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Abstract

There are several reasons for a numerical study of partial differential equations; many of them describe physical phenomena such as electromagnetism, elasticity, etc... In this work we present
an approach for the heat equation with discontinuous conductivity and its relative boundary conditions. We present a �nite difference method (FDM) on hierarchical meshes based on octrees
(quadtrees for 2D cases) built to solve the mathematical model that describes a Phase Changing Material (PCM). We show an analysis of this method and its building reasons; then we describe
the technical tools and necessary observations for a consistent cell centered method. The mesh re�nement follows the hybrid material’s interface looking for the accuracy on the discontinuity
presented by the physical problem.

1. Problem

ABENGOA Solar is focused on renewable and sus-
tainable energy. In this work we study a hybrid
material composed by graphite and salt grains.

Left: Heliostats Area, Solar Tower Plant - ABEN-
GOA Solar (Sevilla, Spain). Center: Phase Chang-
ing Material. Right: Tank containing the PCM.
The heat is conserved in the tank and it causes the
salt grains to liquefy, generating the initial energy
storage. Later, the solidi�cation transfers this heat
to release the stored energy.

2. Mathematical Hybrid Model

Let G be the graphite and S be the PCM.
k = (kS(T ); kG) is the thermal conductivity.
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The holes generated by the phase change gener-
ate a discontinuity of temperature, depending on a
constant contact resistance; however the �ux con-
servation condition ensures the continuity of the
normal derivatives.

The enthalpy function is strictly connected to a
function that describes the phase change:
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3. Octrees discretization tools

A quadtree is 2:1 balanced if any two neighboring
nodes differ by at most 1 in depth. We suppose
here to work on a quadtree-based 2D discretiza-
tion. The grids we refer to in this work are graded
on faces and edges with a maximal jump of two
levels on the vertices. The same reasons can be
developed in the 3D cases.
De�nition 3.1 A linear octree is an octree that is
represented by a linear array instead of a tree data
structure. Its structure allows an ef�cient memory
saving (this advantage is commonly used in adap-
tive mesh re�nement and coarsening (AMR) algo-
rithms).
Quadtree type discretizations seem intuitive for
spatial distribution topology but not easy to man-
age. A �rst necessity for the treated linear octree
discretization was the identi�cation of all possible
con�gurations. We used a Z-order method for the
grids that allows us to obtain a unique way case
by case. We choose a base-5 8-digits numerical
key ( resp. 26-digits for 3D case) built looking at
neighbours con�guration of each octant following
the curve orientation (example in �gure).

2D key order where F stands for face and C for cor-
ner.

Using a proper functional based on the levels [L] =
L�nL, with L the level of the concerned octant and
nL the level of the neighbour, the value attribution
on the key elements follows:

0 @ neighbours in this side
1 [L] = 0
2 [L] = �1
3 [L] = 1
4 [L] = �2
5 [L] = 2

4. Elements of an octree based cell
centered FDM

De�nition 4.1 (Consistency) A �nite difference
scheme is said to be consistent with the partial dif-
ferential equation it represents, if for any suf�ciently
smooth solution u of this equation, the truncation
error of the scheme tends uniformly towards zero
with respect to x, when h tends to zero, i.e. if:

lim
h!0
jj�hjj1 = 0

Moreover, if there exists a constant C > 0, such
that jj�hjj < Cp, with p > 0, then the scheme is said
to be accurate at the order p.

First example reference con�guration. The con-
cerned point is c4.

For a cell centered �nite difference method we start
by an example (in �gure) presented in [1] for the in-
terested reader.
Let h be the side lenght of the cell with center c4,
with a neighbours analysis it is simple to deduce
the projected distances on x and y directions from
c4 to the neighbours centers with dependence on h.
Let u(P ) be the solution function and ai the weights
of the �nite difference method of concerned points
in a con�guration; the ai are obtained such thatP7

