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Abstract�The aim of this work is to present a numerical
approach to solve accurately the coupled dynamic interaction
between a �oating body and the incoming wave. This �oating
body is a Wave Energy Converter (WEC) based on the use of
gyroscope in order to extract energy from the slope of the sea
waves. The hydrodynamic model is based on a Computational
Fluid Dynamic (CFD) approach suited to simulate incompressible
viscous �ows around an arbitrary moving and morphing body.
The mechanical model of the energy converter is given by the
conservation laws of the �ywheel angular momentum equipped
with a control algorithm designed for the power optimization.

The interaction of the hull of the energy converter with an
incoming wave is computed by switching on the effect of the
gyroscope and the mooring and both of them.

I. INTRODUCTION

Over the last years in marine industry the CFD has become
a diffused numerical tool from the pre-project to the design
phase, with the focus of accurate estimation of loads and
reliable improvement of the performance. For example some
classical marine applications of CFD are the solution of the
Navier-Stokes equations for the water region with the aim of
evaluating the polar curves of the hull or the performance
characterization of the propeller. This kind of evaluation is one-
way, because the reaction of the structure to the hydrodynamic
forcing is not considered.

A two-way coupled description of the interactions between
�uids and structures is not easy by means of classical mesh-
adapted CFD methods. Since the vessel is a buoyant elastic
body and the hydrodynamic actions can change the �oat
attitude, a time-comsuming remesh procedure is required at
each time step in order to track the �uid/solid interface.
The Immersed Boundary (IB) method (see [1] and [2]) is
a numerical approach where the complete simulation can
be performed on a Cartesian mesh, which is not adapted
to the geometrical boundaries, and the interactions between
multiphases interfaces are taken into account by means a
proper formulation of the �uid equations. Since no re-meshing
procedure is needed, a large savings in code complexity and

computational costs is yielded. By means of this formulation,
some complex geometries with topological change can be
easily handled, the multi-physics simulation is more affordable,
moving or morphing geometries can be coupled with internal
or external �ow.

In this work the problem of simulating via CFD the
coupled interaction between the incoming sea waves and a
�oating wave energy converter is addressed. The evolution in
time of this interaction is essential because it in�uences the
power extraction from the energy converter. In the following
subsection a survey on the Inertial Sea Wave Energy Converter
(ISWEC) which is studied in the present work is provided.

The paper is organized as follows. In section II the
mechanical model and the control tecnique of ISWEC are
presented. In section III the CFD immersed boundary approach
is summarized: in particular an outlook on a �oating body
problem is addressed. In section IV we describe the simulation
setup and the combination between the �uid dynamic and
the dynamic of the �oater. In section V the results of three
preliminary test cases are presented. Some concluding remarks
and perspectives are discussed in the section VI.

A. Overview on ISWEC system

The Inertial Sea Wave Energy Converter (ISWEC) is a
device designed to exploit wave energy through the gyroscopic
effect of a �ywheel (see [3]). All the mechanical parts are
enclosed in a sealed monolithic hull that externally appears as
a moored boat. A lot of studies and experimental tests have
been carried out on this device proving the concept feasibility
and estimating its annual energy production (see [4]). The �rst
full scale ISWEC demonstrator with rated power 100 kW is
going to be deployed by Wave for Energy Srl, spin-off of the
Politecnico di Torino, at the island of Pantelleria by May 2015.

II. ISWEC DYNAMICAL MODEL

As shown in �gures 1 and 2, the ISWEC device is
composed mainly of a �oating body slack moored to the
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Fig. 1. ISWEC: external appearance (concept).
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Fig. 2. ISWEC: gyroscopic system.

seabed. The waves tilt the buoy with a rocking motion that
is transmitted to the gyroscopic system inside the buoy. The
gyroscopic system is composed of a spinning �ywheel carried
on a platform allowing the �ywheel to rotate along the y1
axis. As the device works, the gyroscopic effects born from
the combination of the �ywheel spinning velocity _’ and the
wave induced rocking velocity _� create a torque along the "
coordinate. Using this torque to drive an electrical generator
the extraction of energy from the system -and therefore from
the waves- is possible.

The reference frames used in the analysis of the system
are shown in �gure 3. A mobile reference frame x1y1z1 is
obtained respect to the inertial reference frame xyz with two
subsequential rotations � and ".

