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Abstract
Nowadays certification is widely employed by automated termination tools for term rewriting,
where certifiers support most available techniques. In complexity analysis, the situation is quite
different. Although tools support certification in principle, current certifiers implement only the
most basic technique, namely, suitably tamed versions of reduction orders. As a consequence,
only a small fraction of the proofs generated by state-of-the-art complexity tools can be certified.
To improve upon this situation, we formalized a framework for the certification of modular
complexity proofs and incorporated it into CeTA. We report on this extension and present the
newly supported techniques (match-bounds, weak dependency pairs, dependency tuples, usable
rules, and usable replacement maps), resulting in a significant increase in the number of certifiable
complexity proofs. During our work we detected conflicts in theoretical results as well as bugs
in existing complexity tools.
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1 Introduction

The last decade saw a wealth of techniques for automated termination tools, closely followed
by techniques and tools for automated complexity analysis in recent years. In individual
proofs, such tools often apply several techniques in combination, making human inspection
ever more unrealistic, due to their sheer size. Moreover, the increasing power of automated
tools comes at the cost of amplified complexity, reducing reliability; hence the interest in
automatic certification of termination and complexity proofs.

Whereas our certifier CeTA [18] is already able to certify most proofs generated by current
termination tools for term rewrite systems (TRSs), initial support for complexity proofs was
added only recently [17]. In this paper we present a significant extension of CeTA towards
the certification of complexity proofs. To this end, we formalized several techniques for
complexity analysis within the proof assistant Isabelle/HOL [14] as part of our formal library
IsaFoR.1 On top of these general results, we augmented CeTA by corresponding functions,
that check whether specific applications of techniques, encountered inside automatically
generated complexity proofs, are correct.

As a result, the power of CeTA for certifying complexity proofs has almost tripled in
comparison to last year [17], and more than 75% of all tool-generated proofs can be certified.

1 http://cl-informatik.uibk.ac.at/software/ceta
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2 Certification of Complexity Proofs using CeTA

Moreover, via certification we detected and fixed several bugs in current complexity tools,
some of which had remained undetected for more than five years.

Contribution and Overview. After giving some preliminaries in Section 2, we present our
main contributions. In Section 3, we explain our formalization of a framework which admits
us to certify composite complexity proofs. At this point, we also report on conflicting notions
of basic complexity definitions in the literature. In Section 4 we describe our formalization
of the match-bounds technique. Here, the transition from termination to complexity results
is surprisingly easy. Concerning the integration of match-bounds for relative rewriting, we
provide a new example showing that two existing variants are incomparable. In Section 5,
we discuss our formalization of two dependency pair related techniques: weak dependency
pairs and dependency tuples. We choose to conduct the respective proofs using two slightly
different approaches—one focusing on contexts, the other on sets of positions—and com-
ment on our findings. In Section 6, we slightly generalize one variant of usable rules, and
also support another variant for innermost rewriting, for which we reuse existing proofs
from termination analysis. Furthermore, we present a new theorem combining usable rules,
usable replacement maps, and argument filters. Finally, in Section 7, we discuss conducted
experiments and conclude.

All of the proofs that are presented (or omitted) in the following have been formalized
and made available as part of IsaFoR. Direct links to the formalization are available from the
following website, that also contains all details on our experiments.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/complexity/

2 Preliminaries

We assume basic familiarity with term rewriting (as for example obtained by reading the
textbook by Baader and Nipkow [3]) but shortly recall some basic notions and notations
that are used later on.

By T (F ,V) we denote the set of (first-order) terms w.r.t. a signature F and a set of
variables V, and by T (F) the set of ground terms. We write root(t) for the root symbol
of a non-variable term t. The size |t| of a term t is defined by |x| = 1 for t = x ∈ V, and
|f(t1, . . . , tn)| = 1 +

∑n
i=1 |ti|, otherwise. A (multihole) context is a term that may contain

an arbitrary number of holes, represented by the special symbol �. Replacing the holes in a
given multihole context C by terms t1, . . . , tn is written C[t1, . . . , tn]. (At this point it might
be worth mentioning that in our formalization we have to make sure that the number of
holes in C corresponds to the number of terms n. For simplicity’s sake we do not make this
explicit in the remainder). Whenever s = C[t] for some context C ( 6= �), then t is called a
(proper) subterm of s. We write tσ for the application of a substitution σ to a term t.

A TRS R is a set of (rewrite) rules, where a rule ` → r is a pair of terms such that
` /∈ V and only variables already occurring in ` are allowed in r. The defined symbols of
R, written D(R), are those that are roots of left-hand sides of its rules. We use Fun(·) to
denote the set of function symbols occurring in a given term, context, or TRS. A TRS is
left-linear (non-duplicating) if and only if for all rules ` → r ∈ R, no variable occurs more
than once in ` (more often in r than in `).

