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Abstract

This paper is devoted to the study of reflectional symmetries of fuzzy objects. We
introduce a symmetry measure which defines the degree of symmetry of an object
with respect to a given plane. It is computed by measuring the similarity between
the original object and its reflection. The choice of an appropriate measure of com-
parison is based on the desired properties of the symmetry measure. Then, an
algorithm for computing the symmetry plane of fuzzy objects is proposed. This is
done using an optimization technique in the space of plane parameters. Finally, we
illustrate our approach with an application where the symmetry measure is used as
an attribute in graph matching for model-based object recognition.
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1 Introduction

Different kinds of symmetry (central, reflection, rotation, skew) have been
widely studied in the fields of image processing and computer vision. For
scene description and recognition, symmetry is an important feature. It can
be an attribute of the objects themselves, a relation between two objects or it
can be used to compute other relationships between objects (e.g. directional
relationships [8]). This paper is devoted to the case of reflectional symmetries
also called bilateral symmetries. The study is done for plane symmetries in
the 3D Euclidean space but all results are also valid for axial symmetries in
2D.

Exact symmetry usually does not exist in real objects and one has to deal with
approximate symmetries. Many works quantify the degree of symmetry using
a symmetry measure often based on a distance. For example, Marola [18] uses
the normalized [; metric between the original and the reflected image. O’Mara
and Owens [21] use the difference between grey levels in 3D images. Minovic
et al. [20] use an octree representation to define a symmetry measure corre-
sponding to the size of the largest symmetrical subset of an object. Heijmans
and Tuzikov [13] define symmetry measures for convex sets using Minkowski
addition. Zabrodsky et al. [32] introduce a symmetry measure for shapes (i.e.
sets of points) that quantify the minimum effort to turn any given shape into a
symmetrical one. Their approach takes into account uncertainty by modeling
point localizations as a probability distribution.

However, apart from the previous reference [32], most results have been ob-
tained for precisely defined objects. We consider the case of 3D fuzzy objects
(i.e. fuzzy subsets of 3D space) which have found increasing application in
image processing. Following the classical approach used for crisp shapes and
images, we define a symmetry measure which characterizes the degree of sym-
metry of an object with respect to a given plane (Section 2). For this we use a
measure of comparison® between the object and its reflection. Various mea-
sures of comparison have been proposed in the literature for fuzzy sets. We
present the properties that should be verified by the symmetry measure for
its use in pattern recognition. The choice of a measure that is appropriate
to our problem is based on these properties (Section 3) as discussed in [§].
In Section 4, we study the case of objects with a principal symmetry plane
and propose an algorithm for symmetry plane computation. This algorithm
is based on an optimization technique and uses the principal axes of inertia
to define an initial position of the symmetry plane. In Section 5, we illustrate

3 We prefer to use the expression “measure of comparison” as in [5] instead of
“similarity measure”, since different authors assume different properties for the
notion of similarity measure.



how symmetry measures can be used in concrete image recognition problems:
the symmetry measure is used as a relation between objects in model-based
pattern recognition through the definition of a graph attribute integrated in
the approach proposed in [6].

2 Symmetry measure

2.1 Reflection of a fuzzy object

Let IT be a plane in the 3D space R? and §2 a subset of R? (or Z3 in the digital
case). We denote by F the set of fuzzy subsets of 2 and for a fuzzy set A,
denotes its membership function. Given a point z of €2, we denote by e (z) its
image under the reflection with respect to II. The mapping ey is a bijective
transformation in R3. Therefore, one can define the reflection of a fuzzy set as
follows.

Definition 2.1 The reflection of a fuzzy set A is a fuzzy set en(A) defined
as:

Pe(ay(en(x)) = pa(x) for every x € Q.

We denote by e, q the reflection with respect to a plane II, 4 which is or-
thogonal to u and passing at the signed distance d from the origin. In spher-
ical coordinates a unit vector u is defined by two angles § €] — 7, 7] and
a € [—m/2,7/2] (see Fig. 1). As vectors u and —u define the same plane, we
use # € [0, 7], o €] —w/2,7/2] and d € R.

Fig. 1. Angles o and § define a unit vector u

We also use notation e, g4 instead of e, 4 in 3D, and egq = €9 g4 in 2D.

2.2 Symmetry measure

We want to define a symmetry degree of a fuzzy object with respect to a given
plane II. One option is to compare A and er(A). A symmetry measure o4



can be defined as a measure of comparison between the original object and its
reflection:

oa(TT) = S(A, en(A)),
where S is a measure of comparison between fuzzy objects. As before, we use
notations o4(u,d) = oa(a, 8,d) = oa(Ilyq).

Various measures of comparison have been proposed in the literature. They
possess different properties and the choice of a measure depends on the appli-
cation and on the concept one wants to describe.

2.3 Desired properties of symmetry measures

In order to choose appropriate measures of comparison, it is useful to present
which properties should be satisfied by a symmetry measure. In this section,
we summarize properties of measures of comparison found in the literature
and discuss which of them are useful to derive a symmetry measure.

2.3.1 Measures of similitude

Bouchon-Meunier et al. [5] have proposed a classification of measures of com-
parison between fuzzy sets, in particular M-measures of comparison which are
derived from a fuzzy measure M.

Definition 2.2 [5] An M-measure of comparison is a mapping S : F x F —
0, 1] such that S(A, B) = FS(M(A NB),M(B—A), M(A— B)) for a given
mapping Fs : RT x RT x RT — [0, 1] and a fuzzy measure M.

A particular class of measures of comparison is composed of measures of simil-
itude.

Definition 2.3 [5] An M-measure of similitude is an M-measure of compar-
ison S such that Fs(u,v,w) is non-decreasing in u, non-increasing in v and
w.

M-measures of similitude are well suited for describing symmetries: symmetry
is stronger if the measure of intersection between the original object and its
reflection increases, and it is weaker if the measure of difference between them
increases.

