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Abstract—We consider a scenario where an agent has multiple A. Diversity and Exploration
available strategies to explore an unknown environment. For ) . o o
each new interaction with the environment, the agent must  Behavioural diversity is a factor of individual robustness
select which exploration strategy to use. We provide a new when facing an evolving environment. It ensures that the next
strategy agnostic rtr)nlethodhthat treat thed siuation as a Multi- * time the environment changes some of the behaviours will
rmed Bandits problem where the reward signal is the diversity ; . : : :
of effects that each strategy produces. We test the method rema}ln relevf':lnt.. .At the pqpulatlon level, behawoqral .dlver.s ity
empirically on a simulated planar robotic arm, and establish Provides variability even in the absence of genetic diversity.
that the method is both able discriminate between strategies of ~ This point was recently heeded by the evolutionary robotics
dissimilar quality, even when the differences are tenuous, and community, which was facing, amongst others, two specic
that the resulting performance is competitive with the best xed challengesearly convergencewhen the evolutionary process
mixture of strategies. . - :
would get trapped in local minima because of a deceptive
. MOTIVATION tness function, andbootstrapping problemsvhere the rst

We are given a black-box that takes inputs and producggneration fails to produce rewarding behaviour, hence stalling
outputs. We know the values the inputs can take, but we i evolutionary process. The then solution, staging the tness
not know which inputs produce which outputs. We do ndpnction [14,20[ 37]—a method similar reward shapingn
even know which outputsan be produced. We are givenremforcement_ I_earmng [10, 26].—, was deemgd impractical
the opportunity to sample the black-box a limited number G€cause requiring problem-speci ¢ tness functions.
times. In this context, we propose to investigate the following The solution came from replacing or modifying the tness
question: how muchliversity of outputsan be produced with function to encourageehavioural diversityin the population
the limited access we have? of candidate solutions [8] B, 115,123,127] 36], a method proposed

This question de nes aexploration problemHere, the ob- st in the classical evolutionary algorithm domain [13,]33].
jective is to discover what outputs the black-box is capable toIn infants, actively fostering diversity in our interaction
deliver. To answer such a problem is to providesaploration Wwith the environment througéxploratory behaviouis pivotal:
strategy i.e. a method that selects which inputs to experimeiit allows to discover and investigate new phenomena and
with on the black box, in order to produce a diversity o@iffordances before they are detected as such. For Eleanor
outputs. Gibson [12], babies are not endowed with the abilities to per-

In this paper, we interest ourselves with a scenario where weive affordances, but must spend their rst years discovering
have multiple exploration strategies available, whose interrgffordances in their environment. For instance, children do not
operational details are not speci ed, and we must select, falready know that mirror are special objects proposing unique
each available interaction with the environment—i.e., the blagiad salient interactions. Instead they must discover their affor-
box—, which exploration strategy to use to generate the inp@tance through an unrealed exploration of their environment.
to execute. This point is important: studying exploratory behaviours on

Stated differently, we have several exploration black-box#seir own—rather than in the context of a learning problem—
and one environmental black-box, and we want to know whigi@n shed light on how problems are discovered in the envi-
exploration black-box to use on the environmental black-bdgnment in the rst placebeforethey are acknowledged as
at each interaction, so as to maximize the diversity of tHearning activities.
effects produced by the environmental black-box. One could argue that, after noticing the mirror particular

Two salient points are present in our problem statement. Wature, the exploratory behaviour of the child in front of the
considerexploration problemsather thariearningones. And mirror is in fact highly structured, and follows the child-as-
we establish an objective of diversity, not one of control or @&f-scientist paradigm_[16, 17, 135]. But as Cook points out,
prediction or of tness or of reward optimization. We brie y more ecological explanations are also available: “selective
motivate these two stances in the following sections. exploration of confounded evidence is advantageous even if



children explore randomly (with no understanding of how to A taskis de ned as a paiff;n) with f : M 7! S the
isolate variables)”[[7, p. 352]. Therefore the mere producti@nvironment anch the maximum number of samples 6f
of behavioural diversity is a useful tool in broad and speci allowed, i.e. the number of inputs the exploration strategy can
exploration. try on the environment.

