs and the times that job j is processed on

each machine i. The optimal schedule is then obtained

by adding a setup time s for each non-zero job part

and processing them in the order of the permutation

on each machine. Consequently, in the optimal schedule

obtained, each machine contains at most one part of

each job.

We thus have the following lemma, which we will

use throughout this work.

Lemma 1 There exists an optimal schedule such that

each machine contains at most one part of each job.

In the sequel, given a schedule, we use Mj to de-

note the set of machines on which parts of job j are

processed. We will sometimes say that a machine pro-

cesses job j, if it processes a part of job j.

Lemma 2 There exists an optimal schedule that satis-

fies the property of Lemma 1 such that on each machine

the job parts are processed (started and completed) in

SPT order of the corresponding jobs.

Proof Among the optimal schedules that satisfy Lem-

ma 1, we choose the schedule that minimises
∑
h phCh.

By the observations preceding Lemma 1, we may as-

sume the jobs are numbered 1, . . . , n so that C1 ≤ C2 ≤
. . . ≤ Cn, and each machine processes the job parts

in the order given by the numbering of the jobs. Sup-

pose by contradiction that there exist jobs j, k such that

pj < pk and there exists some machine that processes

job k before j, i.e., Ck ≤ Cj . Choose among such pairs

of jobs j, k a pair that minimizes j − k. Note that any

machine that processes both j and k must process k

immediately before j, since if there is some job ` that

is processed between them, then Ck ≤ C` ≤ Cj , and

either p` > pj or p` ≤ pj < pk, so either j, ` or `, k

should have been chosen instead of the pair j, k. We now

show how to define a new optimal schedule for which∑
h phCh is strictly less than for the original schedule,

thus contradicting the choice of our schedule.

Note that Mj ∩Mk 6= ∅. We define a new schedule
by rescheduling both jobs within the time slots these

jobs occupy in the current schedule (including the slots

for the setup times). First remove both jobs. Then con-

sider the machines in Mk one by one, starting with the

machines in Mk\Mj and fill up the slots previously used

by job k, until we have completely scheduled job j in-

cluding the setup times. This is possible since pj < pk.

We consider the remaining slots, which we note are sin-

gle time intervals for each machine by our choice of j

and k. We will show that they provide sufficient time

for the processing and set up of job k, by showing that

the combined number of setups for j and k does not

increase.

Let M ′j and M ′k denote the sets of machines occu-

pied by j and k, respectively, in the new schedule. We

distinguish two cases. If job j cannot be rescheduled

completely in the slots used by k in Mk \Mj then we

have M ′k ⊆Mj . Together with M ′j ⊆Mk it follows that

(M ′j ∩M ′k) ⊆ (Mj ∩Mk). Hence, any machine contain-

ing both j and k in the new schedule did also contain
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both jobs in the old schedule, and therefore there are

no extra setups on any machine needed.

Now consider the case that job j is rescheduled com-

pletely in the slots used by k in Mk \Mj . Then, after

adding job k, the total number of setups needed for j

and k does not increase since there is at most one ma-

chine of Mk \Mj containing both jobs in the schedule,

but none of the machines in Mj ∩Mk is used by j in

the new schedule.

We conclude that the remaining slots after schedul-

ing job j provide sufficient room to feasibly schedule

both the processing of job k and the required setups.

Note that, if there is some machine on which the time

allotted to k is at most s, then we can simply leave the

machine idle for that time interval.

Let C ′ denote the new completion times. We have

C ′j ≤ Ck and C ′k ≤ max{Cj , Ck}, since in the new

schedule j is processed only where job k was processed

in the old schedule, and job k is processed in the new

schedule only where either job j or job k was processed

in the old schedule. For all other jobs, the completion

time remains the same. Now, by assumption, we have

that Cj > Ck, and hence C ′k ≤ Cj . Therefore, the sum

of completion times did not increase, and
∑
h phC

′
h <∑

h phCh, which contradicts the choice of the original

schedule. ut

From now on, assume that jobs are numbered in

SPT order, i.e., p1 ≤ · · · ≤ pn. Given a schedule, we

call a job balanced if it completes at the same time on

all machines on which it is processed.

Lemma 3 There exists an optimal schedule that satis-

fies the properties of Lemma 1 and Lemma 2 in which

all jobs are balanced.