Measures of similitude include measures of satisfiability and measures of re-
semblance.



Definition 2.4 /5]

(1) An M-measure of satisfiability is an M-measure of similitude such that
o Fg(u,v,w) is independent of w;
o [5(0,v,w) =0, for all v, w (exclusivity);
o Fo(u,0,w) =1, for all u # 0 (inclusion).

(2) An M-measure of resemblance is an M-measure of similitude such that
o S is reflexive, i.e. S(A, A) = 1.
e S is symmetrical, i.e. S(A, B) = S(B, A).

In our case, since we have M(A — en(A)) = M(en(A) — A), measures of
satisfiability are also measures of resemblance [5]. Moreover, the exclusivity
property entails that the symmetry measure is equal to zero when the plane
passes outside the support of the object (in the case of a support with only
one connected component). This is considered desirable by Marola [18]. The
inclusion property, as well as reflexivity, entails that the symmetry degree is
equal to 1 when the object coincides with its reflection, i.e. when there is an
exact symmetry. The symmetry property implies that the symmetry measure
for an object A with respect to a given plane II is equal to the measure
computed for its reflection er(A):

VA, B € F,S(A,B) = S(B,A) = VA€ F,S(A,en(A)) = S(en(A), A)
Since eq(en(A)) = A, we have:
VA, B e F,S(A,B)=8(B,A) = VAe F,o4(Il) = ocya)II)

Therefore, M-measures of satisfiability seem to be suitable for the definition
of measures of symmetry.

2.83.2  Additional properties

Pappis [22] proposes the following additional properties which are in fact
the reverse implications of reflexivity and exclusivity, leading to the follow-
ing equivalences:

S(A,B)=1 <= A=D,

S(A,B) =0 < supp(A) N supp(B) = 0.

where supp(A) is the support of A. The first property, also called separability
for distances, expresses that the symmetry measure is equal to 1 if and only
if there is an exact symmetry. The second one expresses that the symmetry
measure equals zero if and only if the plane passes outside the support of the
object. These properties are desirable for defining symmetry measures.



2.3.83 Geometrical properties

Intuitively speaking a symmetry measure should be invariant with respect to
translation, rotation and scaling. If S is invariant w.r.t. translation (respec-
tively rotation) then so is o. This is also true for scaling but as the scaling of
a fuzzy set in the discrete case is not clearly defined, we will not consider it
later on.

2.3.4 Summary of properties

Using our properties we are now able to provide a definition of a symmetry
measure satisfying our requirements:

Definition 2.5 The symmetry measure of A with respect to Il is defined as:
oa(Il) = S(A, en(4)),

where S is a measure of comparison with the following properties:

(P1) Symmetry: S(A,B) = S(B, A);

(P2) Reflexivity: S(A,B) =1 <— A= B;

(P3) S(A, B) =0 if and only if the supports of A and B are disjoint;
(P4) S is invariant w.r.t. translation;

(P5) S is invariant w.r.t. rotation.

Additionally, one can require that S is an M-measure of similitude. Properties
(P1), (P2) and (P3) ensure that it will also be an M-measure of satisfiability
and of resemblance.

Other properties of measures of comparison considered for instance in [5,17,22]
are either equivalent to these ones or not interesting for deriving symmetry
measures.

3 Deriving symmetry measures from measures of comparison

We summarize which of the previous properties hold for different measures
of comparison proposed in the literature and select some of them to define
symmetry measures. We use here a classification of measures of comparison
that is very similar to the ones used in [34] and [4].



3.1 Set-theoretic approach

Most of the measures discussed in this section have been derived from a general
measure proposed by Tversky [28] and are based on combinations of p4 and
pp using t-norms and t-conorms. They satisfy (P1) as t-norms and t-conorms
are commutative. The following measure has been used by several authors
[5,9,22,34] 4

Yweo | (pa(@), pp(z))

>rea L(pa(z), pnp(x))

where T is a t-norm and L is a t-conorm [9]. Property (P2) holds if and only
if T =min and | = max °. Property (P3) is fulfilled for t-norms “minimum”
and “product” but is not for “drastic” and “Lukasiewicz” ones ¢ [9]. Properties
(P4) and (P5) are fulfilled.

Si(A,B) =

Wang [29] proposed the following measure of comparison:

Z (), pp(2))

SiA.B) =gy A@:,uB(x))

where [Q] denotes the cardinality of Q and with § = 1. S, satisfies (P2) if
and only if T = min and 1 = max but does not satisfy (P3).

However, it is easy to check that a modified version of Sy defined as follows:

|supp( ) U supp(B)| z€supp(A)Usupp(B) L(pa(z), ps(x))

satisfies property (P3) for t-norms “minimum” and “product”. Properties
(P4) and (P5) are also fulfilled.

Hyung et al. [14] proposed to use a measure of comparison defined as
Su(A; B) = max T(pa(2), pp(w)).

Measure Sy satisfies property (P3) for “minimum” and “product” t-norms
but does not satisfy (P2).

4 Here we deal with the finite discrete case. In the continuous case, the sum is
replaced by an integral if it converges.

® Proofs can be found in the appendix

6 The usual t-norms are the minimum, the product, the Lukasiewicz t-norm defined
as T(a,b) = max(0,a 4+ b — 1) and the drastic t-norm defined as T(a,b) =b if a =
1, a if b=1, 0 otherwise.



3.2 L, distance approach

In this section we use the L, distance between fuzzy sets A and B:

4= Bl = (X i) - uBu)\p)’l’

€N

14 = Blloo = max(lua(z) — pp(x)|)-

Measures of comparison based on the L, distance have the following general
form: 14— Bl
S(A,By=1-"1"——1
(4, B) 2,
where K is a normalization coefficient. It is easy to see that properties (P1),
(P2), (P4) and (P5) are fulfilled for measures of this type.