One other reason to investigate exploration independently
from learning: exploration can happen without learning. Fé Exploration

instance, a robot randomly producing movements does nofan exploration strategy evaluates the functionn times,
exhibit Iearning, yet exhibit an eXploratory behaviour. Slﬁbrov|d|ng a seguence of e|ement58)fxo, X1, ...,Xn 1. Each

ilarly, a robot following mindlessly the left wall of a mazey; is evaluated ay; = f(x;), andy; is observed by the
explores the maze, and does it successfully to boot. Aaglploration strategy before;.; is chosen.

many vacuum robots available today explore their environment|n order to evaluate the exploration strategy, we use an

without learning them. In all those examples, exploratiogxploration measur€, that takes the behavioural trace of the
is present because the behaviour creates access to (ngyént as input, i.e., the actions executed and effects produced:
information about the environment. That the information is(x;:yi)gy i<n .

a learning one. the agent has obtained knowledge of all the possibilities of the
B. More Than One Exploration Strategy environment. A good proxy for this is tol evaluate the sgt of

. . : effects the agent was able to produce during the exploration. In
Different environments lend themselves to different X ther words. how well the imade 6f f (M )—the reachable
ploration strategies. In simple environments, doing randosrg)ace_Was 'Sampled ge o,

actions will be as effective as any other strategy. In mor Since we do not assume that the agents have knowledge

complex contexts, more elaborate strategies are needed. : .
. o N of the exploration problem they are examined under, or that
The eld of computational intrinsic motivation has devel-

oped an abundance of different motivational drives such they have knowledge of the exploration measures that are used

S . . .
. - C . % evaluate their behaviour, and since agents may explore the
novelty, surprise, prediction error, predictive information or

. environment for their own purposes, and self-evaluate their
competence progress (sée [[2] 30] for reviews). Each of thes . . : ) :

: o L ehaviour according to their own metrics, the choice of an
drives express preferences owhat is interesting in the

. . . exploration measure is necessarily arbitrary. This consideration
world, and de ne speci ¢ exploration strategies.

is not present for instance in reinforcement learning, where

Moreover, exploration, for a robot, may be possible throug[ . L .
. ) . . . . e cumulative reward de nes an objective motivation for the
different means: asking for social guidance, observing a peer

. . agent, and an objective evaluation for the experimenter. In an
or opting for self-exploration. Each of those venues may no ) - - :
exploration context, it is the responsibility of the experimenter

be always available, and some, e.g. social guidance, may o . . )
Yy o €0 9 » May oy justify the interest and relevance of the selected exploration
be available for infrequent use. asure

This suggests that robots should be endowed with differerﬂI thi K lect ali it 40 luate th
exploration strategies to tackle complex environments. Further- N this work, we select allversily measuréo evaiuate the
loration. The importance of diversity for the development

more, we argue that one should resist hiding the choice the h 4 animal d ab And behavi |
strategies represent under a larger, monolithic, opaque explo- umans and animals was argued above. And behavioura

ration strategy. Indeed such a strategy would need to hant |gersity Eaf. prolxgn |t:tself eg?pwt{cally n the ektj IOf evol(;;;
simultaneoushhow, whatand possiblywhento explore, three lonary robotics. AbSent an objective environmental reward for

aspects which may need to be speci cally mediated by othg}e agents behaylour, aqd abs?.”.t an assumptpn th"’.‘t thg agent
possesses speci ¢ learning abilities, encouraging diversity in

components of behaviour. havi . | ti itiol First it d t out
Therefore, agents having multiple available exploratioklﬁe aviour 1s relevant in multiple ways. Frst, it do€s not pu
ight constraints on the form the behaviour of the agent.

strategies are justi ed. In this article, we propose a strateg . .
agnostic method to select which strategy to choose in functi r?cond, .'t prepares t_he agent for .futu.re problems. an agent
of the empirical behaviour of each of them. Wlth a diverse behawoural repertoire is Illfely to also have
high amounts of diverse knowledge and skills.
The diversity measure concerns itself only with the sensory
Il. PROBLEM part of the behaviourfyigo i«n . It is de ned as a coverage
A. Environment measure. Given > 0, the diversity of the exploration

An environmentis formally de ned as a functioi from SfYiGo i<n ) is dened as the volume (more precisely the
M to S. M is the motor space, a bounded hyperrectangle bgPesgue measure) of the union of thehyperballs ofR®
R™, and represents a parameterization of the movements YiEh Yo, Y1, -, Yn 1 @s a centres, and radius
robot can executeS is the sensory space; it is a subseRSt [

Effectsand goalﬂ (desired effects) are elements $f C(fyido i«<n = B(yi; )

lWe assume thaB is known by the exploration strategy, but nothing =0

preventsS to be set equal t&R® with B(y;; ) the hyperball of radius and centrey;.