Proof Consider an optimal schedule of the form of Lem-

ma 1 and Lemma 2 with a minimum number of job

parts. Let Cj be the completion time of j in this sched-

ule and define Mj for this schedule as before. Consider

the following linear program in which there is a variable

xij for all pairs i, j with i ∈Mj , indicating the amount

of processing time of job j assigned to machine i:

min
∑
j

Cj

s.t.
∑
i∈Mj

xij = pj ∀j = 1, . . . , n,∑
k≤j: Mk3i

(s+ xik) ≤ Cj ∀j = 1, . . . , n, ∀i ∈Mj ,

xij ≥ 0, Cj ≥ 0 ∀j = 1, . . . , n, ∀i ∈Mj .

Note that a schedule that satisfies Lemmas 1 and 2 gives

a feasible solution to the LP, and on the other hand that

any feasible solution to the LP gives a schedule with to-

tal completion time at most the objective value of the

LP: if there exist some j and i ∈Mj such that xij = 0,

then the LP objective value is at least the total com-

pletion time of the corresponding schedule, as there is

no need to set up for job j on machine i if xij = 0. We

know that a solution is a basic solution to this LP, only

if the number of variables that are non-zero is at most

the number of linearly independent tight constraints

(not including the non-negativity constraints). By the

minimality assumption on the optimal schedule, in any

optimal solution to the LP all Cj and xij variables are

non-zero, which gives a total of n+
∑
j |Mj | variables.

Since there are only n +
∑
j |Mj | constraints, all con-

straints must be tight, which proves the lemma. ut

3 An O(n log n)-time algorithm for two

machines

Given a feasible schedule, we call a job j a d-job, if

|Mj | = d. In this section we assume that the number of

machines is two.

Lemma 4 Let σ be an optimal schedule for a 2-machine

instance that satisfies the properties of Lemmas 1, 2 and

3. Let j < k be two consecutive 2-jobs. If there are 1-

jobs between j and k, then there is at least one 1-job on

each machine. Also, the last 2-job is either not followed

by any job or is followed by at least one 1-job on each

machine.

Proof Let j and k be two consecutive 2-jobs and assume

there is at least one in-between 1-job on machine 1 and

none on machine 2. Let s1, s2 be the start time of job j

on respectively machine 1 and 2. We may assume with-

out loss of generality that s1 ≥ s2: otherwise we just

swap the schedules of the two machines for the interval

[0, Cj ] and get the inequality. We change the schedule

of j and k and the in-between 1-jobs as follows. Job j is

completely processed on machine 2, starting from time

s2, and the in-between 1-jobs are moved forward such

that the first starts at time s1. Let ∆ be the amount

of processing on job j that was previously assigned to

machine 1, where we note that ∆ ≤ 1
2pj . We increase

the part of job k on machine 1 by ∆, and decrease the

part of job k on machine 2 by ∆. This is possible, since

the part of job k that was previously on machine 2 is

at least 1
2pk ≥

1
2pj ≥ ∆.

The completion time of each of the in-between 1-

jobs decreases by ∆ + s, the completion time of job j

increases by∆ and the completion time of job k remains

unchanged. The total completion time is thus reduced

by at least s. If j is the last 2-job then we can make the

same adjustment. ut
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Lemma 5 In the case of two machines there are no 1-

jobs after a 2-job in an optimal schedule satisfying the

properties of Lemmas 1, 2 and 3.

Proof Suppose the lemma is not true. Then there must

be a 2-job j that is directly followed by a 1-job. By

Lemma 4, there must be at least one such 1-job on

each machine, say jobs h and k. Assume without loss of

generality that ph ≤ pk. Let x1j , x2j be the processing

time of j on machine 1 and 2, respectively. As argued

before, without loss of generality we assume that x1j ≥
x2j . Let us define the starting time of j as zero, and let

∆ = x1j − x2j . Note that Cj = 1
2 (∆ + pj + 2s). Then,

the sum of the three completion times is

Cj + Ch + Ck = Cj + (Cj + ph + s) + Ck

= ∆+ pj + 2s+ ph + s+ Ck. (1)