For example, Wang [29] and Bouchon-Meunier et al. [5] proposed the following
measure

_ 1A= Bl

Q-
This measure does not satisfy property (P3). The following measure of com-
parison proposed by Pappis [22]

Ss(A, B) =1

Yaeq pa(®) = pp ()]

SAB) =1 = @) T @)

can be generalized as
HA — BHp
1
(Xeeq pa(@)? + pp(x)?)?

Se(A,B)=1—

Measure Sg satisfies property (P3).
Pappis [22] also proposed to use the L, distance
S7(A,B) =1—||]A - Bl

Measure S; does not satisfy property (P3). However, when A and B are
normalized fuzzy sets and their supports are disjoint S7(A, B) = 0. But the
converse implication is still false.

It is easy to verify that the measure of comparison (3 > 0)
58(14’ B) — o PlIA=Bl»

proposed in [5] does not satisfy property (P3) either.



Other measures exist, like for example the correlation coefficient between fuzzy
sets [12], but they do not satisfy our properties.

Table 1

Summary of properties of measures of comparison. For measures Si, S5, S3, these
results are valid only for some particular t-norms and t-conorms. The symbol /
means that a property is satisfied, while x means that it is not.

Measure of comparison (P1) (P2) (P3) (P4) (P5)
8I4.D) = S oYY
52(4,5) = iy Cco A2 VoV v
S3(4, B) = \SUPP(A)LIJSUPP(B)l X IEZ?EJE%ZEEQ% 4 % % 4 %
S4(A, B) = maxzeq T (pa(@), up(x)) v x v v
S5(4,B) =1 - gl vovoox v
So(4,B) =1~ S Y A
(X ecqra@Ptpp(@)?)?
57(4,B) =1 = [|A = Blloo vV x vV
Ss(A, B) = e AlA=Bly v v X Vv i

3.3 Chosen symmetry measures
The measures of comparison Sp, S3 (for t-norm “minimum”) and Sg satisfy
properties (P1)-(P5) (see Table 1).

Therefore we define three symmetry measures:

> peq Min(pa (), feya)(2))
ZmeQ max(:U'A (ZE), e (A) (l‘))

O'LA(H) =

1 » > min(pa(2), fley(a)(z))

02,A (H) =
[supp(A) U supp(en()] e Toomten ) BAXGIAE), fren(ay(2))

1A = en(A)],

037,4(1_[) =1-
(Zoc Ha(@)P + ren(a)(@)?)

3=

However, S has the additional advantage of being an M-measure of similitude
which guarantees some good monotony properties. As we will see in the next
section, it is preferable to use S;.




3.4 Study of o4 on examples

Let us see, through some examples, how the value of a symmetry measure can
be interpreted.

Figure 2 shows the shape of 01 4(3,d) for a synthetic 2D fuzzy object (see
Section 2.1 for the notations). This function has four modes which correspond
to four local maxima and to four axes of local symmetry: one axis of exact
symmetry ( = 0° , d = 0), two axes of strong but not exact symmetry
(8 = 45° or 135°, d = 0) and one axis of weak symmetry (3 = 90°, d=0) 7
As expected, one has o4(II) = 1 for an exact symmetry axis. We can also see
that a set A has a local symmetry plane II, g 4 if a symmetry measure o, has
a local maximum in (a, 3, d). Thus, to find the local symmetry planes of A one
has to find the local maxima of 0 4. Figure 2 also compares the behavior of oy 4
and o3 4 for d = 0. Although their shapes are similar, one can see a difference
in the neighborhood of 8 = 90° which is a local maximum for o, 4 but a
local minimum for o3 4. In fact, this is not surprising as we have monotony
properties only for M-measures of similitude (Def. 2.3) and therefore only for
01,4. In other cases, the behavior cannot be predicted.

N
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o
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Fig. 2. (a) A 2D fuzzy set A (high grey levels correspond to high membership values).
(b) 01,4. (¢) 01,4 for 5 =0. (d) 01,4 for d =0.(e) 034 (p =2) for d = 0.

Figure 3 shows the shape of 01 4(3,d) for another 2D fuzzy object. In the
direction defined by 8 = 0, the maximum of o, 4 is obtained for d = 10 which
is the position of the symmetry plane of the a-cut of level 0.5. This result fits

7 The origin of the coordinate system is located at the center of the image
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well with the intuition. Figure 3 also shows the shape of o3 4. For this measure,
the maximum in the direction defined by # = 0 is obtained for d = 4. The
difference between the two measures can again be explained by the fact that
only o1 4 is an M-measure of similitude.

01,
. e}

(d) (e)

Fig. 3. (a) A 2D fuzzy set A. (b) o1,4. (c) 01,4 for d = 0. (d) 01,4 for § = 0. (e)
094 for 5 =0.

The measure o7 seems to have the best properties. In the following of the
paper, we only use this measure as a symmetry measure and we denote:

> peq Min(pa (), fey(a)(2))
Y v Max(fa (), freg(ay(x))

O'A(H) =

4 Symmetry plane computation

In this section, we consider the case of an object with a main approximate
symmetry plane i.e. a plane which corresponds to a global maximum in the
symmetry measure. To find this symmetry plane, one has to find the plane for
which the symmetry measure has a maximum i.e.

O-A(avﬁv d)

max
a€]—r/2,r/2], Bel0r], deR

Whereas the computation of o4 for a sufficiently small step is feasible in the
2D case, it is a far too expensive operation for 3D objects. In many cases, one

11



only wants to locate the best symmetry plane of an object corresponding to
the largest symmetry measure value. We propose a method that expresses the
problem of finding the best symmetry plane as an optimization problem in
the parametric space | — /2, 7/2] x [0, 7[xR (Figure 4 presents an outline of
the algorithm).

