
HAL Id: hal-01251314
https://inria.hal.science/hal-01251314

Submitted on 5 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-Preserving Distributed Collaborative Filtering
Antoine Boutet, Davide Frey, Rachid Guerraoui, Arnaud Jégou, Anne-Marie

Kermarrec

To cite this version:
Antoine Boutet, Davide Frey, Rachid Guerraoui, Arnaud Jégou, Anne-Marie Kermarrec. Privacy-
Preserving Distributed Collaborative Filtering. Computing, 2016, Special Issue on NETYS 2014, 98
(8), pp.827-846. �10.1007/s00607-015-0451-z�. �hal-01251314�

https://inria.hal.science/hal-01251314
https://hal.archives-ouvertes.fr

Privacy-Preserving Distributed Collaborative
Filtering

Antoine Boutet1, Davide Frey1, Rachid Guerraoui2, Arnaud Jégou1, and
Anne-Marie Kermarrec1

1 INRIA Rennes, France first.last@inria.fr
2 EPFL, Switzerland first.last@epfl.ch

Abstract. We propose a new mechanism to preserve privacy while lever-
aging user profiles in distributed recommender systems. Our mechanism
relies on two contributions: (i) an original obfuscation scheme, and (ii)
a randomized dissemination protocol. We show that our obfuscation
scheme hides the exact profiles of users without significantly decreasing
their utility for recommendation. In addition, we precisely characterize
the conditions that make our randomized dissemination protocol differ-
entially private.
We compare our mechanism with a non-private as well as with a fully
private alternative. We consider a real dataset from a user survey and
report on simulations as well as planetlab experiments. We dissect our
results in terms of accuracy and privacy trade-offs, bandwidth consump-
tion, as well as resilience to a censorship attack. In short, our extensive
evaluation shows that our twofold mechanism provides a good trade-off
between privacy and accuracy, with little overhead and high resilience.

1 Introduction

Collaborative Filtering (CF) leverages interest similarities between users to rec-
ommend relevant content [19]. This helps users manage the ever-growing volume
of data they are exposed to on the Web [7]. But it also introduces a trade-off
between ensuring user privacy and enabling accurate recommendations. Decen-
tralized collaborative filtering partially addresses this trade-off by removing the
monopoly of a central entity that could commercially exploit user profiles. How-
ever, it introduces new privacy breaches: users may directly access the profiles of
other users. Preventing these breaches is the challenge we address in this paper.
We do so in the context of a news-oriented decentralized CF system.

We propose a twofold mechanism: (i) an obfuscation technique applied to
user profiles, and (ii) a randomized dissemination protocol satisfying a strong
notion of privacy. Each applies to one of the core components of a decentral-
ized user-based CF system: clustering and dissemination. Clustering consists
in building an interest-based topology, implicitly connecting users with similar
preferences: it computes the similarity between profiles, capturing the opinions
of users on the items they have been exposed to. The dissemination protocol
propagates the items along the resulting topology.

II

Our obfuscation scheme prevents user machines from exchanging their exact
profiles while constructing the interest-based topology. We compute similarities
using coarse-grained obfuscated versions of user profiles that reveal only the
least sensitive information. To achieve this, we associate each disseminated item
with an item profile. This profile aggregates information from the profiles of
users that liked an item along its dissemination path. This reflects the interests
of the portion of the network the item has traversed, gathering the tastes of a
community of users that have liked similar items. We use this information to
construct filters that identify the least sensitive parts of user profiles: those that
are the most popular among users with similar interests. Albeit lightweight,
our obfuscation scheme prevents any user from knowing, with certainty, the
exact profile of another user. Interestingly, we achieve this without significantly
hampering the quality of recommendation: the obfuscated profile reveals enough
information to connect users with similar interests.

We also characterize the parameters that make our dissemination protocol
differentially private [8]. Differential privacy bounds the probability of the output
of an algorithm to be sensitive to the presence of information about a given
entity—the interests of a user in our context—in the input data. We obtain
differential privacy by introducing randomness in the dissemination of items.
This prevents malicious players from guessing the interests of a user from the
items she forwards.

We compare our mechanism with a non-private baseline as well as with an al-
ternative solution that applies differential privacy to the entire recommendation
process. We consider a real dataset from a user survey and report on simulations
as well as planetlab experiments. We dissect our results in terms of accuracy and
privacy trade-offs, bandwith consumption, as well as resilience to a censorship
attack. Our extensive evaluation shows that our twofold mechanism provides a
good trade-off between privacy and accuracy. For instance, by revealing only the
least sensitive 30% of a user profile, and by randomizing dissemination with a
probability of 0.3, our solution achieves an F1-Score (trade-off between precision
and recall) of 0.58, against a value of 0.59 for a solution that discloses all profiles,
and a value of 0.57 for the differentially private alternative in a similar setting.
Similarly, malicious users can predict only 26% of the items in a user’s profile
with our solution, and as much as 70% when using the differentially private one.
In addition, our mechanism is very resilient to censorship attacks, unlike the
fully differentially private approach.

2 Setting

We consider a decentralized news-item recommender employing user-based col-
laborative filtering (CF). Its architecture relies on two components: user clus-
tering and item dissemination. We aim to protect users from privacy threats.