i=1 aiui = uxx(c4) + uyy(c4) where the ui terms are
obtained by taylor series expansions centered on
the relative point.
A �rst result (Min et al.) is:
Theorem 4.1 Consider the discretization of the
Poisson equation at the center of the cell c4. If only
face-adjacent cells are to be used, then there does
not exist any locally consistent linear scheme on
non-uniform Cartesian grids.
This result is obtained by solving the sistem of the
six relative constraints for the concistency. We can
observe that the totality of concerned points with
an edges implementation is seven so we can de-
termine in�nite solutions of the complete system:
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For a described mesh the number of constraints
is 6 (10 on 3D case) for the consistency, and the
number of neighbours in any involved con�guration
is from 7 to 13; consequently the system requiring
the consistency admits a solution for a stencil that
involves all the neighbours of a centered point. For
a unique solution we need:
� a way to identify uniquely any con�guration (the

chosen key presented above);

� additional constraints that ensure a solution.

5. The additional constraints

The idea is to ensure the consistency and mini-
mize the deviation from second order as best as
possible. Let M be the constraint matrix, ~! the
weights, ~� the necessary additional unknowns, ~f
the right hand side vector for consistency and F (~!)
a weight function. The problem to minimize has the
lagrangian form:
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We write minimization problem (1) in matrix form,
let be:
� x the vector that includes the weights and the �

added terms, b the right hand side vector that in-
cludes the consistency parameters (~f ) and 0 for
the other additional equations.
� A the �nal problem matrix for searching the con-

�guration’s weights, B the matrix obtained by im-
posing the 6 constraints of consistency, C the
submatrix of the 4 constraints with third order
derivatives, I a large enough identity matrix.

Ax = b,

(
@F (!)
@! �M

T~� = 0
M~! = f

Two cases have to be distinguished for N the num-
ber of concerned points in a con�guration:
� N � 10 : M = B
F (!) = 1=2((1� �)CTC � �I)!T!
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Ensured 6 constraints for consistency imposition
and minimization of second order constraints
and weights norm.
� N > 10 : M =
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Ensured 10 constraints for second order imposi-
tion and minimization of the weights norm.

Remark 5.1 The consistency constraints for the 3D
cases is 10 and the total number of equations for
the second order accuracy is 20. Consequently the
two cases are N � 20 and N > 20.

6. Algorithm steps

� to identify the con�guration on each octant;
� to build the weights matrix and keep the solution;
� to build the system of PDE solver matrix with the

relative weights and data octant by octant line;
� solve the system with an assigned source term

function and extract the numerical solution of the
problem.

7. Numerical Results: Application of
the Finite Element Method

Test 7.1 (Con�guration Test) A �rst test is built on
the con�guration test where we looked for consis-
tent weights applying our algorithm.

Order (left) and a result error (right) of the test
con�guration presented in [1] (dark blue stands for
�7e� 06).

Test 7.2 (Penalization Method) We established
consistency and convergence of the method test-
ing random grids (we suppose that we do not know
a priori the molten salt disposition in the graphite
structure), then we supposed that the salt has a
circle composition and we focused on surface and
internal part (subject to phase change) ignoring
the graphite that has constant properties. So we
applied the penalization method to improving a lo-
cal concentration of variables approaching the heat
problem of the material on microscopic way.

Error example (top) and method order (bottom): the
order 1 was expected from theory.

Test 7.3 (Discontinuity Simulation) We simu-
lated the discontinuity of the conductivity k using
a molli�ed heaviside function on more different sur-
faces for a jump from 1 to 1 million on a small
number of cells, we established a control for the
jump modifying his width and the related cells.

Error simulation on a bar jump of conductivity (top)
and on a circle surface (center) with its relative nu-
merical solution (bottom).

Current Works and Future Plans
Currently the same examples are replicated in 3D
cases to con�rm the validity of the method and to
complete this part. The number of variables con-
cerned on the weights systems is different but the
complete algorithm follows the same steps until the
Poisson solver. In a second moment we will ap-
ply the method to real variables of the material
problem (we remark that the material exists and
its conductivity properties are known) studying the
phase change to optimize the energy storage for
the molten salt. In addition with this work we ex-
pect to be able to perform a reduction order model
for a faster solver dedicated to PCM equations.
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