The optimization procedure needs a starting point. We suggest to use the
ellipsoid of inertia to define candidates for this starting point. The ellipsoid
of inertia has already been used in [21] to define the symmetry plane of an
object. Here it is only taken as an initialization. The directions of axes are
defined as the eigenvectors of the inertia matrix:

200 M110 1M101
mi10 ™Mo20 MO11

mio01 Mo11 MM002

Here my,, defines a central moment of order p + g + 7r:
quT(A) = ZMA(I7 Y, Z)(l‘ - xc)p(y - yc)q<z - Zc>T7
Q

where ¢ = (2., Y., z.) is the center of mass of the fuzzy object. If a 3D ob-
ject possesses an exact plane of symmetry it passes through its center of
mass and is orthogonal to one of the ellipsoid axes. Let us denote by uj,
uy and us the eigenvectors of the inertia matrix. We consider then three
planes orthogonal to these vectors and passing through the center of mass:
Iy = Iy, uyc, o = Iy uyc and Il = Iy, uy.c (Where u - ¢ denotes the inner
product). Our initial symmetry plane II; maximizes the symmetry measure,
i.e. 04(I1;) = max{oa(Ily),04(I12),04(Il3)}. This is only possible when the
eigenvectors are different. Otherwise, one gets an ellipsoid of revolution.

This plane is just an initial guess, not the symmetry plane. The symmetry
plane is found using an optimization technique. We use the Nelder-Mead down-
hill simplex method [26] which was also used in [1] for grey-level images with
a different initialization and a different symmetry measure. This method is
often used when one does not know the function derivatives. It is accurate
and robust under a good starting point. However, it is a local optimization
method and, in general, one has no guarantee to find the global maximum.
This method starts from a simplex in the parametric space. In our case, the
dimension is three and the simplex is a tetrahedron. We place our initial point
at one of the tetrahedron vertices and compute the 3 other points by only
modifying one parameter at a time (in other words, each vertex is on an axis
of the parametric space). The complete procedure for symmetry plane com-
putation takes 25 seconds to achieve a precision of 1073 for the symmetry
measure in case of a 128x128x64 fuzzy object (on a PC Pentium III 1Ghz).

12



Compute 3 planes orthogonal to the axes of inertia

and the corresponding symmetry measures
0.20

Y

010 C020)

Choose the plane for which the symmetry measure
IS maximum

Improve the plane orientation and position using
an optimization technique

m
g

Fig. 4. Outline of the algorithm for symmetry plane computation. The illustration
is a fuzzy segmentation of lateral ventricles in a 3D MR image of the brain. We
present 3D renderings of the 0.5 a-cut and a slice of the fuzzy set.

J
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This computation time is very reasonable. If needed, it is possible to achieve
a faster computation time by undersampling the objects.

5 Symmetry measure as a graph attribute for facial feature recog-
nition

Model-based pattern recognition often makes use of graph representations,
where vertices and edges are attributed. These attributes are used for compar-
ing the image to be recognized and the model, in a graph matching procedure.
Typically vertices represent image regions, with attributes such as grey lev-
els, texture and shape measures, while edges represent relationships between
regions, with attributes such as distances and relative directional position.
In this section, we show how symmetry measures can be used to define edge
attributes between image regions in such structural models.

The application concerns the recognition of facial features such as pupils, nos-
trils and mouth based on a face model. This is an important task in face recog-
nition [33] and facial expression analysis [10]. Symmetry has been explored as
an important feature in this context due to face symmetry. For instance, it is
used as a feature to help deciding if a given region represents a face, which
is an important step for face detection [31,2]. A similar approach, but using
gradient vectors instead of image grey-levels to detect the symmetry axis, is
described in [15]. The symmetry of facial features has also been explored for
their automatic localization in [27]. The use of face symmetry in the litera-
ture shows its importance for face analysis problems. We show here that the
addition of symmetry attributes improves the recognition results previously
obtained in [6].

5.1 Graph construction and attributes

The image to be analyzed is represented as a graph Gp (the data graph),
based on an over-segmentation obtained by the watershed algorithm. Each
region in the segmented image corresponds to a graph vertex. Vertices are
linked by edges and edge attributes represent relations (e.g. spatial) between
the corresponding regions.

The model is represented as a graph G, (the model graph) as well, where
each vertex corresponds exactly to one structure to be recognized. Edges are
defined analogously for G'p. In our experiments on facial feature recognition,
the model was built manually from a face image.

14
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Fig. 5. The model (left) and the image where recognition has to be performed
(right). (a), (b): Segmentation superimposed on the image. (c), (d): A subset of
the model and the data graphs. We show only edges between adjacent regions to
simplify visualization. The real number of edges is much larger since we use complete
graphs. (e), (f): A subset of the graphs superimposed on the images.
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Figure 5 illustrates this construction. Figures 5(a) and (b) show the model
and over-segmented faces, respectively. The corresponding model and image
graphs are schematically shown in Figures 5(c) and (d). In order to make
visualization easier, only a subset of the edges is shown. Figures 5(e) and (f)
show the graphs superimposed on the corresponding images.

We will denote by Np (respectively Nys) the set of vertices of Gp (respectively
G ), by Ep (Eyy) the set of edges of Gp (G)y) (in our experiments, the graphs
are complete i.e. Ep = Np X Np and Eyy = Ny X Nyy).

We use crisp attributes in these experiments but fuzzy attributes could also
be used as in [24]. Let a be a vertex of Gp or G;. The vertex attributes are
defined as the average grey level g(a) of the region represented by a (nor-
malized between 0 and 1) and a texture index w(a) computed from wavelet
coefficients [11].

Let a and b be two vertices of Gp (or of G ). The first edge attribute used is
defined as the vector v(a,b) = % where p, and p, are the centroids of the
regions represented by a and b respectively, and d,,q, is the largest distance
between any two points of the face region. This attribute is not symmetrical
in a and b and therefore edges are directed.