The standard way of uniquely referring to subterms is via positions, denoted by lists of
natural numbers. The subterm of a term t at position p is written t|p. We use ≤ for the
usual partial order on positions, and denote by p || q that positions p and q are parallel, i.e.,
incomparable by ≤. The strict part of ≤ is denoted by <.
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There is a rewrite step from term s to term t w.r.t. the rewrite relation induced by
TRS R, denoted s −→R t, whenever there are C, σ, and ` → r ∈ R such that s = C[`σ]
and t = C[rσ]. Equivalently, we say that s rewrites to t at position p, where p is the unique
position of � in C. The subterm `σ above is called an (R-)redex. Terms not containing
any R-redexes are called R-normal or normal forms, and we write NF(R) for the set of all
R-normal forms. We sometimes use the same notion not only for TRSs but also for sets of
terms, since right-hand sides of rules are irrelevant for the existence of redexes anyway.

For termination analysis Q-restricted rewriting (named after the additional parameter,
a set of terms, which is usually denoted Q) was introduced in order to cover full rewriting
and innermost rewriting (as well as variations that lie somewhere in between) under a
single framework [9]. Here, a rewrite step C[`σ] Q−→R C[rσ] is a standard rewrite step
C[`σ] −→R C[rσ] whose redex `σ additionally satisfies the condition that all its proper
subterms are Q-normal, i.e., do not match any term in Q (in that way standard rewriting is
Q-restricted rewriting with empty Q and for innermost rewriting we take the left-hand sides
of R as Q). This proves convenient also for complexity analysis and its notions of runtime
complexity and innermost runtime complexity. Additionally, relative rewriting is important
for complexity analysis, since it can be employed to obtain modular proofs. A relative
rewrite system consists of two TRSs S and W, and is denoted by S/W. The corresponding
relative rewrite relation, written −→S/W , is given by −→∗W · −→S · −→∗W . Combined this leads to
Q-restricted relative rewriting, where Q−→S/W denotes the relation Q−→∗W · Q−→S · Q−→∗W . Note
that we fix the same Q for “strict” and “weak” steps, which is sufficient for our purposes.2

Given a binary relation → and a set A, we define →(A) = {b | ∃a ∈ A. a→ b}.

3 A Framework for Modular Complexity Proofs

In complexity analysis of TRSs we are usually interested in the maximal number of steps
that are possible when starting from a given set of terms. To this end, the basic ingredient
of our formalization is the derivation bound (defined in theory Complexity; see also [17]),
where a function g constitutes a derivation bound of relation R w.r.t. starting elements from
a family of sets S, written dbS

R(g), if and only if for every n ∈ N and x ∈ Sn, every sequence
of R-steps starting at x is of length at most g(n). The intuition is that Sn contains “objects”
of size n. This, more or less, corresponds to the usual notion of complexity. To be more
precise, Avanzini and Moser [2] define cp(n, T,R) = max{dh(t, R) | ∃t ∈ T. |t| ≤ n}, where
dh denotes the derivation height of a term, and derivational complexity as well as runtime
complexity are obtained by suitably instantiating T and R. However, as argued earlier [17],
using the derivation bound g as argument avoids undefined situations that arise with the
usual definition, e.g., taking the maximum of a potentially infinite set. Whenever cp(n, T,R)
is defined, we have dbS

R(g) with Sn = {t ∈ T | |t| ≤ n} and g(n) = cp(n, T,R), as well as
h(n) ≥ cp(n, T,R) for all other derivation bounds h. That is, our bounds are not tight, but
arbitrary upper bounds.

Depending on the set of starting elements, we obtain the usual notions of derivational
complexity and runtime complexity, respectively. For the former we consider all terms of size
n w.r.t. a given signature F , whereas the latter is based on basic terms of size n. Given two
sets of function symbols D (defined symbols) and C (constructors), and a set of variables V,
the set of basic terms BT(D, C,V) consists of those terms which are rooted by a symbol from

2 A more general relation with separate Qs for S and W would be imaginable. However, since tools do
not support this variation, we stick to the simpler case.
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4 Certification of Complexity Proofs using CeTA

