S. Afkhami, S. Zaleski, and M. Bussmann, A mesh-dependent model for applying dynamic contact angles to VOF simulations, Journal of Computational Physics, vol.228, issue.15, p.53705389, 2009.
DOI : 10.1016/j.jcp.2009.04.027

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous ows, Numerische Mathematik, vol.81, issue.4, p.497520, 1999.

R. Bird, R. Armstrong, and O. Hassager, Dynamic of polymeric liquids, 1987.

T. D. Blake, The physics of moving wetting lines, Journal of Colloid and Interface Science, vol.299, issue.1, p.113, 2006.
DOI : 10.1016/j.jcis.2006.03.051

D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Wetting and spreading, Reviews of Modern Physics, vol.81, issue.2, p.739805, 2009.
DOI : 10.1103/RevModPhys.81.739

C. Bruneau, Boundary conditions on articial frontiers for incompressible and compressible navier-stokes equations, Mathematical Modelling and Numerical Analysis, vol.34, issue.2, p.12, 2000.

B. Bryant, Modeling moving droplets: A precursor lm approach, 2003.

Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A level set formulation of eulerian interface capturing methods for incompressible uid ows, Journal of Computational Physics, vol.124, issue.2, p.449464, 1996.

H. Chen, D. Jasnow, and J. Viñals, Interface and contact line motion in a two phase uid under shear ow, Physical Review Letters, vol.85, issue.8, p.16861689, 2000.

D. L. Chopp, Computing minimal surfaces via level set curvature ow, Journal of Computational Physics, vol.106, issue.1, p.7791, 1993.

C. Cottin, H. Bodiguel, and A. Colin, Drainage in two-dimensional porous media: From capillary fingering to viscous flow, Physical Review E, vol.82, issue.4, p.46315, 2010.
DOI : 10.1103/PhysRevE.82.046315

R. G. Cox, The dynamics of the spreading of liquids on a solid surface. part 1. viscous ow, Journal of Fluid Mechanics, vol.168, p.169194, 1986.

P. G. De-gennes, Wetting statics and dynamics, Reviews of Modern Physics, vol.57, issue.3, p.827863, 1985.

J. A. Diez, L. Kondic, and A. Bertozzi, Global models for moving contact lines. Physical review. E, Statistical, nonlinear, and soft matter physics

H. Ding and P. D. Spelt, Wetting condition in diffuse interface simulations of contact line motion, Physical Review E, vol.75, issue.4, p.46708, 2007.
DOI : 10.1103/PhysRevE.75.046708

J. Dupont and D. Legendre, Numerical simulation of static and sliding drop with contact angle hysteresis, Journal of Computational Physics, vol.229, issue.7, pp.2453-2478, 2010.
DOI : 10.1016/j.jcp.2009.07.034

E. B. Dussan, On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines, Annual Review of Fluid Mechanics, vol.11, issue.1, p.371400, 1979.
DOI : 10.1146/annurev.fl.11.010179.002103

M. Fortin and R. Glowinski, Augmented Lagrangian methods: Applications to the Numerical Solution of Boundary-Value Problems, 1983.

C. Galusinski and P. Vigneaux, On stability condition for biuid ows with surface tension: Application to microuidics, Journal of Computational Physics, vol.227, issue.12, p.61406164, 2008.

P. H. Gaskell, P. K. Jimack, Y. Koh, and H. M. Thompson, Development and application of a parallel multigrid solver for the simulation of spreading droplets, International Journal for Numerical Methods in Fluids, vol.13, issue.8, p.56979989, 2008.
DOI : 10.1002/fld.1737

J. Gerbeau and T. Lelievre, Generalized Navier boundary condition and geometric conservation law for surface tension, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.5-8, pp.5-8644656, 2009.
DOI : 10.1016/j.cma.2008.09.011

URL : https://hal.archives-ouvertes.fr/inria-00542241

L. M. Hocking, A moving uid interface. part 2. the removal of the force singularity by a slip ow, Journal of Fluid Mechanics, issue.02, p.79209229, 1977.

R. L. Homan, A study of the advancing interface. i. interface shape in liquidgas systems, Journal of Colloid and Interface Science, vol.50, issue.2, p.228241, 1975.

D. Jacqmin, Contact-line dynamics of a diuse uid interface, Journal of Fluid Mechanics, vol.402, p.5788, 2000.

G. S. Jiang and C. W. Shu, Ecient implementation of weighted eno schemes, J. Comput. Phys, vol.126, issue.1, p.202228, 1996.

V. V. Khatavkar, P. D. Anderson, and H. E. Meijer, Capillary spreading of a droplet in the partially wetting regime using a diuse-interface model, Journal of Fluid Mechanics, vol.572, p.367387, 2007.

R. G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworths, 1988.

E. Lauga, M. Brenner, and H. Stone, Microuidics: The No-Slip Boundary Condition in Handbook on Experimental Fluid Dynamics, 2007.