In this section we explore symmetry as a second edge attribute used together
with v(a, b), as described below.

5.2 Symmetry attributes

As mentioned in the introduction, when no strict or exact symmetry is verified,
then it is meaningful to consider symmetry as a matter of degree, expressed
by a symmetry measure. In our case, the regions are crisp sets but, as we have
to deal with approximate symmetries, it is still of interest to use a symmetry
measure instead of a boolean value. All the results obtained in the previous
sections are valid here, considering crisp sets as a particular case of fuzzy sets.

Symmetry measures can be used to define a vertex attribute or an edge at-
tribute. The first case applies if some objects of the scene are known to be
approximately symmetrical. Then it is possible to define a symmetry attribute
as the orientation of the symmetry plane of the region and compare these ori-
entations in the model and the image to be recognized. Another option for
such a scene is to compare the degree of symmetry of regions.

However in the case of facial analysis, the objects taken individually do not
have any particular symmetry and therefore we will not use symmetry as
a vertex attribute in this paper. On the contrary, some pairs of objects are
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approximately symmetrical in the face with respect to the mid-face axis (for
example the two eyes, the two eyebrows ...). Therefore, it seems natural to
consider the degree of symmetry of two regions with respect to the plane (or
axis in our case) of symmetry of the face, this leading to an edge attribute.
This attribute will constrain a pair of symmetrical regions in the image to be
matched with a pair of symmetrical regions in the model. It can be formalized
as follows. Let I, (respectively IIp) be the symmetry plane of the model
(respectively of the data). Let a and b be two vertices of the model. Using the
symmetry measure o1, we define the attribute of symmetry of the edge (a,b)
as:

3<a7b) = Sl(aﬁenM(b)) (1)

Similarly we define a symmetry attribute for the data as: s(a,b) =
Si(a,emn,(b)). The planes IIp and II,; are computed automatically using the
algorithm presented in Section 4. But as the planes are computed on grey-
level images, a different symmetry measure is used instead of o 4. Let f be a
grey-level image normalized between 0 and 1, ery(f) its reflection with respect
to IT and I = supp(f) N supp(en(f)) the intersection of their supports, we
derive the symmetry measure from the L, distance between images:

(Coer(f(2) = en(f)(2))2)"?
1]

O'f(H) =1-

The measure is computed only on the intersection of supports in order not
to take into account the background of the image (see for example Figure 6
which shows a face and the detected symmetry axis).

One important property of the symmetry attribute s(a,b) is that it will be
zero for most pairs of regions which are not symmetrical, and non-zero only
for a small group of approximately symmetrical pairs of regions. This comes
from property (P3) presented in Section 2.3. It is illustrated in Figure 7(d).
Moreover, regions which are almost symmetrical will lead to a high degree of
symmetry. It is illustrated in Figures 7(a) and (b) which show two regions
a and b that present a high degree of reflection symmetry. A high degree of
symmetry can be identified by the large intersection between a and ey, (b).

Fig. 6. A face and the detected symmetry axis.
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Fig. 7. (a) Two regions a and b which are approximately symmetrical. (b) s(a, b) is
high as a and e(b) (the reflection of b) almost coincide. (c) The second definition
(Equation (2)) provides a much higher value than the first one (Equation (1)),
because the centroids are very close while the intersection between a and e(b) is
reduced. (d) The first definition provides a zero value, while the second definition
provides a non zero value.

To evaluate the efficiency of our symmetry attribute, we compared it to an-
other attribute computed from the distance between the centroids of the re-
gions. Let a and b be two vertices of the model and ef,,(b) be the reflection
of b. Let p, and Den,, (v) be the centroids of the regions represented by a and
emn,, (b) respectively. We define an alternative symmetry attribute of edge (a, b)

as:

A(Pas Pen,, (b))) @

hi + ho

where d(pg, Pen,, ) denotes the Euclidean distance between the two points and
hi and hy are the diameters of a and b, respectively. The symmetry attribute
for the edges of the data graph is defined analogously. The symmetry measure
sq(a, b) leads to non-zero values even when the regions a and ey, (b) do not in-
tersect (see Figure 7(d)). This can be seen as an advantage when one has very
small regions. On the other hand, this attribute may indicate high symmetry
despite important shape differences between the object and its reflection when
the region centroids are very near or coincide (see Figure 7(d)). In Section 5.4,
an experimental comparison is presented. The approach presented in [27] also
relies on face symmetry axis detection and on a symmetry degree definition.
However the following differences can be noted: the symmetry axis computa-
tion is done directly using the axes of inertia and the symmetry degree is based

sq(a,b) =1 — min <1,
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on centroids, like our second attribute but without normalization. Also their
approach does not rely on the comparison with a model but on the minimiza-
tion of a symmetry-based cost function for some particular features. Finally,
the method proposed in [27] aims at locating the face and facial features (more
specifically, only the centroids of the eyes are found), whereas the application
described in the paper allows not only to locate the facial features, but also
to segment them (i.e. the image region corresponding to each facial feature).

5.3 Graph matching procedure

Now the next problem to be solved is graph matching. A widely used approach
consists in finding an isomorphism between both graphs (or subgraphs). How-
ever, the bijective condition is too strong here, and the problem is expressed
rather as an inexact graph matching problem [23,6]. Because of the difficulty to
segment the image into meaningful entities, no isomorphism can be expected
between both graphs. Here, | Np| is generally much larger than |Ny,|, and we
expect to match several vertices of Gp to one vertex of GGy, i.e. several image
regions can be assigned to a single model label.

Recognition can then be performed by searching for a homomorphism between
Gp and Gj; which satisfies both structural and similarity constraints [25]. A
graph homomorphism is a mapping h : Np — N, such that:

V(CL}),(I%) S Nl2)7 (CLID,(I%) € Ep = (h(a%)% h(QQD)) € Ey

which imposes a structural constraint on the mapping between edges, and
guarantees that each data vertex has exactly one label (i.e. model node).