User clustering aims at identifying the k nearest neighbors of each user 3. It
maintains a dynamic interest-based topology consisting of a directed graph

3 we use the terms ’node’ and ’user’ interchangeably to refer to the pair ’user/machine’

III

G(U,E), where vertices, U = u1, u2, u3, ...un, correspond to users, and edges,
E = e1, e2, e3, ...en, connect users that have the most similar opinions about a
set of items I = i1, i2, ..., im. The system is decentralized: each node records the
interests of its associated user, u, in a user profile, a vector of tuples recording
the opinions of the user on the items she has been exposed to. Each such tuple
Pu =< i, v, t > consists of an item identifier, i, a score value, v, and a timestamp,
t, indicating when the opinion was recorded. Profiles track the interests of users
using a sliding window scheme: each node removes from its profile all the tuples
that are older than a specified time window. This allows the interest-based topol-
ogy to quickly react to emerging interests while quickly forgetting stale ones. We
focus on systems based on binary ratings: a user either likes or dislikes an item.
The interest-based topology exploits two gossip protocols running on each node.
The lower-layer random-peer-sampling (rps) [22] protocol ensures connectivity
by maintaining a continuously changing random graph. The upper-layer cluster-
ing protocol [23, 5] starts from this random graph and quickly provides each node
with its k closest neighbors according to a similarity metric. Several similarity
metrics have been proposed [21], we use the Jaccard index in this paper.

Item dissemination exploits the above clustering scheme to drive the dissem-
ination. When a user generates a new item or receives an item she likes, the
associated node assumes that this is an interesting item for other users with
similar interests. It thus forwards the item to its neighbors in the interest-based
topology. If, instead, the user marks an item as dislike, the node simply drops
it.

Privacy Threats. While decentralization removes the prying eyes of Big-Brother
companies, it leaves those of curious users who might want to discover the per-
sonal tastes of others. In the decentralized item recommender considered, ma-
licious nodes can extract information in two ways: (i) from the profiles they
exchange with other nodes (profiles contain information about the interests of
users); and (ii) from the predictive nature of the dissemination (a node sends
an item only when it likes it). We consider the Honest-But-Curious adversary
model [10] where malicious nodes can collude to predict interests from received
profiles but cannot cheat in the protocol. In Section 6.6, we also consider attack-
ers modifying their obfuscated profiles to control their location in the interest-
based topology (i.e. their clustering views).

3 Obfuscation Protocol

Our first contribution is an obfuscation protocol that protects user profiles by
(i) aggregating their interests with those of similar users, and (ii) revealing only
the least sensitive information to other users. By tuning these two mechanisms,
system designers can manage the trade-off between disclosed information and
recommendation quality [15]. An excessively obfuscated profile that reveals very

IV

little information is difficult to compromise, but it also provides poor recommen-
dation performance. Conversely, a highly accurate profile yields better recom-
mendations, but does not protect privacy-sensitive information effectively. As we
show in Section 6, our obfuscation mechanism provides good recommendation
while protecting privacy.

For clarity, this Section describes a simplified version of our obfuscation
protocol. Section 4 completes this description with features required by our
differentially-private dissemination scheme. Figure 1 gives an overview of the
complete protocol.

Fig. 1: Simplified information flow through the protocol’s data structures.

3.1 Overview

Our protocol relies on random indexing, an incremental dimension reduction
technique [24, 13]. To apply it in our context, we associate each item with an
item vector, a random signature generated by its source node. An item vector
consists of a sparse d-dimensional bit array. To generate it, the source of an item
randomly chooses b << d distinct array positions and sets the corresponding
bits to 1. It then attaches the item vector to the item before disseminating it.

Nodes use item vectors when recording information about items in their
obfuscated profiles. Let us consider a node A that receives an item R from
another node C as depicted in Figure 1. Node A records whether it likes or
dislikes the item in its private profile. A node never shares its private profile.
It only uses it as a basis to build an obfuscated profile whenever it must share
interest information with other nodes in the clustering process. Nodes remove
the items whose timestamps are outside the latest time window. This ensures
that all profiles reflect the current interests of the corresponding nodes.

Upon receiving an item R that she likes, user A first updates the item profile
of R and then forwards it (Figure 1). To this end, A combines the item vectors
of the liked items in its private profile and obtains a compact profile consisting
of a bit map. This dimension reduction introduces some uncertainty because

V

Algorithm 1: Receiving an item.

1 on receive (item < idN , tN >, item vector SN , item profile PN) do
2 if iLike(idN) then
3 P ← < idN , tN , 1, SN , PN >

4 buildCompactProfile(SN)

5 updateItemProfile(PN)

6 forward(< idN , tN >, SN , PN)

7 else
8 P ← < idN , tN , 0 >

9 function buildCompactProfile()

10 for all < id , t, 1, S, PN >∈ P

11 P̃ [i] = S[i] OR P̃ [i]

12 function updateItemProfile(item vector PN)

13 for all i ∈ PN

14 Sum[i] = Integer(P̃ [i]) + Integer(PN [i])

15 for all i ∈ the s highest values in Sum
16 PN [i] = 1

17 function forward(< idR, tR >, item vector SN , item profile PN)

18 for all n ∈ Neighbors
19 send < idR.tR > with associated SN and PN to n

different sets of liked items may result in the same compact profile as described
in Section 3.2. Then A updates the item profile of R: a bitmap that aggregates
the compact profiles of the nodes that liked an item. To update it, A combines
its own compact profile and R’s old item profile. This aggregation amplifies the
uncertainty that already exists in compact profiles and makes R’s item profile
an obfuscated summary of the interests of the nodes that like R.