D and where all arguments are terms of T (C,V). At this point we would like to mention
that there are conflicting notions of basic terms: Hirokawa and Moser [10] and Noschinski et
al. [15] use the above definition of basic terms. In contrast, Avanzini [1] additionally restricts
basic terms to be ground, intending that constructor ground terms correspond to values,
and thus, basic terms correspond to function application on input values. Since IsaFoR does
not enforce basic terms to be ground, every (upper) derivation bound that is certified by
CeTA also is valid w.r.t. Avanzini’s notion of basic terms. However, there might be valid
derivation bounds w.r.t. the ground semantics which cannot be certified in the non-ground
setting:

I Example 1. Let R = {f(f(x)) → g(x), g(x) → f(f(x)), f(a) → a}. Then there are only
two basic ground terms, f(a) and g(a). Since the longest innermost derivation starting from
these terms is of length 3, R has constant innermost runtime complexity w.r.t. ground basic
terms. But there is an infinite innermost derivation starting from the non-ground basic term
g(x).

We adopt the following notions from Avanzini and Moser [2]. A (complexity) problem
P = 〈S/W,Q, T 〉 consists of two TRSs S, W, and two sets of terms Q, T . We asses the
complexity of a problem P by a (complexity) judgment of the form ` P : g, which is valid
whenever g is a bound for Q−→S/W -derivations starting from T . For sets of functions G we
define that ` P : G is valid whenever ` P : G is valid for some g ∈ G. Often, G is an
asymptotic complexity class like O(n3). A (complexity) processor turns a given judgment
` P : G into a list of judgments ` P1 : G1, . . . ,` Pn : Gn. It is sound whenever the validity
of each of ` Pi : Gi also implies validity of ` P : G. A processor is terminal if the returned
list of judgments is empty.

The problem P is called a runtime complexity problem if T = BT(D, C,V), with S andW
not defining any constructor C, i.e., D(S∪W)∩C = ∅. The problem P is called an innermost
problem if NF(Q) ⊆ NF(S ∪W). In this case, Q−→S/W is a composition of innermost rewrite
steps with respect to S ∪W.

As a first example processor, we formulate a theorem by Zankl and Korp [20, Thm. 3.6]
within our framework which admits modular complexity proofs.

I Theorem 2 (Split Processor). Let P = 〈S1 ∪ S2/W,Q, T 〉 be a complexity problem and
define P1 = 〈S1/S2 ∪W,Q, T 〉 and P2 = 〈S2/S1 ∪W,Q, T 〉. The split processor translates
the judgment ` P : O(g) into the judgments ` P1 : O(g) and ` P2 : O(g).

The split processor is sound.

I Example 3. The split processor is used whenever rules should be shifted from the strict
into the weak component, e.g., when applying match-bounds for relative rewriting or when
using orderings. As an example, consider a TRS with rules numbered from 1 to 5 where
cubic complexity has been proven. In the proof, first rules 2, 3, and 4 have been oriented
strictly and rules 1 and 5 are oriented weakly by some ordering o1 with quadratic complexity.
Afterwards rule 1 could be moved into the weak component by match-bounds, and finally
rule 5 is oriented strictly by some ordering o2 with cubic complexity, where the remaining
rules 1 to 4 are oriented weakly. This proof is restructured via split as follows. First, the
initial complexity judgment ` 〈{1, 2, 3, 4, 5}/∅,Q, T 〉 : O(n3) is splitted into ` 〈{2, 3, 4}/
{1, 5},Q, T 〉 : O(n3) and ` 〈{1, 5}/{2, 3, 4},Q, T 〉 : O(n3) by the split processor where the
former judgment is validated via o1. The latter complexity problem is split again into ` 〈{1}/
{2, 3, 4, 5},Q, T 〉 : O(n3) and ` 〈{5}/{1, 2, 3, 4},Q, T 〉 : O(n3) where the former judgment is
validated via match-bounds, and the latter one via o2.
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The example demonstrates that via splitting it suffices to restrict match-bounds and or-
derings to terminal complexity processors. This is the reason why we present both techniques
as terminal processors in Sections 4 and 6.

4 Match-Bounds

The match-bounds technique was introduced as termination method by Geser et al. [7]. We
shortly recapitulate the main underlying ideas, before explaining our formalization (theory
Matchbounds) and the necessary adaptations to use it for complexity analysis [19, 20].