Similarity functions are then used to find the best homomorphism, being thus
based on comparison of attributes. A good homomorphism will maximize the
similarity between attributes of matched vertices and between attributes of
matched edges, or, equivalently, minimize a dissimilarity. The dissimilarity
between any two vertices ap € Np and ap; € Ny is defined here as:

cn(ap,an) = Blgp(ap) — gulanr)|+

(1 = B3)|wp(ap) — wa(an)|

where gp,wp (g, wyr) are the vertex attributes of graph Gp (Gyy), and 5 a
parameter for tuning the relative importance of grey level and texture indices.
The above dissimilarity measure quantifies the absolute difference between
the corresponding image regions w.r.t. the grey values and texture. In our
experiments, we set 3 = 0.6. Parameter values were set experimentally and
led to good results for all tested examples. For a different application, these
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values might change. It could be interesting, in some future work, to design a
learning procedure for all parameters.

The dissimilarity between two edges ep = (a},,a%) of Ep and ey = (al;, a3,)
of F); is defined as follows. Firstly, we compute the modulus and angular
differences between v(ak, a%) and v(al,, a3,) as

Sm(ep, enr) = [[v(ap, ap)|l — llv(ars, a3l

and
bulen,eny) = LSO 11

where 6 is the angle between v(ah, a%) and v(al,, a3,)

The dissimilarity measure cg(ep, eyr) is defined as:

ce(ep,en) = V(0a(ep, enr)+(1=8)dm(en, enr))+(1—7)|s(ap, ap)—s(ays, ay)|-
where v is a weight parameter for tuning the relative importance of the vector
attribute and the symmetry attribute (in our experiments, we set v = 0.6).
The above dissimilarity measure quantifies the absolute difference between
the corresponding relative position of the respective image regions both w.r.t.
the distance between the regions (i.e. length) and orientation (i.e. angle). The
factor ¢ is also a weight parameter, which controls the importance of the
modulus and angular differences between the data and the model edges. In
our experiments, we have set § = 0.2 in order to have a good balance between
the numerical values of ¢, and ¢,.

Based on the vertex and edge dissimilarities, we propose to define a global
dissimilarity function as:

fi(h) = T aD%z:vD cn(ap, hap))—+
L—a ex((abyad), (h(ab), h(a))). (3)

|ED| (alD,aZD)EED
where « is a weight parameter used for tuning the relative importance of vertex
dissimilarity and edge dissimilarity. In our experiments we have set a = 0.4, in
order to give more importance to edge information, since it can be expected to
be more robust than vertex attributes with respect to the oversegmentation.

Several optimization algorithms can be used to compute the minimum of
the global dissimilarity function: randomized tree search [7], genetic algo-
rithms [19,30] or estimation of distribution algorithms (EDAs) [3]. The reader
can refer to [6] for a comparison between them. This paper does not focus
on the optimization method. Randomized tree search [7] was chosen here to
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illustrate our results and should be considered as but one possible example of
optimization method, which provides good results.

5.4 Results

In order to illustrate the importance of using symmetry to improve the method
described in [6], Figure 8 shows the results obtained by the application of the
proposed method. Figures 8(a) and (b) show the detection of the eyebrows,
eyes, nostrils and mouth as performed by the original method without the
symmetry attributes. Some parts have been missed such as the left eye in
Figure 8(a) and parts of the mouth in Figure 8(b). The introduction of the
symmetry attribute defined by Equation (1) has circumvented these problems,
as shown in Figures 8(c) and (d). Finally, the application of the alternative
symmetry attribute defined by Equation (2) leads to similar results, which
are shown in Figures 8(e) and (f). No significant improvement over the results
obtained using Equation (1) can be observed. It is nevertheless worth noting
that calculating Equation (1) in practice generally takes much less time since
emn,, (b) typically has non-empty intersection with very few regions and the
symmetry should be calculated only for them. On the other hand, the attribute
of Equation (2) must be always calculated for all edges in the complete graph.
Considering the computational cost, the experimental results, and also the
potential problems mentioned in Section 5.2, we suggest to use the attribute
of Equation (1).

The computation time is quite reasonable since obtaining the image graph,
which includes symmetry axis detection and symmetry measure computation,
requires 23 seconds, leading to a total computation time of 7 minutes for the
whole graph matching process. Moreover, the intersection computation in the
symmetry measure is performed efficiently. For a given object, we can com-
pute its intersection with respect to all the other objects using a single min
operation on the whole image. As mentioned before, the union computation is
only performed for pairs of objects which have a non-zero intersection. This is
only a small fraction of all possible pairs. Additionally the computation time
could be also reduced using bounding boxes of objects. Finally, the proce-
dure is implemented as a mixture of C and matlab routines. In cases where
computation time is an important issue, it could be rewritten all in plain C.

6 Conclusion

Since no exact symmetry can usually be expected on real objects, in particular
if they are not well defined, we proposed in this paper to study approximate
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Fig. 8. Results of recognition (only eyebrows, eyes, nostrils and mouth are shown)
on two examples. From top to bottom: without the symmetry attribute ((a) and
(b)), with the first definition of the symmetry attribute ((c) and (d)) and with
the second definition ((e) and (f)). The symmetry attribute allows to improve the
results (mouth, eyebrows). The first definition leads to slightly better results.
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symmetries through the definition of symmetry measures. We defined symme-
try measures of fuzzy objects based on measures of comparison between the
object and its reflection. The choice of an appropriate measure of comparison
is based on the required properties for symmetry measures. A comparative
study led us to privilege a symmetry measure based on the ratio between
a measure of the intersection between the fuzzy set and its reflection and a
measure of their union.