Before sharing interest information with other nodes, A must build its ob-
fuscated profile. First, it creates a filter profile that aggregates the information
contained in the item profiles of the items it liked. Then, it uses this filter to
identify the bits from its compact profile that will appear in its obfuscated pro-
file. The filter profile allows A to select the bit positions that are most popular
among the nodes that liked the same items as it did. This has two advantages.
First, using the most popular bits makes A’s obfuscated profile likely to overlap
with those of similar nodes. Second, these bits carry less information than less
popular ones, which makes them preferable in terms of privacy.

3.2 Profile Updates

Private Profile A node updates its private profile whenever it generates a new
item or receives an item it likes (lines 3 and 8 in Algorithm 1). In either case,

VI

the node inserts a new tuple into its private profile. This tuple contains the item
identifier, its timestamp (indicating when the item was generated) and a score
value (1 if the node liked the item, 0 otherwise). For liked items, the tuple also
contains two additional fields: the item vector, and the item profile upon receipt.

Compact Profile. Unlike private profiles, which contain item identifiers and their
associated scores, the compact profile stores liked items in the form of a d-
dimensional bit array. As shown in Figure 1, and on lines 14 of Algorithm 1
and 24 of Algorithm 2, a node uses the compact profile both to update the item
profile of an item it likes and to compute its obfuscated profile when exchanging
clustering information with other nodes. In each of these two cases, the node
computes a fresh compact profile as the bitwise OR of the item vectors of all the
liked items in its private profile (line 11 of Algorithm 1).

This on demand computation allows the compact profile to take into account
only the items associated with the current time window. It is in fact impossible
to remove an item from an existing compact profile. The reason is that compact
profile provides a first basic form of obfuscation of the interests of a user through
bit collisions: a bit with value 1 in the compact profile of a node may in fact
result from any of the liked items whose vectors have the corresponding bit set.

Compact profiles bring two clear benefits. First, the presence of bit collisions
makes it harder for attackers to identify the items in a given profile. Second, the
fixed and small size of bit vectors limits the size of the messages exchanged by
the nodes in the system. As evaluated, in Section 6.7, this drastically reduces
the bandwidth cost of our protocol.

Item Profile. A node never reveals its compact profile. Instead, it injects part of it
in the item profiles of the items it likes. Consequently, the item profile of an item
aggregates the interests of the users that liked the item along its dissemination
path. A parameter s controls how much information from the compact profile
nodes include in the item profile.

Let n be a node that liked an item R. When receiving R for the first time,
n computes its compact profile as described above. Then, n builds an integer
vector as the bit-by-bit sum of the item profile and its own compact profile
(line 14 in Algorithm 1). Each entry in this vector has a value in {0, 1, 2}: node
n chooses the s vector positions with the highest values, breaking ties randomly,
and creates a fresh profile for item R by setting the corresponding bits to 1 and
the remaining ones to 0. Finally, when n generates the profile for a new item,
(line 16 in Algorithm 1), it simply sets to 1 the values of s bits from those that
are set in its compact profile. This update process ensures that each item profile
always contains s bits with value 1.

Filter Profile. Nodes compute their filter profiles whenever they need to exchange
clustering information with other nodes (line 22 in Algorithm 2). Unlike the other
profiles associated with nodes, this profile consists of a vector of integer values
and does not represent the interests of a user. Rather it captures the interests
of the community of users that have liked similar items. A node computes the

VII

Algorithm 2: Building obfuscated profile.
20 on demend do
21 Algorithm1.buildCompactProfile()
22 buildFilterProfile()
23 for all i ∈ the s highest values in F

24 P∗[i] = P̃ [i]

25 function buildFilterProfile()

26 for all < id, t, 1, S, PN >∈ P in the current time window

27 F [i] = F [i] + Integer(PN [i])

value at each position in its filter profile by summing the values of the bits in the
corresponding position in the profiles of the items it liked (line 27 in Algorithm 2)
in the latest time window. This causes the filter profile to record the popularity
of each bit within a community of nodes that liked similar items.

Obfuscated Profiles. As shown in Figure 1, a node computes its obfuscated profile
whenever it needs to exchange it with other nodes as part of the clustering
protocol. As shown in Figure 1, it achieves this by filtering the contents of its
compact profile using its filter profile: this yields a bit vector that captures the
most popular bits in the node’s community and thus hides its most specific and
unique tastes. The fine-grained information contained in the node’s private and
compact profiles remains instead secret throughout the system’s operation.

As shown on line 21 and line 22 of Algorithm 2, a node n computes its
obfuscated profile by first generating its compact and filter profiles as described
above. Then it selects the s positions that have the highest values in the filter
profile, breaking ties randomly, and sets the corresponding bits in the obfuscated
profile to the values they have in its compact profile. It then sets all the remaining
bits in the obfuscated profile to 0.

The resulting profile has s bits (set at 0 or 1) that reflect the node’s compact
profile and provide a coarse-grained digest of user interests. Through the value
of s, the system designer can control the amount of information that can filter
from the compact to the obfuscated profile, and can therefore tune the trade-off
between privacy and recommendation quality. It is important to note that the
positions of the bits whose value is 1 in the obfuscated profile depend on the filter
profile and thus do not suffice to identify the item vectors that contributed to the
corresponding compact profile. This prevents isolated attackers from precisely
understanding which news items the node liked as shown in Section 6.5.

4 Randomized Dissemination

An attacker can discover the opinions of a user by observing the items she for-
wards (Section 2). We address this vulnerability through our second contribution:
a differentially-private randomized dissemination protocol.