We reschedule the jobs j, h and k as follows, while

the remaining schedule stays the same. Place job j, the

shortest among j, h and k, on machine 1 (unsplit), job

h on machine 2 (unsplit), and behind these two, job

k is split on machine 1 and 2, in such a way that it

completes on one machine at time Ch and at time Ck
on the other. The sum of the completion times of the

three jobs becomes

(pj + s) + (∆+ ph + s) + Ck,

which is exactly s less than the sum of the three com-

pletion times in (1) from before the switch. ut

Given the previous lemmas, we see that the 2-jobs

are scheduled in SPT order at the end. By Lemma 2, the

first 2-job, say job k, is not shorter than the preceding 1-

jobs. But this implies that the 1-jobs can be scheduled

in SPT order without increasing the completion time

of job k and the following jobs. By considering each

of the n jobs as the first 2-job, we immediately obtain

a O(n2)-time algorithm to solve the problem. Carefully

updating consecutive solutions leads to a faster method.

Theorem 1 There exists an O(n log n) algorithm for

minimising the total completion time of jobs on two

identical parallel machines with job splitting and uni-

form setup times.

Proof Suppose we schedule the first k jobs (for any 1 ≤
k ≤ n) in SPT order as 1-jobs and the other jobs in SPT

order as 2-jobs. We would like to compute the change in

objective value that results from changing job k from a

1-job to a 2-job. However, this happens to give a rather

complicated formula. It is much easier to consider the

change for job k − 1 and k simultaneously.

The schedule for the 1-jobs j < k − 1 does not

change. To facilitate the exposition, suppose that job

k−1 starts at time zero and job k starts at time a. Then

Ck−1+Ck = pk−1+s+a+pk+s. After turning the jobs

into 2-jobs, the new completion times become C ′k−1 =

(a + pk−1 + 2s)/2 and C ′k = (a + pk−1 + pk + 4s)/2.

Hence,

C ′k−1 + C ′k − Ck−1 − Ck = s− pk/2.

In addition, each job j > k completes s time units later.

Hence, the total increase in objective value due to turn-

ing both job k − 1 and k from a 1-job into a 2-job is

f(k) := (n− k + 1)s− pk/2.

Notice that f(k) is decreasing in k, since s > 0 and pk
is nondecreasing in k. Hence, either there exists some

k ∈ {2, . . . , n} such that f(k) < 0 and f(k − 1) ≥ 0, or

either f(n) ≥ 0, or f(2) < 0.

Suppose there exists some k ∈ {2, . . . , n} such that

f(k) < 0 and f(k − 1) ≥ 0. The optimal schedule is to

have either k−1 or k−2 unsplit jobs, since the first in-

equality and monotonicity implies that a schedule with

k − 2 unsplit jobs has a better objective value than a

schedule with k or more unsplit jobs, and the second in-

equality and monotonicity implies that a schedule with

k − 1 unsplit jobs has a better objective value than a

schedule with k − 3 or fewer unsplit jobs.

If f(n) ≥ 0 then the optimal solution is either to

have only 1-jobs or have only job n as a 2-job. If f(2) <

0 then the optimal solution is either to have only 2-jobs

or have only job 1 as a 1-job.

Straightforward implementation of the above gives

the desired algorithm, the running time of which is

dominated by sorting the jobs in SPT order. ut

4 Troubles on more machines

The properties exposed in Section 2 have been proven

to hold for any number of machines. The properties

presented in Section 3 were shown specifically for two

machines only. In this section we investigate their ana-

logues for three and more machines. We will present

some examples of instances that show that the exten-

sion is far from trivial. It keeps the complexity of the

problem on three and more machines as an intriguing

open problem.

Lemma 5 shows that for two machines, there always

exists an optimal schedule in which |Mj | is monotoni-

cally non-decreasing in j. The following lemma shows

that this does not hold for an arbitrary number of ma-

chines.