Another contribution of this paper consists of an algorithm to compute the
best symmetry plane of a 3D fuzzy object. Thanks to a reasonable initialization
based on the inertia axes, it iteratively converges towards the global optimum.

These two aspects of our work have been applied on a facial feature recognition
problem. The face symmetry axis has been found using the proposed optimiza-
tion method. The recognition problem is expressed as an inexact graph match-
ing where one graph represents a face model and the second graph represents
the image where recognition has to be performed. Vertices represent image re-
gions and edges represent spatial relations between these regions. Symmetry
measures are used as edge attributes, and contribute to improve recognition
results by favoring associations of symmetrical regions in the model with sym-
metrical regions in the image.

Multiple perspectives of this work can be foreseen. First, we expect that a
similar approach could be used for other recognition problems, such as brain
structures. Another possible use of the symmetry axis or plane could be to
guide a registration procedure to get an initial match between the model and
the image. The proposed symmetry measure has also been used by Letournel et
al. [16] to define a feature for the evaluation of segmentations in aerial imaging.
Finally, another interest of this work is to derive spatial relationships referring
to symmetry. This can be particularly useful for applications where directional
relations like “on the left” are not absolute but relative to a symmetry plane
of some object [8].

Appendix

We give here the main lines of the proofs of the properties of the measures
used in Section 3.

Proofs for S,

e T (palz), pp(r))
>zeq L(pa(), ps(r))

S1(A,B) =
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Proposition 1 Property (P2) holds if and only if T = min and 1 = max.
Proof Onehas T(ua(z), up(x)) < L(pa(x), pp(z)) for all 2 € Q. Therefore,
S1(A,B) =1 <= T(pa(x), pp(x)) = L(pa(z), pp(x)) for every x € Q.
Since for every z € ()
T(pa(@), pp(x)) < min(pa(x), pp(z)) < max(ua(@), pp(z)) < L(pa(@), pp()),
one has:
S1(A,B)=1 <= A=B and T =min and 1 =max.
O

Proposition 2 Property (P3) is fulfilled for t-norms “minimum” and “prod-
uct” but is not for “drastic” and “Lukasiewicz” ones [9].

Proof
S1(A,B) =0 <= T(ua(x),up(z)) =0 for all z € Q.

For “minimum” and “product” t-norms, one has
min(pa(z), pp(2)) = 0 <= pua(e) =0 or pp(x) =0,

pa(@)pp(z) =0 <= pa(xr) =0 or pup(z)=0
and therefore (P3) holds. For “drastic” and “Lukasiewicz” t-norms, one

can have p4(z) # 0 and pp(z) # 0 but T(pa(x), ug(x)) = 0 (for example,
pa(x) = pp(x) = 0.5). Therefore (P3) does not hold. O

Proposition 3 Properties (P4) and (P5) are fulfilled.

Proof The proof is given here for the translation only, since for the rotation
it is similar.

>wcq T (Hato(T), pB1o(T))
>veq L(ato(T), B0 (T))

Si1(A+v,B+v) =

By definition one has pis4, = pa(x — v). Therefore

Yaco T(pa(z —v), up(z —v))
Yeeq L(pa(z —v), pup(x —v))

Substituting  — v with = one gets S1(A + v, B+ v) = S1(A, B) The proofs
for (P4) and (P5) are the same for all measures and are not given. O

Si(A+v,B+v) =

24



Proofs for Sy

So(d, By = L x 37 Leale)wnla))

Q| =5 L(pa(z), pp(r))

Proposition 4 S, satisfies (P2) if and only if T = min and 1 = max but
does not satisfy (P3).

Proof The proof for (P2) is the same as for ;.
(P3): Let us consider two fuzzy sets A and B with disjoint supports

such that supp(A) U supp(B) # €. Then there exists x in € such that
pa(x) = pup(x) = 0 and therefore Sy(A, B) # 0. O

Proofs for Sy

S1(4, B) = max T(pa(x), pp(x))-
Proposition 5 S, does not satisfy (P2).

Proof If A is a normalized fuzzy set, one has S(A, A) = 1. However, the
converse implication is false. If there exists an element = such that ps(z) =

pup(z) =1 then Sy(A, B) =1, even if A # B. O
Proofs of Section 3.2

For all these measures, it is easy to check that properties (P1), (P2), (P4)
and (P5) hold.

Proofs for Ss

|4~ Bl

S5, B) = 1= g

Proposition 6 This measure does not satisfy property (P3).

Proof Suppose that sets A and B have disjoints supports. Then:

481, = (T m(x)uuB(x)p)%

€
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S e + psla) < 19

€

ThU_S, if ZwGQ MA(I)p + “B (x)p > 17

A = Bll, < €|

Proofs for Sg

|A = Bll,

Se(A,B) =1-— ;
(Xoeq pal@)? + pp(x)P)r

Proposition 7 Measure Sg satisfies property (P3).

Proof Suppose that sets A and B have disjoint supports. Then S¢(A, B) = 0,

since )
4= 8l = (e + untor)
€
The converse is also true since Sg(A,B) = 0 = Vz € Q,|pa(z) —
pp(2)|P = pa(x)? + pp(x)P = Vo € Q,ua(x) =0 or up(z) = 0. O

References

1]

B.A. Ardekani, J. Kershaw, M. Braun, and I. Kanno. Automatic detection

of the mid-sagittal plane in 3D brain images. IFEFE Transactions on Medical
Imaging, 16(6):947-952, 1997.

O. Ayinde and Y.-H. Yang. Region-based face detection. Pattern Recognition,
35(10):2095-2107, October 2002.

E. Bengoetxea, P. Larranaga, I. Bloch, and A. Perchant. Solving graph matching
with EDAs using a permutation-based representation. In P. Larranaga and
J. A. Lozano, editors, Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation, chapter 12, pages 239-261. Kluwer Academic
Publisher, Boston, Dordrecht, London, 2001.