The mechanical behavior of the system can be easily
explained by starting from the initial position in which � = 0
and " = 0, there are no waves and the �ywheel rotates around

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 
y  

z  

d
 

e  

e  x1 

y1 

z1 

d
 

x 
y  

z 

d
 

e  

e  x1 

y1 

z1 

d
 

l  

l  Fig. 3. Reference frames.

the axis z1 with constant angular velocity _’. As a effect of
the �rst incoming wave, the system is tilted along the pitch
direction � gaining a certain angular velocity _� along the x
axes. The �ywheel is so subjected to the two angular velocities
_’ and _� and the gyroscopic effects produce a torque on the

direction y1 that is perpendicular to both the velocities. If
the gyroscope is free to rotate along the y1 direction with
rotation ", its behavior is governed only from the inertia and
being the system conservative there is no mechanical power
available for generation. The extraction of energy from the
system can be performed by damping the motion along the "
coordinate. In this situation the gyroscope acts as a motor on
the rotary damper and the energy extracted from the system
by the damper is available for power generation. The damper
can be for instance an electric generator directly coupled on
the " shaft. During the evolution of the system -damped or
undamped- a gyroscopic torque arises on the buoyant too. In
fact the two angular velocities _’ and _" combined together
produce a gyroscopic reaction on the buoyant along the �
coordinate opposing the wave induced pitching motion. And
a second reaction torque is similarly induced on the z1 axis
by the combination of the _� and _" angular velocities. These
two reaction torques are to be taken into account when sizing
respectively the buoyant and the motor driving the �ywheel.

The angular velocity ~!1 of the mobile reference frame
x1y1z1 and the �ywheel angular velocity ~!G are both written
with respect to the mobile reference frame - assuming ~i1~j1~k1
the versors associated to the mobile reference frame x1y1z1.

~!1 = _� cos " �~i1 + _" �~j1 + _� sin " � ~k1 (1)

~!G = _� cos " �~i1 + _" �~j1 + ( _� sin "+ _’) � ~k1 (2)

~Me =
d ~KG

dt
(3)

The (3) expresses the conservation of the angular momen-
tum written with respect to the centre of gravity of the system.
The equation describes the rotational equilibrium a mechanical
system, asserting that the variation with respect to time of the
angular momentum is equal to the applied external torque. In
this analysis J is the moment of inertia of the �ywheel around
its axis of spinning z1 and I represents the two moments of
inertia of the �ywheel with respect to the axes perpendicular
to z1.

~KG = ~I � ~!G = I _� cos " �~i1 + I _" �~j1 + J( _� sin "+ _’) �~k1 (4)

Time deriving the angular momentum leads to time derive
even the three versors ~i1~j1~k1 and at the end of all the math-
ematical passages, the equilibrium of the system is described
by the vectorial equation (6).

d~i1
dt = ~!1 �~i1 = _� sin " �~j1 � _" � ~k1

d~j1
dt = ~!1 �~j1 = � _� sin " �~i1 + _� cos " � ~k1

d~k1
dt = ~!1 �~j1 = _" �~i1 � _� cos " �~j1

(5)



~Me =

8
<

:

I�� cos "+ (J � 2I) _" _� sin "+ J _" _’
I�"+ (I � J) _�2 sin " cos "� J _’ _� cos "

J(�� sin "+ _" _� cos "+ �’)

9
=

;
(6)

The torque on the PTO T" and the torque on the motor
driving the �ywheel T’ are given respectively by the second
and the third scalar equation of the (6).

T" = I�"+ (I � J) _�2 sin " cos "� J _’ _� cos " (7)

T’ = J(�� sin "+ _" _� cos "+ �’) (8)

As the device works, an inertial torque T� is discharged
from the gyroscopic system to the �oating body along the
pitching direction �. T� can be evaluated projecting ~Me along
the x direction.

T� = ~Me �~i
= ~Me � (cos " �~i1 + sin " � ~k1)
= (J sin2 "+ I cos2 ")�� + J �’ sin "+
J _" _’ cos "+ 2(J � I) _� _" sin " cos "

Being T� the main action unloaded from the gyro to the
�oat, in this work, the generalized torque unloaded from the
gyro to the load results as follows.

Mg =

( 0
T�
0

)

(9)

In this work the PTO is controlled to behave as a spring
damper system, the stiffness component tuning the system on
the wave, the damping component absorbing active power.