Lemma 6 There exist instances for which there is no

optimal schedule in which |Mj | is monotonically non-

decreasing in j.
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1 3 6 7 8 9 10

2 4 5 6 7 8 9 10

2 4 5 6 7 8 9 10

(a)

1 4 5 6 7 8 9 10

2 3 6 7 8 9 10

2 4 5 6 7 8 9 10

(b)

1 4 6 7 8 9 10

2 3 5 6 7 8 9 10

2 3 5 6 7 8 9 10

(c)

1 3 5 6 7 8 9 10

2 4 6 7 8 9 10

2 3 5 6 7 8 9 10

(d)

Fig. 2: Gantt charts depicting the optimal solutions to the 3-machine instance with processing times p =

(3, 10, 10, 10, 10, 50, 50, 50, 50, 50) (1 small job, 4 medium-sized jobs and 5 large jobs) and s = 0.7. The grey blocks

indicate the setup times, the numbered blocks are scheduled job parts. Each row of blocks gives the schedule for

a machine.

Proof Consider the instance on three machines hav-

ing 10 jobs with their vector of processing times p =

(3, 10, 10, 10, 10, 50, 50, 50, 50, 50) (1 small job, 4 me-

dium-sized jobs and 5 large jobs) and s = 0.7. We

slightly perturb the processing times if necessary, ob-

taining pj < pj+1 for all j = 1, 2, . . . , n− 1.

We found all optimal solutions for this instance by

exhaustive search. An optimal solution is depicted in

Figure 2(a). As we see, job 2 is split over machines 2

and 3, but job 3 starting later than job 2 is not split.

Jobs 4 and 5 are again what we call 2-jobs and are split

over machines 2 and 3. The large jobs are all split over

all three machines.

Below, we will describe all other optimal solutions

to this instance. We will consider two solutions to be

the same, if one solution can be obtained from the other

by a relabelling of machines, and/or (repeatedly) swap-

ping the schedule of two machines from some time t till

the end of the schedule, if these two machines both

complete processing of some job at time t.

The second optimal schedule, in Figure 2(b), is ob-

tained by scheduling job 1 on machine 1, job 2 split on

machines 2 and 3, job 3 on machine 2 (or 3), and jobs

4 and 5 as split jobs on the machines not used by job

3. The remaining jobs are again all split on all three

machines. It is easily verified that the objective of this

schedule is the same as the objective of the schedule in

Figure 2(a): the completion time of job 3 increases by 2,

and the completion times of jobs 4 and 5 each decrease

by 1, and all other completion times remain the same.

The remaining two optimal schedules, in Figures 2(c)

and 2(d) are obtained by switching jobs 3 and 4 in the

first two optimal schedules. We note that these sched-

ules continue to be optimal if the processing times are

slightly perturbed, as mentioned earlier.

All optimal solutions for this instance share the prop-

erty that job 2 is a 2-job, and either job 3 or job 4 is a

1-job, which proves the lemma. ut

If we slightly change the instance from the proof of

Lemma 6 by deleting one of the large jobs, then there

is a unique optimal solution, which splits job 3 over

machines 1 and 2 and continues with splitting job 4

over machines 1 and 3. Job 5 and the four large jobs

are split over all three machines, see Figure 3.

Lemma 6 and the fact that a subtle change in the

problem instance causes such a substantial change in

the optimal schedule bodes ill for an algorithmic ap-

proach like the one in Section 3.
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1 3 4 5 6 7 8 9

2 3 5 6 7 8 9

2 4 5 6 7 8 9

Fig. 3: Gantt chart depicting the unique optimal solutions to the 3-machine instance with processing times p =

(3, 10, 10, 10, 10, 50, 50, 50, 50) (1 small job, 4 medium-sized jobs and 4 large jobs) and s = 0.7.

5 Approximation algorithm

We will now show a constant-factor approximation al-

gorithm for our problem, for an arbitrary number of

machines. We remark that we do not know whether

this problem is NP-hard, but the examples in the pre-

vious section do show that the way a job is scheduled

in an optimal schedule may depend on jobs that occur

later in the schedule. Our approximation algorithm, on

the other hand, is remarkably simple, and only uses a

job’s processing time and the setup time to determine

how to schedule the job.

We schedule the jobs in order of non-decreasing pro-

cessing time. Let s > 0 and let α be some constant that

will be determined later. Job j will be scheduled such

that it completes as early as possible under the restric-

tion that it uses at most `j := min{dαpj/se,m} ma-

chines. Thus, the job will be scheduled on the at most

`j machines that have minimum load in the schedule so

far. It is easy to see that a job is always balanced this

way.