I. Bloch. On fuzzy distances and their use in image processing under
imprecision. Pattern Recognition, 32(11):1873-1895, 1999.

B. Bouchon-Meunier, M. Rifqi, and S. Bothorel. Towards general measures of
comparison of objects. Fuzzy Sets and Systems, 84(2):143-153, 1996.

26



[6] R.M. Cesar, E. Bengoetxea, and I. Bloch. Inexact graph matching
using stochastic optimization techniques for facial feature recognition. In
International Conference on Pattern Recognition, Québec, Canada, 2002.

[7] R.M. Cesar and I. Bloch. First results on facial feature segmentation and
recognition using graph homomorphisms. In SIARP 2001, pages 9599,
Florianapolis, Brazil, October 2001.

[8] O. Colliot, I. Bloch, and A.V. Tuzikov. Characterization of approximate plane
symmetries for 3D fuzzy objects. In Information Processing and Management
of Uncertainty IPMU, volume 3, pages 1749-1756, Annecy, France, July 2002.

[9] D. Dubois and H. Prade. Fuzzy Sets and Systems, Theory and Applications.
Academic Press, New-York, 1980.

[10] B. Fasel and J. Luettin. Automatic facial expression analysis: a survey. Pattern
Recognition, 36(1):259-275, January 2003.

[11] R.S. Feris, V. Kriiger, and R.M. Cesar. Efficient real-time face tracking in
wavelet subspace. In Proc. Second International Workshop on Recognition,
Analysis and Tracking of Faces and Gestures in Real-time Systems, 8th IEEE
International Conference on Computer Vision (RATFG-RTS - ICCV 2001 -
Vancouver, Canada), pages 113-118, 2001.

[12] T. Gerstenkorn and J. Man’ko. Correlation of intuitionistic fuzzy sets. Fuzzy
Sets and Systems, 44:39-43, 1991.

[13] H. J. A. M. Heijmans and A. Tuzikov. Similarity and symmetry measures
for convex shapes using Minkowski addition. IEEFE Transactions on Pattern
Analysis and Machine Intelligence, 20(9):980-993, 1998.

K. Hyung, Y.5. bong, an .M. Lee. Similarity measure between ruzzy sets
14| LK. H Y.S. S d K.M. Lee. Similari b f
and between elements. Fuzzy Sets and Systems, 62:291-293, 1994.

[15] T. Kondo and H. Yan. Automatic human face detection and recognition under
non-uniform illumination. Pattern Recognition, 32:1707-1718, 1999.

[16] V. Letournel, B. Sankur, F. Pradeilles, and H. Maitre. Feature extraction for
quality assessment of aerial image segmentation. In ISPRS, Commission III,
PCV, volume XXXIV, pages 199-204, Graz (Austria), sep 2002.

[17] X. Liu. Entropy, distance measure and similarity measure of fuzzy sets and
their relations. Fuzzy Sets and Systems, 52:305-318, 1992.

[18] G. Marola. On the detection of the axes of symmetry of symmetric and almost
symmetric planar images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11:104-108, 1989.

[19] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer Verlag, Berlin Heidelberg, 1992.

[20] P. Minovic, S. Ishikawa, and K. Kato. Symmetry identification of a 3D object
represented by octree. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(5):507-514, 1993.

27



[21] D. O’Mara and R. Owens. Measuring bilateral symmetry in digital images.
In Proceedings of TENCON’96 IEEE Conference: Digital Signal Processing
Applications, volume 1, pages 151-156, 1996.

[22] C.P. Pappis and N.I. Karacapilidis. A comparative assessment of measures of
similarity of fuzzy values. Fuzzy Sets and Systems, 56:171-174, 1993.

[23] A. Perchant and I. Bloch. A new definition for fuzzy attributed graph
homomorphism with application to structural shape recognition in brain
imaging. In 16th IEEE Intrumentation and Measurement Technology
Conference, volume 3, pages 1801-1806, 1999.

[24] A. Perchant and I. Bloch. Semantic spatial fuzzy attribute design for graph
modeling. In IPMU 2000, volume III, pages 1397-1404, Madrid, Spain, 2000.

[25] A. Perchant and I. Bloch. Fuzzy morphisms between graphs. Fuzzy Sets and
Systems, 128(2):149-168, 2002.

[26] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C. 2nd Edition. Cambridge University Press, Cambridge, 1992.

[27] E. Saber and A. M. Tekalp. Face detection and facial feature extraction using
color, shape and symmetry-based cost functions. In Proceedings of the 15th
International Conference on Pattern Recognition, 1996,, volume 3, pages 654—
658, 1996.

[28] A. Tversky. Features of similarity. Psychological Review, 84:327-352, 1977.

[29] W.-J. Wang. New similarity measures on fuzzy sets and on elements. Fuzzy
Sets and Systems, 85:305-309, 1997.

[30] D. Whitley and J. Kauth. GENITOR: A different genetic algorithm. In
Proceedings of the Rocky Mountain Conference on Artificial Intelligence,
volume 2, pages 118-130, 1988.

[31] K.-W. Wong, K.-M. Lam, and W.-C. Siu. An efficient algorithm for human
face detection and facial feature extraction under different conditions. Pattern
Recognition, 34(10):1993-2004, October 2001.

[32] H. Zabrodsky, S. Peleg, and D. Avnir. Symmetry as a continuous feature.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:1154—
1166, 1995.

[33] W. Zhao, R. Chellappa, A. Rosenfeld, and P.J. Phillips. Face recognition:
A literature survey. Technical report, UMD CfAR, 2000. URL:
citeseer.nj.nec.com/374297.html.

[34] R. Zwick, E. Carlstein, and D.V. Budescu. Measures of similarity among
fuzzy concepts : A comparative analysis. International Journal of Approximate
Reasoning, 1:221-242, 1987.

28