R. Levi, Partial dierentia Equations of Thin Liquid Films: Analysis and Numerical Simulation, 2005.

X. Liu, S. Osher, and T. Chan, Weighted Essentially Non-oscillatory Schemes, Journal of Computational Physics, vol.115, issue.1, p.200212, 1994.
DOI : 10.1006/jcph.1994.1187

J. A. Moriarty, L. W. Schwartz, and E. O. Tuck, Unsteady spreading of thin liquid lms with small surface tension. Physics of Fluids A: Fluid Dynamics, p.733742, 1991.

S. J. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, 2002.

T. Qian, X. Wang, and P. Sheng, Molecular hydrodynamics of the moving contact line in two-phase immiscible ows, Communications in Computational Physics, vol.1, issue.1, p.152, 2005.

T. Quian, Generalized Navier Boundary Condition for the Moving Contact Line, Communications in Mathematical Sciences, vol.1, issue.2, p.333341, 2003.
DOI : 10.4310/CMS.2003.v1.n2.a7

E. Rame, Moving contact line problem: state of the contact angle boundary condition, Encyclopedia of Surface and Colloid Science, p.36023618, 2002.

W. Ren and W. E. , Boundary conditions for the moving contact line problem, Physics of Fluids, vol.19, issue.2, p.22101, 2007.
DOI : 10.1063/1.2646754

W. J. Rider and D. B. Kothe, Reconstructing Volume Tracking, Journal of Computational Physics, vol.141, issue.2, p.112152, 1998.
DOI : 10.1006/jcph.1998.5906

A. Sarthou, Méthodes de domaines ctifs d'ordre élevé pour les équations elliptiques et de Navier Stokes Application au couplage uide structure, 2009.

R. Scardovelli and S. Zaleski, Direct numerical simulation of free-surface and interfacial ow, Annual Review of Fluid Mechanics, vol.31, issue.1, p.567603, 1999.

L. W. Schwartz and R. R. Eley, Simulation of droplet motion on lowenergy and heterogeneous surfaces, Journal of Colloid and Interface Science, vol.202, issue.1, p.173188, 1998.

P. Seppecher, Moving contact lines in the Cahn-Hilliard theory, International Journal of Engineering Science, vol.34, issue.9, p.977992, 1996.
DOI : 10.1016/0020-7225(95)00141-7

URL : https://hal.archives-ouvertes.fr/hal-00527283

J. A. Sethian, A fast marching level set method for monotonically advancing fronts., Proceedings of the National Academy of Sciences, vol.93, issue.4, p.15911595, 1996.
DOI : 10.1073/pnas.93.4.1591

J. A. Sethian, Level set methods and fast marching methods, 1999.

P. Sheng and M. Zhou, Immiscible-uid displacement: Contact-line dynamics and the velocity-dependent capillary pressure, Physical Review A, issue.8, p.455694, 1992.

Y. D. Shikhmurzaev, Capillary Flows with Forming Interfaces, 2007.
DOI : 10.1201/9781584887492

P. D. Spelt, A level-set approach for simulations of ows with multiple moving contact lines with hysteresis, Journal of Computational Physics, vol.207, issue.2, p.389404, 2005.

R. Sureshkumar and A. N. Beris, Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows, Journal of Non-Newtonian Fluid Mechanics, vol.60, issue.1, pp.53-80, 1995.
DOI : 10.1016/0377-0257(95)01377-8

M. Sussman, A method for overcoming the surface tension time step constraint in multiphase ows ii, International Journal for Numerical Methods in Fluids, vol.68, issue.11, p.13431361, 2012.

S. Tancogne, Calcul numérique et stabilité d écoulements diphasiques tridimiensionnels en microuidique, 2007.

P. A. Thompson and M. O. Robbins, Simulations of contact-line motion: Slip and the dynamic contact angle, Physical Review Letters, vol.63, issue.7, p.766769, 1989.
DOI : 10.1103/PhysRevLett.63.766

S. O. Unverdi and G. Tryggvason, A front tracking method for viscous , incompressible, multi-uid ows, Journal of Computational Physics, vol.100, issue.1, p.2537, 1992.

P. Vigneaux, Méthodes Level Set pour des problèmes d'interface en microuidique, 2007.

C. Walker and B. Müller, Contact line treatment with the sharp interface method, Computers & Fluids, vol.84, issue.0, pp.255-261, 2013.
DOI : 10.1016/j.compfluid.2013.04.006

R. Wang and R. J. Spiteri, Linear instability of the fth-order weno method, SIAM Journal on Numerical Analysis, vol.45, issue.5, p.18711901, 2007.

Y. L. Xiong, Analyse par simulation numérique de la réduction de la traînée et des caractéristiques d'écoulements bidimensionnels par l'ajout de polymères en solution, 2010.

P. Yue and J. J. Feng, Phase-eld simulations of dynamic wetting of viscoelastic uids, Journal of Non-Newtonian Fluid Mechanics, issue.0, pp.1891908-1891921, 2012.

S. Zahedi, K. Gustavsson, and G. Kreiss, A conservative level set method for contact line dynamics, Journal of Computational Physics, vol.228, issue.17, p.63616375, 2009.
DOI : 10.1016/j.jcp.2009.05.043