The key idea of our protocol is to randomize the forwarding decision: a node
that likes an item drops it with probability pf , while a node that does not like it

VIII

Fig. 2: Complete information flow through the protocol’s data structures.

forwards it with the same pf . This prevents an attacker from acquiring certainties
about a user’s interests by observing which items she forwards. However, the
attacker could still learn something from the content of the associated item
profiles (modification of the item profile only when the user likes it). To ensure
that the whole dissemination protocol does not expose any non-differentially-
private information, we therefore randomize not only forwarding actions, but
also the item profiles associated with forwarded items. This requires us to modify
the protocol described in Section 3 as follows.

First, we introduce a new field in the private profile: the randomized decision.
In addition to record whether the node liked or disliked an item, we use this new
field to store the corresponding forwarding decision taken as a result of the
randomization process (1 for forward and 0 for drop).

We then introduce a new randomized compact profile (as shown in Figure 2).
The node fills this profile analogously to the compact profile but it uses the
randomized decision instead of its actual opinion on the item. The node iterates
through all the items for which the randomized decision is 1 and integrates
their signatures into the randomized compact profile using the same operations
described for the non-randomized one.

Finally, the node updates the item profile of an item when it decides to
forward it as a result of randomization, regardless of whether it likes it or not.
Moreover, the node performs this update as described in Section 3.2 except that
the node uses its randomized compact profile instead of its compact profile.

Nodes still use their non-randomized compact profile when choosing their
neighbors. In this case, they compare their compact profile with the obfuscated
profiles of candidate neighbors. However, the above modifications guarantee that
the actual content of the compact profile never leaks during dissemination. This
guarantees that our dissemination protocol is differentially private [8].

A randomized algorithm A is ε-differentially private if it produces approxi-
mately the same output when applied to two neighboring datasets (i.e. which
differ on a single element). In the context of dissemination, the datasets that
need to be randomized are vectors of user opinions. Given two neighboring vec-
tors of opinions (i.e. differing on a single opinion) o1 ∈ Dn and o2 ∈ Dn, we
define differential privacy as follows.

IX

Differential privacy [9] A randomized function F : Dn → Dn is ε-differentially
private, if for any pair of neighboring opinion vectors o1,o2 ∈ Dn and for all
t ∈ Dn:

Pr[F(o1) = t] ≤ eε · Pr[F(o2) = t]

This probability is taken over the randomness of F , while e is the base of the
natural logarithm.

In the case of our algorithm, we toss a coin each time the user expresses her
opinion about an item in order to decide whether the item should be forwarded.
This scheme is known as randomized response [25]: instead of randomizing the
output of a function f , we randomize each of its inputs independently. Because
these inputs as well as the output values are binary ∈ {0, 1}, we can rewrite the
above equation as follows.

Pr[f (o) = b] ≤ eε · Pr[f (1− o) = b]

Our randomization function f flips the opinion o and produces the output
1− o with probability pf . In order to achieve ε-differential privacy the value of
pf must be such that:

1/(eε + 1) ≤ pf ≤ 1/2

For space reasons, we omit the details of the reasoning leading to this re-
sult, as well as the proof of the equivalence between randomized response and
Definition 4. Nonetheless they are similar to those in [4].

This algorithm bounds the amount of information an observer gets when
receiving an item from a user. Instead of knowing with certainty that the user
liked the item, the observer knows that the user liked it with probability 1− pf .
However, this does not make our solution fully differentially private, but only the
dissemination component. In addition, it can only ensures ε-differential privacy
when a user expresses her opinion about an item she received, not when she
generates a new one. In the latter case, the user always forwards the item.

5 Experimental setup

We implemented and extensively evaluated our approach using a real dataset
from a user survey. We also compare our solution with a baseline solution with
no privacy mechanism, where profiles are exchanged in clear, and a solution
that applies a differentially private mechanism both when generating the profiles
that users exchange and upon dissemination. We refer to our solution as OPRD
(Obfuscation Profile and Randomized Dissemination) in the following.

5.1 Dataset

To evaluate our approach against a real dataset, we conducted a survey on
200 news items involving 120 colleagues and relatives. We selected news items

X

randomly from a set of RSS feeds illustrating various topics (culture, politics,
people, sports,...). We exposed this list to our test users and gathered their
opinions (like/dislike) on each news item. This provided us with a small but
real dataset of users exposed to exactly the same news items. To scale out our
system, we generated 4 instances of each user and news item in the experiments.
While this may introduce a bias, this affects accuracy of both our mechanisms
and the solutions we compare against.

5.2 Alternatives

We compare our approach with the two following alternatives.

Cleartext profile (CT). This baseline approach implements the decentralized CF
solution presented in Section 2 where user profiles are exchanged in clear during
the clustering process. This solution does not provide any privacy mechanism.

Differentially private approach (2-DP). This alternative, denoted by 2-DP in
the following, applies randomization both when generating user profiles and
during dissemination. Every time a user expresses an opinion about an item, the
algorithm inverses it with probability pd: this results in a differentially private
clustering protocol and a differentially private dissemination protocol. The latter
is similar to our randomized dissemination. However, unlike our solution, 2-DP
also applies randomness when generating user profiles. When a user dislikes an
item, 2-DP considers this item as liked with a probability pd, thus integrating
it in the profile of the user and disseminating it to her neighbors. Conversely,
when a user likes an item, 2-DP considers it as disliked with probability pd. In
this case, it silently drops it without including it in the user’s profile.