In evolutionary robotics, other measures of diversity suastimator of the heterogenity of the redundancy, it rarely ever
as sparseness [23] or entropy [8] have been used. explores the edges of the reachable space.

A goal babbling strategy is (usually) better suited for
exploring the arm setup. We will consider random goal
babbling (RGB) strategy([4, 32], that picks a goal at random

In this section, we illustrate the problem on a specidn the squard 1;1] [ 1;1], and translate it to a tentative
example, that will serve as the experimental setup for the
method, exposed in the next section.

We consider an idealized robotic arm on a two-dimensional
plane, made up of an open chain of 20-joints linked by
segments of 1/20th of a meter each, so that the total length of
the arm is one meter. The angles of the joints are restricted to
values between -150 and 150 degrees. The angles of the joints
are the inputs: they uniquely de ne the posture of the arm, and
therefore, the position of the end-effector, which corresponds
to the environmental feedback. Let's remark that only the nal
position of the end-effector, corresponding to the angle inputed
in absolute value, is returned by the environment (i.e. there is
no posture dependence between two consecutive samples).

IIl. | LLUSTRATING THE PROBLEM

A. A Tale of Two Exploration Strategies

Despite the simplicity of the arm setup, it is not a trivial
problem, and this is exacerbated since we cannot assume any
knowledge about the arm.

The most simple strategyandom motor babblingRMB),
samples the motor space randomly. Here the RMB strategy
(Figure[1) is inef cient: indeed, the redundafipgf the arm
is heterogeneously distributed in the sensory space (the end-
effector position space). In particular, the redundancy is high
near the origin, and order of magnitude lower on the edge of
the reachable space. Because the RMB strategy is precisely an

2Considering a subset of the sensory spBcethe redundancyof B is
de ned as the volume (more generally, the Lebesgue measure) of the set
of motor commands whose effect belong Bg i.e. fxjf (x) 2 Bg with
f the environment feedback function (see secfion]ll-A)).l [24] provides an
algorithm to quantify the redundancy of rigid, multijoint robotic arms, but the
computation is only tractable for a small number of joints.

Fig. 2. Random goal babbling can a very ef cient strategy—if the inverse
Fig. 1. Random motor babbling is not an ef cient exploration strategy witmodel is well chosen. Each exploration is done over 5000 timesteps. In each
a high number of joints. case, the last ve postures of the exploration are displayed.



motor command that tries to put the end-effector as close aslgorithm 1: INVERSE4(Yg; E)

possible of the goal. Data:
To translate a goal into a motor command, we need an d 2 [0: 1], a perturbation ratio.
inverse model As in this paper, we are only interested in E = f(X:y)Go en 2 (M S)N past observations.

relative performance: we choose a simple inverse model. Our
inverse model, when given a goal, nds the nearest effect
available in the observed data, retrieves the motor commanoﬁesmg

that produced it, applies a small perturbation to it, and re- X 2 M @ motor command.

turns the perturbed command for execution of the exploration

strategy. The magnitude of the perturbation is parametrizedFind (xi;yi) in E so thaty; is the the nearest neighbour
by theperturbation coef cientd: the perturbation is randomly ~ f Yg in fyiGo wn :

chosen between d times the legal joint range. For instance x%= PERTURBy(X;)

(here300 ), if d =0:05, the motor command is perturbed by

a random value chosen in15 on each joint.

Choosingd appropriately is not trivial. In Figuré]2, the
RGB exploration of three different values dfis shown. The
d = 0:05 case results in a good exploration. Blt= 0:001
creates degenerated clusters: the perturbation is too low to
create enough sensory variabiliy.contrario, d = 0:5 creates
too much variability, and is only marginally better than the
RMB exploration of Figuré]1.

Let's imagine now that we are given two strategies to
explore the arm setup. One is the RMB strategy, and the other
is a RGB strategy, with unknowd. We don't assume any )
knowledge of either strategy. How can we dynamically decide,
for each interaction with the black-box, which exploration
strategy to choose to maximize the coverage of the exploration
over the reachable space?

yg 2 S, agoal

on motor babbling to bootstrap the exploration. Given
the inverse model currently used, this is even more
true, as goal babbling's performance depends heavily the
sensorimotor attractors in which it expands, and thus
on the location of the observations produced early in
exploration by motor babbling.