Theorem 2 The algorithm described above is a (2+α)-

approximation algorithm for minimising the total com-

pletion time with job splitting and uniform setup times,

provided that α ≥ 1
4 (
√

17− 1).

Proof Let σ be the schedule produced by the described

algorithm. Note that the total load (processing times

plus setup times) of all jobs in σ up to, but not includ-

ing, job j is upper bounded by Lj =
∑
k<j(pk + `ks),

since job k introduced at most `k setups. Therefore, the

average load on the `j least loaded machines is upper

bounded by Lj/m. Since job j is balanced, we can thus

upper bound the completion time C̃j of job j in the

schedule by Lj/m+ pj/`j + s. Note that this is an up-

per bound on the completion time of job j when we try

to schedule it on at most `j machines.

Noting that

pj/`j = pj/min{dαpj/se,m}
≤ pj/dαpj/se+ pj/m

≤ (1/α)s+ pj/m,

and

`ks = min{dαpk/se,m}s < αpk + s,

we obtain

C̃j ≤ Lj/m+ pj/`j + s

≤ 1

m

∑
k<j

(pk + `ks) + pj/`j + s

<
1

m

∑
k<j

(
(1 + α)pk + s

)
+ pj/m+ (1 + 1/α)s

≤ 1 + α

m

∑
k≤j

pk +

(
j − 1

m
+ 1 +

1

α

)
s.

We can lower bound the sum of completion times in

an optimal schedule by
∑
j(s+ 1

m

∑
k≤j pk): suppose we

only needed a setup time for the first job to be processed

on a machine, for any machine. Clearly, the optimal

sum of completion times for this problem gives a lower

bound on the optimum for the original problem. Now,

the optimal schedule when we only need a setup time

for the first job on a machine processes the jobs in SPT

order and splits each job over all machines, which gives

a sum of completion times of
∑
j(s+ 1

m

∑
k≤j pk).

Also, in any schedule, at most m jobs are preceded

by only one setup, at most another m by two setups,

etc., giving a lower bound of
∑
jdj/mes on the sum

of completion times: this is exactly the optimal value

when all processing times are 0. We will show below

that
∑
jd

j
mes ≥

∑
j
j−1
m s+ 1

2ns.

Hence, by using 1 + α times the first bound, and 1

time the second bound, we get

(2 + α)
∑
j Cj

≥ (1 + α)
∑
j

(
s+ 1

m

∑
k≤j pk

)
+
(∑

j
j−1
m s+ 1

2ns
)

=
∑
j

(
1+α
m

∑
k≤j pk + (1 + α)s+ j−1

m s+ 1
2s
)
,

which is at least as large as
∑
j C̃j provided α > 0 and

3
2 + α ≥ 1 + 1

α , which is equivalent to α ≥ 1
4 (
√

17− 1).

Next we show that
∑
j

⌈
j
m

⌉
s ≥

∑
j
j−1
m s+ 1

2ns. Let

j = qm+ a for some q ≥ 0 and a ∈ {1, . . . ,m}. Then⌈
j

m

⌉
− j − 1

m
= (q + 1)− (qm+ a− 1)/m

= 1− (a− 1)/m.
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Now assume that n = rm + b, for some integer r ≥ 0

and b ∈ {1, . . . ,m}. Then

n∑
j=1

⌈
j

m

⌉
−

n∑
j=1

j − 1

m

= r

m∑
a=1

(
1− a− 1

m

)
+

b∑
a=1

(
1− a− 1

m

)

= rm+ b− r
m∑
a=1

a− 1

m
−

b∑
a=1

a− 1

m

= n− r(m− 1)/2− 1

2
(b− 1)b/m

≥ n− r(m− 1)/2− 1

2
(b− 1)

= n− (rm+ b)/2 + r/2 + 1/2

= n/2 + r/2 + 1/2 ≥ n/2.

Hence multiplying both sides with s yields

n∑
j=1

⌈
j

m

⌉
s ≥

n∑
j=1

j − 1

m
s+

1

2
ns. ut

Corollary 1 There exists a 2 + 1
4 (
√

17 − 1) < 2.781-

approximation algorithm for minimising total comple-

tion time with job splitting and uniform setup times.