2-DP builds user profiles that are structurally similar to our compact profiles.
However, they gather the item vectors of the items identified as liked after the
randomization of user opinions. This extends the privacy guarantee associated
with our dissemination protocol to the profiles of users. This represents a con-
tribution in its own right. For space reasons, we do not include the associated
proof. However, it follows a similar intuition than the one presented in Section 4.

As user profiles change over time and are impacted by the dissemination of
items, applying a randomization function on cleartext profiles as in [4] is not
enough. Iteratively probing the profiles of a user and analyzing the dissemination
process could be enough to weaken the privacy guarantee. Instead, 2-DP does
not randomize profiles, but it randomizes the opinion of a user on the items she
is exposed to. Moreover, it does so independently of the user’s opinion on other
items.

2-DP uses the output of its randomization function to build user profiles and
drive the dissemination. In particular, users use the resulting randomized profiles
to compute their clustering views. We show in Section 6.4 that this introduces a
weakness in the context of the decentralized CF scheme considered in this paper.
Moreover, section 6.6 shows that 2-DP remains more vulnerable to censorship
attacks than our solution.

XI

5.3 Evaluation metrics

Accuracy. We evaluate accuracy along the traditional metrics used in information-
retrieval systems: recall and precision. Both measures are in [0, 1]. A recall of
1 means that all interested users have received the item. Yet, a trivial way to
ensure a recall of 1 is to send all news items to all users, potentially generat-
ing spam. Precision precisely captures the level of spam: a precision of 1 means
that all news items reach only users that are interested in them. The F1-Score
captures the trade-off between these two metrics and is defined as the harmonic
mean of precision and recall [21].

Overhead. We evaluate the overhead of the system in terms of the network traffic
it generates. For simulations, we compute the total number of sent messages. For
our implementation, we instead measure the average consumed bandwidth. A
key parameter that determines network traffic is the fanout of the dissemination
protocol, i.e. the number of neighbors from the interest-based overlay to which
nodes forward each item.

Privacy. We define privacy as the ability of a system to hide the profile of a
user from other users. We measure it by means of two metrics. The first evalu-
ates to what extent the obfuscated profile is close to the real one by measuring
the similarity between the two. We consider the Jaccard index [21] to measure
the similarity between a compact profile and the corresponding obfuscated one.
The second measures the fraction of items present in a compact profile out of
those that can be predicted by analyzing the presence of item vectors in the
corresponding obfuscated profile. As item vectors are public, a malicious user
can leverage them to guess the contents of the obfuscated profiles of other users,
thereby inferring their interests.

6 Performance evaluation

In this section, we evaluate the ability of our solution to achieve efficient informa-
tion dissemination while protecting the profiles of its users. First, we show that
compacting user profiles, filtering sensitive information, and randomizing dissem-
ination do not significantly affect the accuracy of dissemination when compared
to CT, yielding slightly better results than 2-DP. Then we analyze the trade-off
between accuracy and privacy and show the clear advantage of our solution in
protecting user profiles in the context of a censorship attack. Finally, we show
the benefits of our solution in term of network cost. We conducted an extensive
evaluation through simulations, and through a real implementation deployed on
PlanelLab. In both cases, we randomly select the source of each item among all
users. We refer to our solution as OPRD (Obfuscation Profile and Randomized
Dissemination) in the following.

XII

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5

F
1
-S

c
o
re

Message (Millions)

b=0.6% of d
b=1% of d
b=2% of d

b=10% of d
CT

(a) F1-Score vs messages

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

R
e
c
a
ll

Precision

b=0.6% of d

b=1% of d

b=2% of d

b=10% of d

CT

(b) Precision-recall curve

Fig. 3: Impact of compacting the profiles (various b-to-d ratios)

6.1 Compacting profiles

As explained in Section 3.2, our solution associates each item with a (sparse) item
vector containing b 1’s out of d possible positions. When a user likes an item, we
add the corresponding item vector to her compact profile by performing a bitwise
OR with the current profile. The ratio between b and d affects the probability
of having two items sharing bits at 1 in their vectors, which in turn affects the
accuracy of the similarity computation between users. Figure 3 evaluates its
effect on performance.

Figure 3a shows the values of the F1-Score depending on network traffic
for various values of the b-to-d ratio. The points in each curve correspond to
a range of fanout values, the fanout being the number of neighbors to which
a user forwards an item she likes: the larger the fanout the higher the load on
the network. Figure 3b shows instead the corresponding precision-recall curve.
Again, each curve reflects a range of fanout values: the larger the fanout, the
higher the recall, and the lower the precision.

Interestingly, the larger the b-to-d ratio, the bigger the difference between our
solution and CT. With a low b-to-d ratio, it is unlikely for any two item vectors
to contain common bits at 1. As a result, the performance of our solution closely
mimics that of CT. When the b-to-d ratio increases, the number of collisions
between item vectors—cases in which two distinct item vectors have common
bits at 1—also increases. This has two interesting effects on performance.

The first is that the F1-Score increases faster with the fanout and thus with
the number of messages: the b = 10% curve climbs to an F1-Score of 0.4 with less
than 400k messages. The curve on Figure 3b shows that this results from a higher
recall for corresponding precision values (bump in the b = 10% curve). The high
probability of collisions between item vectors results in some user profiles being
similar even though they do not contain many common items. This leads to a
topology in which users are less clearly clustered, and in which the items can be
disseminated more easily, which explains the high recall value.