T" = k"+ c _" (10)

III. AN ACCURATE IMMERSED BOUNDARY APPROACH
FOR FLOATING BODIES

The �ow under consideration involves two interfaces: the
interface between two �uids (air and water), �f and the
interface between the body and the �uids, �s. The intersection
between �f and �s is called the triple line and its denoted
by �fs. The computational domain under consideration, 
 is
divided into subdomains 
f �lled by the �uids and 
s for the
body. The domain 
f is composed by two domains 
+

f and

�
f for water and air respectively. Let  f be a function such

that  f = 0 on �f ,  f < 0 in 
�
f and  f > 0 in 
+

f , and
let  s be a function such that  s = 0 on �s,  s > 0 in 
s
and  s < 0 elsewhere. These two functions are called level set
functions. The sketch of the con�guration is given in �gure 4.

We consider the incompressible Navier-Stokes equations,
where u is the velocity �eld, p is the pressure �eld, � is the

Fig. 4. Sketch of the �ow con�guration.

dynamic viscosity, � is the density, g is the gravity, � is the
surface tension between the two �uids, n and � are the normal
and curvature of the interface �f , bu is rigid velocity of the
body, and D(u) = ru+rT u

2 .

a) In the �uid domain 
+
f et 
�

f :

�( f )
�
@u
@t

+ (u �r)u
�

= (11a)

�rp+ r � 2�( f )D(u) + �( f )g;

r � u = 0 (11b)

with initial and boundary conditions on the external domain
boundary @
.

b) On the interface �f :

[u(x; t)] = 0; (11c)

[�pI + 2�D(u)] � n = ��n (11d)

c) On the interface �s:

u(x; t) = bu(x; t): (11e)

The viscosity and density are de�ned as follows:

�( f ) = �+ +H( f )(�� � �+); (11f)
�( f ) = �+ +H( f )(�� � �+); (11g)

where H denotes the Heaviside function.

The functions  f and  s are transported with the �ow
velocity:

@ f
@t

+ u �r f = 0 in 
: (11h)

@ s
@t

+ u �r s = 0 in 
: (11i)

In practice we chose  f and  s to be signed distance func-
tions. Since the two last equations do not keep that properties,
we have sometimes to reinitialize the level set functions. The
displacement of the triple line is computed thanks to the Cox
model [9].

We have developped the numerical solver NaSCar based
on discretization of the equations on a cartesian mesh. Since



the interface do not �t the mesh, we impose all the interface
boundary condition thanks to some force applied on the
momentum equation. We use the CSF (Continuum Surface
Force) method [8], [10] to impose the surface tension and
used a penalization approach [7], [5] to impose implicitly the
boundary condition on the body. We impose a second order
penalization developed in [6]. Finally, the system to be solved
in the whole domain 
 is:

�( f )
�
@u
@t

+ (u �r)u
�

=�rp+ r � 2�( f )D(u)

+ �( f )g + ���( f )n

+
�
K

(bu� u): (12a)

r � u = 0 (12b)

where � is the caracteristic function of the body (� = 1
inside the body including the interface �s and � = 0 outside),
K is a penalisation factor, typically K = 10�8 and the Dirac
distribution is regularized:

��( f ) =

8
><

>:

0 si j f j > �;

1
2�

�
1 + cos(

� f
�

)
�

si j f j � �:
(13)

The system (12) is discretized in space thanks to second
order �nite differences (upwind third order for the convertive
terms) and equations (11h) and (11i) are discretized using a
WENO5 scheme. The discretization in time is perfomed using
a predictor-corrector scheme based on the Chorin and Temam
scheme [11], [12]. The computation of the body motion will
be presented in section IV-B.

IV. SIMULATION SETUP

A. Initial and boundary conditions

System (11) is closed given initial and boundary conditions.
This condition tries to mimic a wave propagating in the
computational domain staring from a �uid at rest, i.e. u = 0,
with p a hydrostatic pressure computed to balance the gravity
force. The domain under consideration is x 2 [�45m; 45m],
y 2 [�15m; 15m] and y 2 [�12m; 18m] where the gravity
is g = �gez . The position mass center of the body, xG, is
initially located at (x; y; z) = (2m; 0m; 0m), i.e. on the water
surface so that no buoyancy force is applied.

Periodic boundary conditions are applied on the side
boundary (in x and y direction). The bottom is considered
as a wall and we thus have u = 0. On the top boundary we
impose @u

@z = @v
@z = 0 and w = 0. A snapshot of the initial

condition in the computational domain is presented in �gure 5.

