Tensor decomposition and homotopy continuation

Abstract : A computationally challenging classical elimination theory problem is to compute polyno-mials which vanish on the set of tensors of a given rank. By moving away from computing polynomials via elimination theory to computing pseudowitness sets via numerical elimination theory, we develop computational methods for computing ranks and border ranks of tensors along with decompositions. More generally, we present our approach using joins of any collection of irreducible and nondegenerate projective varieties X1,. .. , Xk ⊂ P N defined over C. After computing ranks over C, we also explore computing real ranks. Various examples are included to demonstrate this numerical algebraic geometric approach.
Type de document :
Article dans une revue
Differential Geometry and its Applications, Elsevier, 2017, 55, pp.78-105. 〈10.1016/j.difgeo.2017.07.009〉
Liste complète des métadonnées

Littérature citée [83 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01250398
Contributeur : Bernard Mourrain <>
Soumis le : lundi 4 janvier 2016 - 17:03:13
Dernière modification le : lundi 20 novembre 2017 - 15:16:28
Document(s) archivé(s) le : vendredi 15 avril 2016 - 16:20:35

Fichiers

TensorDecomp_151215.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alessandra Bernardi, Noah S. Daleo, Jonathan D. Hauenstein, Bernard Mourrain. Tensor decomposition and homotopy continuation. Differential Geometry and its Applications, Elsevier, 2017, 55, pp.78-105. 〈10.1016/j.difgeo.2017.07.009〉. 〈hal-01250398〉

Partager

Métriques

Consultations de la notice

291

Téléchargements de fichiers

85