Let F be a signature containing at least one constant. For match-bounds, F is ex-
panded such that symbols are labeled by natural numbers, i.e., F ′ = F × N. Moreover,
we define auxiliary functions base : T (F ′,V) → T (F ,V), liftd : T (F ,V) → T (F ′,V), and
lab : T (F ′,V) → 2N, where base removes all labels of a term, liftd labels all symbols of a
term by d, and lab returns the set of labels of a term. For a non-duplicating TRS R over
signature F we construct the TRS R′ = match(R) over F ′.

match(R) = {`′ → liftd(r) | `→ r ∈ R, base(`′) = `, d = 1 + min(lab(`′))} (1)

Then for left-linear R, every rewrite step s →R t can be simulated by a step s′ →R′ t′

with base(t′) = t, provided base(s′) = s. Hence, every (possibly) infinite derivation (2)
gives rise to a step-wise simulation (3) provided base(t′0) = t0, which is ensured by choosing
t′0 = lift0(t0).

t0 →R t1 →R t2 →R · · · (2)
t′0 →R′ t′1 →R′ t′2 →R′ · · · (3)

mul(t′0) >ms mul(t′1) >ms mul(t′2) >ms · · · (4)

As the next step, a function mul maps every term t′i to the multiset of negated labels,
where by construction of match(R) every step with R′ results in a strict decrease w.r.t. the
standard multiset-order >ms on the integers, and thus we can construct (4) from (3).

Let us assume that the initial term t0 is ground. Then t′0 = lift0(t0) implies that the initial
term in (3) is always a member of T (F ×{0}). We now try to find some bound b ∈ N, such
that →∗R′(T (F × {0})) ⊆ T (F × {0, . . . , b}). If this succeeds, then the labels in derivation
(3) are bounded by b, and hence, all numbers in (4) are in the range −b, . . . , 0. Since > is
well-founded on this domain, so is >ms. Hence, (4) cannot be infinite, and therefore, also
(3), and (2) cannot be infinite, proving termination of R on ground terms. Moreover, since
F contains at least one constant, termination on ground terms implies termination on all
terms.

In total, we formalized the following theorem for termination analysis.

I Theorem 4. If R is a non-duplicating, left-linear TRS over signature F , and there is some
language L satisfying →∗R′ (lift0(T (F))) ⊆ L ⊆ T (F × {0, . . . , b}), then R is terminating.

Here, non-duplication is essential in the step from (3) to (4), and left-linearity is required
to ensure the one-step simulation property (Lemma 5). The language L usually comes in
the form of a finite automaton which has been constructed via tree automata completion
[6].

I Lemma 5. If R is left-linear, s →R t, and base(s′) = s, then there exists a term t′ such
that s′ →R′ t′ and base(t′) = t.

RTA 2015



6 Certification of Complexity Proofs using CeTA

The lemma is straightforward to prove on paper, and also its formalization posed no
difficulties. Actually, it is no longer present, since IsaFoR now includes a full proof of a more
general result by Korp and Middeldorp [12, Lemma 12], applying also to non-left-linear
TRSs. It is the essential ingredient to obtain (3) from (2).

Concerning the step from (3) to (4), in the formalization we already require the bound b
at this point. This allows us to include an index shift in mul, so that each label i is mapped
onto b − i ∈ N. Then the parameter > of >ms in (4) is the standard order on natural
numbers.

In order to certify match-bounds proofs (which are required to contain L in the form
of an automaton), CeTA must be able to check left-linearity and non-duplication, as well as
that the given automaton indeed accepts all terms in →∗R′(T (F × {0})). For the latter, we
make use of earlier work by Felgenhauer and Thiemann [5], and for the former, we rounded
off Isabelle/HOL’s existing theory on multisets by algorithms for comparing multisets (since
a rule is non-duplicating if and only if the multiset of variables of its right-hand side is a
subset of the multiset of variables of its left-hand side).

In case F does not contain a constant, e.g., in case of string rewrite systems, CeTA does an
automatic preprocessing step, which invents a fresh constant, includes it into the signature,
and adjusts the automaton accordingly.

In the remainder of this section, we adapt Theorem 4 and the corresponding formalization
towards complexity analysis, following Zankl and Korp [19, 20].

The first step is to integrate complexity bounds into (2), (3), and (4), starting from
(4). Given a term of size n, the initial value mul(t′0) is the multiset containing n times
the value b. However, this does not immediately give a nice bound on the length of (4),
since >ms does not impose any bound on the length of derivations w.r.t. the initial multiset:
{{1}} >ms {{0, . . . , 0}} >ms · · · >ms {{0}} >ms ∅. Thus, we replace >ms by >ms,k in (4),
where >ms,k is a bounded version of >ms such that at most k elements may be added in each
comparison: X >ms,k Y if and only if X = U ∪ V , Y = U ∪W , V >ms W , and |W | ≤ k.

