Tensor decomposition and homotopy continuation

Abstract : A computationally challenging classical elimination theory problem is to compute polyno-mials which vanish on the set of tensors of a given rank. By moving away from computing polynomials via elimination theory to computing pseudowitness sets via numerical elimination theory, we develop computational methods for computing ranks and border ranks of tensors along with decompositions. More generally, we present our approach using joins of any collection of irreducible and nondegenerate projective varieties X1,. .. , Xk ⊂ P N defined over C. After computing ranks over C, we also explore computing real ranks. Various examples are included to demonstrate this numerical algebraic geometric approach.
Type de document :
Article dans une revue
Differential Geometry and its Applications, Elsevier, 2017, 55, pp.78-105. 〈10.1016/j.difgeo.2017.07.009〉
Liste complète des métadonnées

Littérature citée [83 références]  Voir  Masquer  Télécharger

Contributeur : Bernard Mourrain <>
Soumis le : lundi 4 janvier 2016 - 17:03:13
Dernière modification le : mercredi 10 octobre 2018 - 10:10:37
Document(s) archivé(s) le : vendredi 15 avril 2016 - 16:20:35


Fichiers produits par l'(les) auteur(s)



Alessandra Bernardi, Noah S. Daleo, Jonathan D. Hauenstein, Bernard Mourrain. Tensor decomposition and homotopy continuation. Differential Geometry and its Applications, Elsevier, 2017, 55, pp.78-105. 〈10.1016/j.difgeo.2017.07.009〉. 〈hal-01250398〉



Consultations de la notice


Téléchargements de fichiers