2) Dynamical Value: the usefulness of a strategy may
change rapidly. Motor babbling is useful in the begin-
ning of the exploration, but its usefulness drops quickly.
Agnosticity: since an exploration strategy might be
arbitrarily complex, and possibly involve, in turn, other
exploration strategy, an adaptive strategy should not rely
on knowledge of the internal workings of the strategies
amongst which it must choose.

B. Inverse Model Interdependence does not have to be handled directly, but
Given a goal, the inverse model nds the nearest neighboitiimplies that even strategies that did poorly in the past must
in the observed effects and applies a small perturbation onl#g re-evaluated regularly as the exploration progresses. The

corresponding motor command. dynamical nature of the contribution of each strategy means
Formally, M is an closed hyperrectangle &M, and as that performance data becomes obsolete quickly: evaluations
such it is the Cartesian product of closed intervals: should be done over short-term time windows. Agnosticity
ny 1 implies the contributions of the strategies have to be evalu-
M = [a::b] _ated only from the observations the strategies produce. We
m=0 introduce a measure that matches those constraints now.

A strategy that produces effects over areas that have already
been explored is of little use for exploration. We introduce an
online diversity measur¢hat evaluates, each time a strategy is
PERTURBy(x) = frandonfmaxa;x; d(j a)); used, how much diversity is created, with regards to already

min(x; + d(y  a):5))do j<m observed effects. . .

In order to do that, we rely on the diversity measure
with the functionrandon{a;b) drawing a random value in introduced in section Il, based on the union of disks centred
the interval[a; b according to a uniform distributiord is the on observed effects. Although we reuse the coverage measure
perturbation parameterand the only parameter of the inversgere out of convenience, the two measures do not have to have

Given an motor command = fXg; X1, Xm 19N M, a
perturbation ofx is de ned by:

model, that we can now express in Algoritfiin 1. any relationship with one another. The measure is adapted to
evaluate a single effect: the diversity of a new observed effect
IV. METHOD is the increase in diversity, i.e., the increase in the covered

. . area.
A. Effect Diversity De nition 1: Given a set of effectE = fyo;y1;:5Yn 10,
Choosing which strategy to employ at each step of thgq a coverage thresholdn R*, the diversity of a new effect
exploration faces three main challenges: vy, relative toE is de ned as:
1) Interdependence an exploration strategy effectiveness
may depend on another strategy; goal babbling relies div (yn;E)= C(E[f yhg) C (E)



The diversity of a strategy, in turn, is the averaged diversithis perspective: each region of the goal space is a different
of the effects it produced, over a given time window. topic, whose improvement is empirically measured through
De nition 2: Given a set of strategies; s1;:::;Sq 1, and competence progress during learning, and the exploration
a set of observed effect = fyg;y1;::;yn0, We have for a strategy must decide how to distribute its action given those
given strategys; a subsequencgh;y; :::;yinJ of the effects learning feedback signals.
produced by motor commands emanating from the strategyThe strategic student problem also considers another related
Given a time windoww in N*, we de ne the diversity of problem: a student has one topic to learn, but several possible
strategys; as: learning strategies. Which one should he choose? Is a mixture
0 of several strategies better than employing the best one all the
31X time? This is the problem of learnirigwto learn [34]. [3] ex-
divy (sj;E) = wo plored such a problem and showed that a dynamically selected
3 mixture of three active learning strategies outperformed any

div (y}, ;E) ifn >0
i=0

0 otherwise pure strategy.[[21] demonstrated that empirically evaluating

with wo=min(w; n;). and selecting among different small state space representations
) . speci ¢ to a task during learning was effective and avoided a
B. Multi-Armed Bandits large task space when learning was unfeasible. The work of

As expressed above, the problem we tackle shares sifla9] investigates robots dynamically choosing between asking
larities with the Multi-Armed Bandit problem (MAB)_[31]. a teacher for a demonstration or doing self-exploration on their
The exploration strategies are the bandits, amongst which then. [19] proposes a method where a robot can self-assess,
agent must choose to create diversity. However, the feedbald has a frustration drive. When frustrated, the robot can opt
received is a sensory feedback from the environment, whit choose social help to improve its performance. In the con-
cannot be used as is in the MAB setting. text of reinforcement learnind, [18] develops an algorithm that