The second effect is that the maximum F1-Score attained by the protocol
with a large b-to-d ratio (to the right of Figure 3a) stabilizes at lower values.
Figure 3b clarifies that this results from a lower maximum recall, as indicated

XIII

by the left endpoints of the curves corresponding to high values of b. The ar-
tificial similarities caused by a large b—advantageous with small fanout values
(small number of messages)—also create false clusters that ultimately inhibit
the dissemination of items to large populations of users. This effect is even more
prominent with values of b that set a vast majority of the bits in compact profiles
to 1 (not shown in the plot).

In the following, we set d to 500 and b to 5 for our evaluations. The values
assigned to b and d should be computed depending on the expected number of
items per user profile. Explanations about the computation of these values are
outside of the scope of this paper, but are similar to those that relate the number
of hash functions and the size of a bloom filter [20].

6.2 Filtering sensitive information

In our solution, the size of the filter defines how much information from the com-
pact profile appears in the obfuscated profile. The larger the filter, the more the
revealed information. Figure 4a depicts the F1-Score as a function of the num-
ber of messages. The performance increases with the size of the filter. Figure 4b
shows that this variation comes from the fact that precision strongly decreases
when the filter size decreases. The important aspect is that both plots highlight
that a filter of 200 bits (e.g. 40% of the compact profile) achieves performance
values similar to those of a system using full profiles.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5

F
1

-S
c
o

re

Number of messages (millions)

fs=50
fs=100
fs=150
fs=200

CT

(a) F1-Score vs messages

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7

R
e

c
a

ll

Precision

fs=50

fs=100

fs=150

fs=200

CT

(b) Precision-recall curve

Fig. 4: Impact of filtering sensitive information (various filter sizes, fs)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5

F
1

-S
c
o

re

Number of messages (millions)

pf=0
pf=0.5

CT

(a) F1-Score vs messages for various pf

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7

R
e

c
a

ll

Precision

pf=0.0
pf=0.1
pf=0.2
pf=0.3
pf=0.5

CT

(b) Precision-recall curve for various pf

Fig. 5: Impact of obfuscating profiles and randomizing dissemination (fs = 200)

XIV

6.3 Randomizing the dissemination

We now evaluate the impact of randomizing the dissemination process in addition
to the obfuscation protocol evaluated above (the previous results were obtained
without randomization). Figure 5a shows the F1-Score for our solution using
a filter size of 200 and several values for pf . Performance decreases slightly as
we increase the amount of randomness (for clarity, we only show pf = 0 and
pf = 0.5, the other curves being in between). Figure 5b shows that increasing
pf results mostly in a decrease in precision.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5

F
1

-S
c
o

re

Number of messages (millions)

2-DP, pd=0.1
2-DP, pd=0.2
2-DP, pd=0.3
2-DP, pd=0.4
2-DP, pd=0.5

CT

(a) F1-Score vs messages for various pd

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7
R

e
c
a

ll
Precision

2-DP, pd=0.1
2-DP, pd=0.2
2-DP, pd=0.3
2-DP, pd=0.4

CT

(b) Precision-recall curve for various pd

Fig. 6: Impact of the randomization for 2-DP

6.4 Evaluating 2-DP

In this section, we evaluate the 2-DP alternative defined in Section 5.2. 2-DP
reverses the opinions of users with a probability, pd, that affects both the con-
struction of user profiles and the dissemination process. This differs from our
solution in which only the dissemination is randomized.

Figure 6a shows the F1-Score of 2-DP versus network traffic for various values
of pd. Performance strongly increases at low fanout values for dp = 0.1, but
decreases for larger values. A small amount of randomness proves beneficial and
allows the protocol to disseminate items more effectively with a low fanout.
This effect, however, disappears when the number of messages increases at high
fanouts. Too much randomness, on the other hand, causes a drastic decrease
in the F1-Score. Figure 6b shows that randomness induces an increase in recall
with respect to CT and a decrease in precision. The former dominates with low
values of pd while the latter dominates for high values.

Figure 7 compares the F1-Score of OPRD using a filter of size of 200 and a pf
value of 0.3, with that of CT and 2-DP using a pd of 0.3. We observe that above
2M messages, our solution provides slightly better F1-Score values than 2-DP.
Overall, however, the best performances of the two approaches are comparable.
In the following, we show that this is not the case for their ability to protect
user profiles.

XV

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5

F
1
-S

c
o
re

Number of messages (millions)

CT
OPRD, fs=200, pf=0.3

2-DP, pd=0.3

Fig. 7: OPRD vs 2-DP: F1-Score vs number of messages

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5

F
1

-S
c
o

re

Randomness (pf / pd)

OPRD, fs=50
OPRD, fs=100
OPRD, fs=150
OPRD, fs=200

2-DP

(a) Accuracy: OPRD vs 2-DP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

O
v
e
rl
a
p
 r

a
te

 (
J
a
c
c
a
rd

 i
n
d
e
x
)

Randomness (pf / pd)

OPRD, fs=50
OPRD, fs=100
OPRD, fs=150
OPRD, fs=200

2-DP

(b) Public and real profiles overlap

Fig. 8: Randomness vs performance and level of privacy

6.5 Privacy versus accuracy

We evaluate the trade-off between privacy, measured as the ability to conceal the
exact profiles of users, and accuracy for both OPRD and 2-DP. OPRD controls
this trade-off with two parameters: the size of the filter, and the probability pf .
2-DP controls this trade-off by tuning the probability pd to switch the opinion
of the user, impacting both profile generation and the dissemination process.