6 A polynomial-time approximation scheme

We give an approximation scheme which runs in poly-

nomial time if the number of machines is assumed con-

stant. The idea is simple: by splitting a job j, at most

pj on its completion time can be saved. Denote by Opt

the sum of completion times of an optimal schedule. It
is easy to show that the value of a non-preemptive SPT

schedule is no more than
∑
j pj larger than Opt. In

particular, if we schedule the first K = n− dm/εe jobs

by non-preemptive SPT then the extra cost is at most∑K
j=1 pj . But, as we will see, this is only an ε-fraction of

the total completion time of the last dm/εe jobs. These

last jobs we schedule optimally given the schedule of

the first K jobs.

Now, we define the algorithm and its running time

in more detail. Let, as before, p1 ≤ · · · ≤ pn. Let

K = n − dm/εe. (If K ≤ 0 then n ≤ dm/εe and the

optimal solution can be found in constant time.) Let

ρ be an optimal schedule and let ρ(K) be the sched-

ule ρ restricted to the jobs 1, 2, . . . ,K. By Lemma 2

we may assume that ρ(K) has no idle time. Let ti(ρ)

be the completion time of machine i in ρ(K). The al-

gorithm makes an approximate guess about the values

ti(ρ). That means, it finds values ti such that

ti(ρ) ≤ ti ≤ ti(ρ) + s+ pK . (2)

Note that for any i, we have ti(ρ) ≤ K(s+ pK). Hence,

we need to try only Km guesses for (t1, . . . , tm). Assume

from now that we guessed (t1, . . . , tm) correctly, i.e., (2)

is satisfied.

We apply SPT to the jobs 1, 2, . . . ,K such that no

machine i is loaded more than ti+s+pK . This can easily

be done as follows: apply list scheduling in SPT order

and close a machine once its load becomes ti or more.

Let Ti be the completion time of machine i in the result-

ing schedule. Then Ti ≤ ti+s+pK ≤ ti(ρ)+2(s+pK).

Next, we find a near-optimal completion of the schedule

by guessing for each job j > K a set Mj and apply lin-

ear programming. There are 2m(n−K) possibilities for

choosing such sets, which is a constant. The linear pro-

gram works as follows. Note that the LP of Section 2

can be extended to do the following. Given a set Mj for

each job j and a time Ti for each machine, we can find

the optimal schedule among all schedules for which: (i)

job parts are in SPT order on each machine, (ii) ma-

chine i does not start before Ti, (iii) job j can only be

scheduled on machines in Mj , and (iv) job j has a setup

time s for each machine in Mj even when its processing

time xij is zero. Note that it is not clear if the LP gives

us the real optimal completion since we have not proved

that the SPT properties hold also for optimal schedules

if an initial part is fixed, as we do here. However, we

can show that the solution given by the LP is close to

optimal.

Approximation ratio Let σ be the final schedule and let

C̃j be the completion time of job j. Here we use Opt

to denote the objective value of optimal schedule ρ. For

any h ∈ {1, . . . , n} define µh =
∑h
k=1(s+ pk)/m. Then

for any schedule, the h-th completion time is at least

µh. Hence,

Opt ≥
n∑
h=1

µh ≥
n∑

h=K+1

µh ≥
n∑

h=K+1

µK

= dm/εeµK ≥
1

ε

K∑
k=1

(s+ pk).

For the rest the proof we will denote by Ch the comple-

tion time of job h in the optimal schedule and by C̃h
the completion time of job h in the schedule produced

by our algorithm. Further, we will use the notation C(h)

for the h-th completion time of ρ, (h = 1, . . . , n). Notice

that C(h) is not necessarily equal to Ch. For h ≤ K it
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is easy to see that C̃h ≤ C(h) + s+ ph. This implies

K∑
h=1

C̃h ≤
K∑
h=1

(C(h) + s+ ph)

=

K∑
h=1

C(h) +

K∑
h=1

(s+ ph) (3)

≤
K∑
h=1

C(h) + εOpt.

So for the first K jobs we are doing fine. Next, we give

a bound on the total completion time of the other jobs.

Let M∗j be the set of machines used by job j in the

optimal schedule ρ. One of the guesses of the algorithm

will be Mj = M∗j for j > K. We show that the corre-

sponding LP-solution gives a near-optimal completion

of the schedule.