Using the diversity measure of a strategy introduced abowmn evaluate dynamically which exploration strategy brings
we can now evaluate the contribution of each strategy to ttlee most rewards. These exploration strategies are driven
exploration. We now have a classic MAB problem: we choos®/ extrinsic and intrinsic motivations: maximizing rewards,
between a nite number of different strategies with differenteducing variance, seeking novelty, seeking unexplored states
diversity scores, and after choosing one we receive a feedbgakinary novelty), and seeking or avoiding particular features
signal from the chosen strategy from which we compute ari the state representation.l [6] uses the framework of the
updated score. Strategic Student Problem to create a tutoring system that

The classic MAB problem considers only bandits that aigctively personalizes the sequence of activities to each student,
independent from one another (choosing one does not affbgttracking their performance and identifying which exercises
the value of the others), and stationary (the distribution ahd modalities make the student progress faster. The works of
rewards of the bandit does not change). A variation of ti8], [29] and [18] are singular because they combine deciding
problem, theadversarial (also callednon-stochasticor non- howto learn, and decidingvhatto learn, using a hierarchical
stationary MAB, removes the stationary and interdependen@pproach. The learning strategy is selected rsbw), and
assumptions: an adversary is free to choose arbitrary rewatiglsn it chooses what input to sampieh@y).
for each bandit at each timestep. Learning performance typically exhibitdiminishing re-

In practice, a signi cant portion of the published literatureurns and [25] shows that, in the strict case, this allows to
on the adversarial MAB problem only removes the stationagkpress the mean performance across tasks asbeodu-
assumption. In other words, the problem takes place in tle function [22]. [28] has proven that with non-decreasing
oblivious opponent model: the actions of the adversary, i.eubmodular function, the greedy strategy is guaranteed to be
the rewards for each bandit at each timestep, are decidex worse thanl % 0:63 times the optimal solution for
before the game starts. This is the case [inl [38] &nd [Thaximizing the function. Of course, not all set of learning
who investigate rewards that can arbitrarily chande.l [113sks exhibit a submodular structure. Still, it suggests that a
presentsabruptly changing environmentsvhere all bandits' good-enough performance might be obtained through simple-
reward distributions change at specied timesteps. [5, 15@&nough algorithm in practice. [25] and [18] advocate the use
169] provides a treatment of the nonoblivious case. of the EXP4 algorithm[[1] rather than a greedy algorithm, as

Recently, [[25] introduced th8trategic Student Problethat a more robust approach.
tries to capture the issues involved when learning multiple Compared to these works, our approach distinguishes itself
tasks at the same time. A student has to learn multiple topims two fronts: rst, we are selecting exploration strategies
(maths, chemistry, history, etc.), and has limited resourcts improve exploration, rather than exploration or learning
(time) to do so. How should he allocate his study time betwesirategies to improve learning. The resulting strategy is an-
topics in order to maximize its mean grade at the end of tl¢her exploration strategy. Second, we are using diversity to
semester? A possibility is to consider the problem as a MABansform the feature vector of the sensory feedback into a
problem where the bandits are learning tasks. Interestingbgalar that can be adequately interpreted as a reward. To our
the works of [4] on goal babbling can be understood iknowledge, this is the rst work to do that in the context of a



Multi-Armed Bandit problem. During the early phase of the exploration, th@s®T algo-
rithm does not distinguish between the two strategies. But
in the later phase, goal babbling is able to provide an edge,
The ADAPT algorithm chooses strategies proportionally teowever small, that is detectable by theo#eT algorithm.

their diversity. To allow for constant re-evaluation of thgoa| babbling usage dominates after 1500 timesteps, and is
strategies, even those with low diversity, the algorithm choosgsed 80% of the time after 4000 timesteps.

C. Adaptive Strategy

a strategy at random percent of the time, with > 0. yhile the algorithm works qualitatively, it remains to be
Algorithm[2 formally describes this. seen if this translates quantitatively. Figire 4 compares the