B. Integration of the ISWEC model within immersed boundary
code

The motion of the rigid body is computed using Newton’s
laws from the total forces F and the torques M exerted by
all the external forces onto the body. These forces and torques

Fig. 5. Snapshot of the initial condition in the computational domain where
everything is at rest.

are exerted by (i) the �uid, (ii) a mooring (to avoid a large
horizontal displacement) and (iii) the effect of the gyroscope.

The rigid motion is de�ned by the linear velocity u and
angular velocity 
 computed as:

m
du
dt

= F ; (14a)

dJ

dt

= M; (14b)

where m is the total mass of the body and J the inertia matrix.

Let T(u; p) = �pI + 1
Re (ru+ruT ) be the stress tensor,

and let n the outward normal unit vector to the body with
surface @
i. The hydrodynamic forces and torques exerted by
the �uid onto the body are:

Fh =�
Z

@

T(u; p) n dx; (15a)

Mh =�
Z

@
i

r ^ T(u; p) n dx; (15b)

with r = x� xG.

At each time step we computed the �ctitious displacement
considering only the hydrodynamic forces and torques. This
displacement is used to computed the mooring forces Fm
and torques Mm and the gyroscope forces Fg and torques
Mg . Finally, the total rigid motion is computed using the
hydrodynamic, the mooring plus the gyroscope forces and
torques.

V. TEST CASES AND RESULTS

Some test cases are considered in order to investigate the
correct implementation of the two-way coupled simulations.
In particular the following three experiments are performed:

I - hydrodynamic effect: F = Fh and M = Mh,

II - hydrodynamic plus mooring effects F = Fh+Fh and
M = Mh + Mm and

III - hydrodynamic plus mooring plus gyroscope effects
F = Fh + Fh + Fg and M = Mh + Mm + Mg .

Figures 6, 7 and 8 show respectively the motion of the
body in the X and Z directions as well as the rotation around



the Y axis. The effect of the mooring is clearly visible in
�gure 6 where the mooring action tends to keep the body as
close as possible to X = 0. The effect of the gyroscope is also
clearly visible in 8 where the rotation of the body is decrease.
These phenomena are highlighted in �gures 10 and 11 that
represent a comparison of snapshots of the simulation for the
three test cases at two different simulation time t = 20 s and
t = 22:5 s. Indeed, while the mooring effet is clearly visible
(approximatively 2m that is quite small is comparison the the
15m body length), the effect a the gyroscope is visible.

Figure 9 shows the evolution of the gyroscopic system
inside the hull for the test case III. The PTO is regulated
to impose a damping coef�cient of 30000 Nm s/rad and a
stiffness of 30000 Nm/rad. The PTO rated torque is 50 kNm.
The power harvested in such conditions is of 30.65 kW. The
torque unloaded from the gyro to the hull is one order of
magnitude greater than the torque applied from the PTO: the
gyro acts as a gearbox converting relatively small motions of
the hull into bigger motions of the PTO shaft and consequently
smaller and more manageable torques. Due to the heavy action
of the gyro on the hull, the amplitude of rotation �y in test
case III is decreased with respect to test I and II.
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Fig. 6. Temporal evolution of the body displacement in the X direction.

Fig. 7. Temporal evolution of the body displacement in the Z direction.
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Fig. 8. Temporal evolution of the body rotation �y .

Fig. 9. Time evolution of the characteristic variables of the gyroscopic system.

VI. CONCLUSIONS

In this paper a CFD technique coupled with a dynamic
model of the power generation system were used to simulate
the dynamics of an inertial wave energy converter. The CFD
method, based on an accurate Immersed Boundary approach,
was implemented in order to simulate three test con�gurations
of the wave energy converter for a given wave shape, by
switching on the gyroscope and the mooring system. The
kinematics of the �oater, the torque and the power extracted
on the shaft were estimated. Next steps of this work will be the
estimation of a sensitivity of the power production by varying
the shape and the period of the incoming sea waves.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
FP7/2007-2013 under agreement no. 309048 (project SiN-
GULAR). Federico Gallizio would like to thank Dr. Marco
Cisternino for the IT advice.



(a) test case I .

(b) test case II .

(c) test case III .

Fig. 10. Snapshots of the simulation at t = 20 s.
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