A feasible LP solution is to take for xij , j > K, the

values that correspond to ρ and choose values CLPj =

Cj + 2(s + pK), where we we remind that Cj is the

completion time of job j in the optimal schedule ρ. The

latter is feasible since Ti ≤ ti(ρ) + 2(s + pK). Hence,

we can bound the total completion times of jobs K +

1, . . . , n by
n∑

h=K+1

C̃h ≤
n∑

h=K+1

CLPh

≤
n∑

h=K+1

(Ch + 2(s+ pK)) (4)

=

(
n∑

h=K+1

Ch

)
+ 2(n−K)(s+ pK).

To bound the second term in the right-hand side of (4)

we derive another bound on Opt:

Opt ≥
n∑
h=1

µh ≥
n∑

h=K+1

µh

=

n∑
h=K+1

h∑
k=1

(s+ pk)/m

≥
n∑

h=K+1

h∑
k=K+1

(s+ pk)/m

≥
n∑

h=K+1

(h−K)(s+ pK)/m

>
1

2
(n−K)2(s+ pK)/m

≥ 1

2
(n−K)(s+ pK)/ε.

Combining this with (4) we get

n∑
h=K+1

C̃h ≤
n∑

h=K+1

Ch+4εOpt ≤
n∑

h=K+1

C(h)+4εOpt.

Adding (3) we can bound the total completion time by

(1 + 5ε)Opt.

7 Hardness for weighted completion times

We prove that introducing weights for the jobs in our

problem makes it strongly NP-hard for any number of

machines and weakly NP-hard for 2 machines.

Theorem 3 The problem of minimising total weighted

completion time with job splitting and uniform setup

times on parallel identical machines (P |s, split|
∑
wjCj)

is strongly NP-hard.

Proof We reduce from 3-Partition: given 3n positive

numbers a1, . . . , a3n and a number A such that a1 +

· · ·+ a3n = nA, does there exist a partition A1, . . . , An
of {1, . . . , 3n} such that |Ai| = 3 and

∑
j∈Ai

aj = A for

all i?

Given an instance of 3-Partition, we construct the

following instance of our scheduling problem: We have n

machines and 3n jobs. We set pj = aj and wj = aj + s

for all j = 1, . . . , 3n, where the setup time s is some

large enough number, to be defined later.

The idea behind the reduction is the following: the

large setup time will make sure that exactly three jobs

are scheduled (unsplit) per machine. The weights are

chosen such that a schedule where all machines com-

plete at exactly the same time is optimal, if such a

schedule is feasible.

Suppose we schedule the jobs unsplit where Ai is

the set of jobs processed on machine i. Then, the cost

of the schedule is:

3n∑
j=1

wjCj =

n∑
i=1

∑
j∈Ai

wjCj

=

n∑
i=1

∑
j∈Ai

(s+ aj)
∑
k≤j

(s+ ak)

=

n∑
i=1

∑
j∈Ai

∑
k∈Ai:k≤j

(s+ aj)(s+ ak)

=
1

2

n∑
i=1


∑
j∈Ai

(s+ aj)

2

+
∑
j∈Ai

(s+ aj)
2


=

1

2

n∑
i=1

l2i +
1

2

3n∑
j=1

(s+ aj)
2,

where li is the total load on machine i. Note that the

second term is independent of the schedule. This cost

is minimised when li = lh for all i and h and this can

be realised if a perfect 3-partition exists. Let us denote

this minimum by Opt3P.
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If no perfect 3-partition exists, then any schedule

where no jobs are split has strictly higher cost than

Opt3P. It remains to prove that also any schedule with

at least one split job has a strictly higher cost than

Opt3P.

First observe that

Opt3P =
1

2

n∑
i=1

(3s+A)2 +
1

2

3n∑
j=1

(s+ aj)
2

= 6ns2 +O(ns).

Now assume that at least one job is split, then there

are at least 3n+ 1 setup times of s each. Consider the

extreme case where all 3n values aj are zero. In this

case it is easy to see that the weighted sum of the 3n

completion times is at least (6n + 1)s2. Clearly, this

bound holds as well for arbitrary value aj . For large

enough s we have (6n+ 1)s2 > Opt3P. ut

Theorem 4 The problem P2|s, split|
∑
wjCj is weakly

NP-hard.