Additionally, in order to foster initial experimentation withgrror of the ADAPT algorithms with xed-ratio strategies,
eac_h s_trategy, the dlvers_lty measure is overestlmated at {fi€ere the motor babbling strategies is chosen with probability
beginning of the exploration. For a given strategjy instead p, and the goal babbling with probability p.
of cogsmermg the sd; = fyo;y1;::Yn, g, We consider the - \when goal babbling is much worse than motor babbling
SetE”=fy kY k+1:ii5Yo0; i Yng With kin N*. The set (g = 0:001) or when it is much betterd(= 0:05), the ADAPT
fy iy ke1535y 19 is composed of ctitious points only ajgorithm manages performance on par with the best xed
available to the selecting strategy, that generate hyperba{§ture of strategies. When goal and motor strategy behave
that do not overlap with the observed effects. That way, tRgmjlarly, the adapt strategy is more conservative than the
diversity of the strategy is overestimated during et k  pest case. This stems from the early stage of the exploration,

rst times it is selected. This also avoids having the rs{yhen the motor babbling and goal babbling strategies are both
strategy selected unfairly preferred because it created the Efective, and hence both signi cantly used.

observation, thus receiving the diversity of a full hyperball
volume. We will usek =1 in all strategies. VI. DiscussioN

V. RESULTS The ADAPT algorithm we proposed, and the corresponding
E‘laujaptive strategy we implemented demonstrate how a choice
. . . . multiple exploration str i n xploi xplor
three learner con gurations, the biPT algorithm identi es Of multiple e po.ato strateg es ca 'be A oted.to explore
and uses the correct strategies. WherE 0:001 the goal an unknown environment. The diversity measure is, in many
gies. ' 9 ways, rather crude, but it shows that discriminating between

babbling strategy is inefcient in the beginning, and mOtO(raproration strategies is de nitely possible, and, advantageous.

babbling is overwhelmingly used. Motor babbling OliVerSityl'he general idea behind this work is not particularly new.

declines continually during the exploration, and in the later ts application to a diversity measure is. however. In fact
stage, is comparable to goal babbling. As a result, after 400LO| bp y : : '

. . sinhce exploration, as explained, does not make the typical
timesteps, the two strategies are used roughly equally. P P yp

(%alssumptlon about the agents capabilities—it does not assume
the same diversity at the beginning, but goal babbling declin hse agent is capable (or willing) to make pr¢d|ct|ons, nor
. .~ 10 exert (or demonstrate) control over the environment—the
more slowly than motor babbling. As a result, goal babbling IS T :
. . Mmethod we presented extends the applicability of the Multi-

used more and more as the exploration progresses, as it shqu . o . .
be rmed Bandits to situations where learning or reward signals

Whend = 0:5, motor and goal babbling behave similarly—are not present. And it does so without requiring to design a

. ) problem-speci ¢ reward function.
if-d had been equal 1.0, they would be the same strategy. Our work could be criticized for the simplicity of the

environment that is used, and that's a valid point. Yet, we chose
Algorithm 2: ADAPT(W, ) to present.this method on a 'sim'p'le setup here tp avoid the
reader having to suspend his intuition, or suspect interference
from the robot complex dynamics into the results. The extreme
simplicity of our inverse model is also a deliberate choice
in this regard. We are currently preparing experiments on a
real robot actuated through dynamical motor primitives to
reproduce the results in a more complex scenario.
From the experiments we conducted, it is unclear how the

Figure[3, the results of the strategy are displayed. In

Input:
So; S1; 5, Sq 1, Strategies.
E =fyo;y1;::5¥n 10, a set of effects.
, coverage threshold.
w, time window.
, ratio of random choice.

Result ADAPT algorithm will scale with the number of strategies.
s, chosen strategy As more strategies are available, either more time will have
to be devoted to exploratory sampling of bad strategies, or
if RANDOM() < then strategies will be less accurately evaluated overall. This is the
\ choose a random strategy. classic exploration/exploitation trade-off.
else
choose a strategyg; proportionally to its diversity ACKNOWLEDGMENTS
L diversity., (s;j;E). This work was partially funded by the ANR MACSi and

the ERC Starting Grant EXPLORERS 240 007. Computing



Fig.3. T
he ADAPT algorithm correctly selects the best strategy in all three contexts. For each learner, three graphs are shown: the
spread graph with the coverage area=(0:02), the diversity graph giving the diversity measure of each strategy in function
of the timesteps, and the usage graph, showing how the strategies are effectively used. For the usage graph, the data at time
shows the percentage of use averaged over the surrounding 100 timesteps (50 before, 50 after).
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Fig. 4. The ADAPT algorithm performs well when strategies behavg2

distinctly, and better than random with similar strategies. Each graph displ y@
the performances of xed mixtures of the two strategies, with the performance
of the adaptive strategy added as a dotted line (its standard deviationd2f
displayed in light colour as well). Experiments were repeated 25 times. Note
that not all the y-axis of the graphs begin at zero. [30]
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