]. A. Ballhorst1, J. Ball, and S. Horst, Robust Control, Multidimensional Systems and Multivariable Nevanlinna-Pick Interpolation, of Operator Theory: Advances and Applications, chapter 2, pp.13-88, 2010.

]. L. Baratchart, S. Chevillard, and T. Qian, Minimax principle and lower bounds in h 2 -rational approximation, BCQ15 Journal of Approximation Theory, issue.2, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00922815

M. Olivi, Critical points and error rank in best H 2 matrix rational approximation, BO98 Constructive Approximation, vol.14, pp.273-300, 1998.
URL : https://hal.archives-ouvertes.fr/inria-00073728

M. Olivi and F. Seyfert, Generalized Nevanlinna-Pick interpolation on the boundary. Application to impedance matching, Proceedings of the MTNS, p.2014
URL : https://hal.archives-ouvertes.fr/hal-00920564

. Belevitch56, Elementary Applications of the Scattering Formalism in Network Design, IRE Transactions on Circuit Theory, vol.3, issue.2, 1956.
DOI : 10.1109/TCT.1956.1086305

]. I. Byrnes, T. Georgiou, and A. Lindquist, A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint, IEEE Transactions on Automatic Control, vol.45, issue.6, pp.822-839, 2001.
DOI : 10.1109/9.928584

. Fuhrmann, Linear systems and operators in Hilbert spaces, 1981.

]. J. Garnett-[-9 and . Garnett, Bounded Analytic Functions, 1981.

]. T. Georgiou198710 and . Georgiou, A Topological Approach to Nevanlinna???Pick Interpolation, SIAM Journal on Mathematical Analysis, vol.18, issue.5, pp.1248-1260, 1987.
DOI : 10.1137/0518091

J. W. Guipol and . Helton, Differential Topology Broadbanding:gain equalization directly from data. Circuits and Systems, IEEE Transactions on, vol.28, issue.12, pp.1125-1137, 1974.

. Mumford, Algebraic Geometry I: Complex Projective Varieties, 1995.
DOI : 10.1007/978-3-642-61833-8