Figure 8a compares their recommendation performance by measuring the
F1-Score values for various filter sizes. The x-axis represents the evolution of the
probabilities pf , for our solution, and pd, for 2-DP. We show that the F1-Score of
2-DP decreases faster than ours. The F1-Score of 2-DP with a pd of at least 0.2 is
smaller than that of our solution with a filter size greater than 100. In addition,
revealing the most popular 10% of the compact profile (fs = 50) yields similar
performance as 2-DP with pd ≥ 0.3.

Figure 8b measures the level of privacy as the overlap rate (computed with
the Jaccard index) between the compact profile and the obfuscated profile: lower
overlap rate implies more privacy. As our randomized dissemination protocol
hardly impacts the obfuscated profile, our results are almost independent of pf .
2-DP sees instead its similarity decrease with increasing pd. With pd = 0.3, 2-DP
yields an overlap rate of about 0.55 with an F1-Score (from Figure 8a) of 0.55.
Our approach, on the other hand yields the same overlap rate with a filter size
between 150 < fs < 200, which corresponds to an F1-Score value of about 0.57.

Figure 9, instead, assesses privacy by measuring if the items in a user’s real
profile can be predicted by an attacker that analyzes the user’s public profile.
Note that in 2-DP, the real profile is the one that would exist without random

XVI

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500

F
ra

c
ti
o

n

fs

prediction recall
prediction precision
prediction effectiveness
prediction popularity

(a) Prediction with OPRD, pf = 0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

F
ra

c
ti
o
n

pd

prediction recall
prediction precision
prediction effectiveness
prediction popularity

(b) Prediction with 2-DP

Fig. 9: Profile prediction

perturbations. We evaluate this aspect by measuring the recall and the precision
of predictions. Prediction recall measures the fraction of correctly predicted items
out of those in the compact profile. Prediction precision measures the fraction
of correct predictions out of all the prediction attempts. For our solution, in
Figure 9a, we use a pf = 0.2 to control the randomized dissemination, and vary
the filter size. For 2-DP (Figure 9b), we instead vary pd.

The plots show that while our approach is subject to fairly precise predic-
tions, these cover only a small fraction of the compact profile with reasonable
values of fs. With fs = 200, the prediction recall is of about 30% In contrast,
2-DP exposes a higher number of items from the compact profile. With pd = 0.2
the prediction recall is 0.8 with a prediction precision of 0.6. The curves for
prediction effectiveness, computed as the harmonic mean of recall and preci-
sion, further highlight our approach’s ability to strike an advantageous balance
between privacy and recommendation performance.

The two plots also show the average popularity of the predicted items. We
observe that when the filter size decreases, the correctly predicted items are
among the most popular ones, which are arguably the least private.

Finally, we also observe that the compact profile itself provides a small pro-
tection to the prediction of items due to its inherent collision rate. With a filter
of size 500 (e.g. with no difference between the compact and the public profile),
the error rate is equal to 0.15.

6.6 Resilience to a censorship attack

We illustrate the resilience of our obfuscation protocol against censorship by
implementing a simple eclipse attack [18]. A coalition of censors mirrors the
(obfuscated) profile of a target node in order to populate its clustering view.
This is turn isolates it from the remaining nodes since its only neighbors are
all censors. If the user profiles are exposed in clear, the profile of the censors
matches exactly that of the target node: this gives censors a very high probability
to enter its view. Once the censors have fully populated the target node’s view,
they simply intercept all the messages sent by the target node, preventing their
dissemination. We evaluate the efficiency of this attack with two metrics: the
poisoning rate of the target’s clustering view by attackers; and the fraction of
honest nodes (e.g. not censors) reachable by the target when it sends an item.

XVII

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 150 300 450

F
ra

ct
io

n

Peers

Attackers in the view
Reachable nodes

(a) 2-DP, pd = 0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 150 300 450

F
ra

ct
io

n

Peers

Attackers in the view
Reachable nodes

(b) OPRD, fs = 125, pf = 0.2

Fig. 10: Resilience to censorship

We ran this attack for each user in the dataset. The x-axis represents the
users in the experiment sorted by their sensitivity to the attack. Figure 10a and
Figure 10b depict the results obtained with a cluster size of 50, and 50 censors
(we observe similar results independently of the cluster size). In addition, this
experiment uses a filter of 125 and pf = 0.2 for our solution, and pd = 0.2
for 2-DP. We can clearly see that 2-DP is not effective in preventing censorship
attacks: only 150 nodes have a poisoning rate lower than 1. This is because 2-DP
computes similarities using the randomized compact profile, which it also shares
with other users. Therefore 2-DP exhibits exactly the same vulnerability as CT.
The censors can trivially match the profile of the target node.

Our approach is more resilient to this censorship attack. It is difficult for
censors to intercept all messages sent by the target and only a third of the nodes
have a fully poisoned clustering view. The obfuscated profile only reveals the
least sensitive information to other nodes: censors only mirror a coarse-grained
sub part of the target node’s profile. Consequently, their profiles are more likely
to resemble those of users with correlated interests than to match the target
profile. Figure 8b confirms this observation by showing the overlap between
obfuscated and compact profiles. The resilience of OPRD is driven by the size
of the obfuscation filter, the smaller the filter, the more resilient the protocol.

6.7 Bandwidth consumption

We also conducted experiments using our prototype with 215 users running on
approximately 110 PlanetLab nodes in order to evaluate the reduction of network
cost resulting from the compactness of our profiles. The results in terms of F1-
Score, recall, and precision closely mimic those obtained with our simulations and
are therefore omitted. Table 1 shows the bandwidth cost of our protocols in terms
of bandwidth: our obfuscation protocol is effective in reducing the bandwidth
consumption of decentralized collaborative filtering. The cost associated with our
obfuscated solution is about one third of that of the solution based on cleartext
profiles.