Proof We now reduce from a restricted form of the Sub-

set Sum problem: Given 2n positive integers a1, . . . , a2n
such that a1 + · · · + a2n = 2A, is there a set I ⊂
{1, . . . , 2n} such that |I| = n and

∑
i∈I ai = A? Given

an instance of Subset Sum, we construct the follow-

ing instance of our scheduling problem. We have 2 ma-

chines and 2n jobs. We set pj = aj and wj = aj + s

for j = 1, . . . , 2n, where the setup time s is some large

enough number, to be defined later. The proof follows

the same reasoning as the previous proof: the large

setup time will now make sure that exactly n jobs are
scheduled (unsplit) per machine, and the weights will

make sure that a schedule where the two machines com-

plete at exactly the same time is optimal, if such a

schedule is feasible.

Suppose we schedule the jobs unsplit. Then, just as

in the proof above for an arbitrary number of machines

we have that the cost of the schedule is:

2n∑
j=1

wjCj =
1

2
(l21 + l22) +

1

2

2n∑
j=1

(s+ aj)
2,

where li is the total load on machine i. Note that the

second term is independent of the schedule. This cost

is minimised when l1 = l2 and this can be realised if a

perfect subset I exists. Let us denote this minimum by

OptS.

If no perfect subset exists, any unsplit schedule has

strictly higher cost. It remains to prove that also any

schedule with at least one split has a strictly higher cost

than OptS.

First observe that

OptS = (ns+A)2 +
1

2

2n∑
j=1

(s+ aj)
2

= (n2 + n)s2 +O(ns).

Now assume that at least one job is split, then there

are at least 2n+ 1 setup times of s each. Consider the

extreme case where all 2n values aj are zero. In this

case it is easy to see that the weighted sum of the 2n

completion times is at least (n2 +n+1)s2. Clearly, this

bound holds as well for arbitrary values aj . For large

enough s we have (n2 + n+ 1)s2 > OptS. ut

8 Epilogue

In the following table we gather the state of the art

on scheduling problems with job splitting and uniform

setup times. For describing the problems in the first

column of the table we use the standard three-field

scheduling notation [6]. In the first field, expressing the

processor environment, we only consider parallel iden-

tical machines, denoted by P , possibly with the num-

ber of parallel machines mentioned additionally. In the

second field, expressing job characteristics, the term

‘pmtn’ denotes ordinary preemption, ‘split’ denotes job

splitting as we consider in this paper and s denotes the

presence of uniform setup times. Though this paper is

mainly concerned with problems with a total comple-

tion time objective, indicated by
∑
Cj in the third field,

expressing the objective, we will also show the state of

the art on the total weighted completion time (indi-

cated by
∑
wjCj) and on the makespan (indicated by

Cmax).

In the second column, we summarize the complex-

ity status of these problems. A question mark indicates

that the complexity of the problem is unknown. In the

third column we give the best approximation guarantee

known, where a ‘-’ indicates that no algorithm with a

performance guarantee is known. If we consider it rel-

evant, we also present, as a footnote, the knowledge

on the comparable version with preemption instead of

splitting.
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Table 1: Minimising total (weighted) completion time and makespan with job splitting and setup times

Problem Complexity Algorithm

P | split |
∑

Cj in P
divide jobs equally over the
machines in SPT order

P2 | s, split |
∑

Cj in P algorithm of Section 3

Pm | s, split |
∑

Cj ? PTAS of Section 6

P | s, split |
∑

Cj ? 2.781-approx. of Section 5
cf. P | s, pmtn |

∑
Cj in P SPT

P |split |
∑

wjCj in P
divide jobs equally over the
machines in WSPT order

cf. P | pmtn |
∑
wjCj NP-hard [2] PTAS [1]

P | s, split |
∑

wjCj NP-hard -
cf. P | s, pmtn |

∑
wjCj NP-hard -

P | s, split | Cmax NP-hard [11] (cf. [3]) 5
3

-approximate split/
assignment [3]

P | s, split | Cmax NP-hard 3
2

-approximate wrap-around [11]
if pj ≥ s ∀j algorithm
cf. P | s, pmtn | Cmax NP-hard [10] PTAS [10]
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