XVIII

Fanout 2 4 6 8 10 15 20

CT 1.8 3.0 4.4 6.5 8.2 12 14

OPRD 0.8 1.1 1.5 1.7 2.7 2.8 4.1

Table 1: Bandwidth usage in kbps per node in PlanetLab

7 Related work

Privacy is important in many applications. Several approaches [2, 16, 17] use
randomized masking distortion techniques to preserve the privacy of sensitive
data. However, [12] shows that the predictable structure in the spectral domain
of the random distortion can seriously compromise privacy. In the same vein,
[14] shows that the variances of the random noises have an important impact
on the possibility to filter noise from the original data. In our solution, instead
of adding perturbation to user profiles, we exchange with other users a coarse-
grain version of this profile only revealing its least sensitive information. The
perturbation applied on the item profile is not random and depends on the
interest of users. This makes it harder to separate privacy sensitive information
from the introduced distortion.

Some authors [1] designed a statistical measure of privacy based on differ-
ential entropy. However, it is difficult to evaluate its meaning and its impact
on sensitive data. Differential privacy was considered in [8, 11]. In a distributed
settings, [4] proposed a differentially private protocol to measure the similarity
between peers. While this solution works well with static profiles, its differential
privacy is not preserved when profiles are dynamic as in recommendation sys-
tems. In addition, still in the context of recommendation systems, [15] highlights
the trade-off between privacy and accuracy.

Other approaches [6] exploit homomorphic encryption in a P2P environment
to secure multi-party computation techniques. Similarly, [3] proposes an archi-
tecture for privacy preserving CF by replacing the single server providing the
service with a coalition of trusted servers.

8 Concluding Remarks

The motivation of this work is to make distributed CF resilient to privacy and
censorship attacks without jeopardizing the quality of recommendation. We pro-
posed a mechanism that relies on two components: (i) an obfuscation scheme
revealing only the least sensitive information in the profiles of users, and (ii) a
randomization-based dissemination protocol ensuring differential privacy during
the dissemination. We showed the viability of our mechanism by comparing it
with a non-private and a fully (differentially) private alternative. However, many
questions remain open. In particular, evaluating the fundamental trade-offs be-
tween privacy, resilience to censorship, and recommendation quality constitutes
an interesting research direction.

XIX

References

1. D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy
preserving data mining algorithms. In PODS, 2001.

2. R. Agrawal and R. Srikant. Privacy-preserving data mining. In SIGMOD, 2000.
3. W. Ahmad and A. Khokhar. An architecture for privacy preserving collaborative

filtering on web portals. In IAS, 2007.
4. M. Alaggan, S. Gambs, and A-M. Kermarrec. BLIP: Non-interactive Differentially-

Private Similarity Computation on Bloom Filters. In SSS, 2012.
5. A. Boutet, D. Frey, R. Guerraoui, A. Jégou, and A.-M. Kermarrec. WhatsUp

Decentralized Instant News Recommender. In IPDPS, 2013.
6. J. Canny. Collaborative filtering with privacy via factor analysis. In SIGIR, 2002.
7. A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization:

scalable online collaborative filtering. In WWW, 2007.
8. C. Dwork. Differential privacy: a survey of results. In TAMC, 2008.
9. C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity

in private data analysis. In Theory of Cryptography. Springer, 2006.
10. O. Goldreich. Cryptography and cryptographic protocols. Distrib. Comput., 2003.
11. A. Haeberlen, B. C. Pierce, and A. Narayan. Differential privacy under fire. In

SEC, 2011.
12. Z. Huang, W. Du, and B. Chen. Deriving private information from randomized

data. In SIGMOD, 2005.
13. P. Kanerva, J. Kristoferson, and A. Holst. Random indexing of text samples for

latent semantic analysis. In CCSS, 2000.
14. H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving

properties of random data perturbation techniques. In ICDM, 2003.
15. A. Machanavajjhala, A. Korolova, and A. D. Sarma. Personalized social recom-

mendations: accurate or private. VLDB, 2011.
16. H. Polat and W. Du. Privacy-preserving collaborative filtering using randomized

perturbation techniques. In ICDM, 2003.
17. H. Polat and W. Du. Svd-based collaborative filtering with privacy. In SAC, 2005.
18. A. Singh, M. Castro, P. Druschel, and A. Rowstron. Defending against eclipse

attacks on overlay networks. In SIGOPS, 2004.
19. X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques.

Advances in Artificial Intelligence, 2009.
20. Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. Theory and

practice of bloom filters for distributed systems. IEEE Communications Surveys
and Tutorials, pages 131–155, 2012.

21. C. J. van Rijsbergen. Information retrieval. Butterworth, 1979.
22. S. Voulgaris, D. Gavidia, and M. v. Steen. Cyclon: inexpensive membership man-

agement for unstructured p2p overlays. Journal of Network and Systems Manage-
ment, 2005.

23. S. Voulgaris and M. v. Steen. Epidemic-style management of semantic overlays for
content-based searching. In Euro-Par, 2005.

24. M. Wan, A. Jönsson, C. Wang, L. Li, and Y. Yang. A random indexing approach
for web user clustering and web prefetching. In PAKDD, 2012.

25. Stanley L. Warner. Randomized response: a survey technique for eliminating eva-
sive answer bias. Journal of the American Statistical Association, 60(309):63–69,
March, 1965.