Of course, we have to substitute >ms,k (with suitable k) for >ms in all previous proofs.
Doing so within the formalization was an easy task: take k ≥ 1 as the maximum size of
right-hand sides of R. After this adaptation, it is shown that the length of >ms,k-sequences
is linearly bounded, using a result by Dershowitz and Manna [4, page 191]. To be more
precise, we formalized that X >n

ms,k Y implies n ≤
∑

x∈X(k + 1)x, leading to the linear
bound: Recall, that mul(t′0) = {b, . . . , b} where the number of b’s is |t0|. Hence, sequence
(4) can be of length at most

∑
x∈mul(t′

0)(k + 1)x =
∑

1,...,|t0|(k + 1)b = (k + 1)b · |t0|. As
immediate consequence we conclude that also (3) and (2) are linearly bounded.

In total, we get the following result which is used in CeTA to check complexity proofs via
match-bounds, where Tgnd is the set of all ground terms in T . The restriction to ground
terms is possible at this point (in contrast to Example 1) as Q is ignored in the analysis.

I Theorem 6. Let P = 〈R/∅,Q, T 〉 be a complexity problem. If R is a non-duplicating and
left-linear TRS over signature F , and there is some language L satisfying→∗R′(lift0(Tgnd)) ⊆
L ⊆ T (F × {0, . . . , b}), then ` P : O(n).

The next step is to integrate relative rewriting. The main idea to handle weak rules is to
use a modified version of match, which only has to ensure a decrease w.r.t. the weak multiset
order ≥ms,k. To this end, Zankl and Korp [19] define match-rt as in (1) except that the value
of d in (1) is sometimes reduced. If |`| ≥ |r| and all labels in `′ are identical, then d is
min(lab(`′)) instead of 1 + min(lab(`′)). Hence, for some cases it is not required to increase
the labels at all, and thus, it is more likely that a bound on the labels can be obtained.
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In order to integrate match-rt into IsaFoR we could mostly reuse or slightly generalize the
existing proofs.

Zankl and Korp give another optimization of match-rt, integrating the bound b: match-rtb

is defined in the same way as match-rt, except that liftd(r) is replaced by liftmin(b,d)(r), which
results in even smaller labels than match-rt, but which is restricted to non-collapsing strict
rules. In total, we have formalized the following theorem.

I Theorem 7. Let P = 〈S/W,Q, T 〉 be a complexity problem. Let S∪W be a non-duplicating
and left-linear TRS over signature F . Assume that R′ = match(S) ∪ match-rt(W), or
both R′ = match(S) ∪ match-rtb(W) and S is non-collapsing. If there is some language L
satisfying →∗R′(lift0(Tgnd)) ⊆ L ⊆ T (F × {0, . . . , b}), then ` P : O(n).

Note that Q is completely ignored in Theorem 7, since the whole analysis does not take
the strategy into account. In fact, the theorem was first proven for Q = ∅, while the
above statement including Q follows from Q−→S/W ⊆ −→S/W . The sole reason for this naive
integration of Q was to support match-bounds on innermost problems in the first place. An
alternative might be a dedicated processor that transforms 〈S/W,Q, T 〉 into 〈S/W,∅, T 〉.

When integrating match-rtb in the formalization, we encountered two problems. First,
we wanted to get rid of the choice in Theorem 7 and always use the better match-rtb variant.
The reason for this aim was that—while the non-collapsing condition on S appears inside
their proofs—Zankl and Korp [20] did not state that its absence violates the main theorem.
This is now shown by a counterexample.

I Example 8 (Non-collapsing condition required). Let S = {f(x) → x} and W = {a →
f(a)}. For R′ = match(S) ∪ match-rt0(W) = {fi(x) → x, ai → f0(a0)}, the language
→∗R′(lift0(T (F))) is exactly T (F×{0}). Without the non-collapsing condition within Theo-
rem 7 one would be able to conclude linear derivational complexity of S/W, a contradiction.

Hence, the choices in Theorem 7 are really incomparable, and for certification it would
be best to include both. Which brings us to the second problem: we did not want to copy
and paste the existing proof for match-rt, and then incorporate all the tiny modifications
that are required for match-rtb. Thus, in IsaFoR we defined an auxiliary relation covering all
of match, match-rt, and match-rtb, and formalized the main proof step only once.

Currently, CeTA always chooses match-rtb for non-collapsing S, and match-rt, otherwise—
the same as in current complexity tools.

5 Certifying Weak Dependency Pairs and Dependency Tuples

The dependency pair framework [9] is a popular setting for termination analysis. Since
dependency pairs (DPs for short) in their original definition are not suitable for ensuring
small (i.e., polynomial) derivation bounds [13], two variants have been developed. Hirokawa
and Moser [10] introduced weak dependency pairs (WDPs for short). In general however, one
cannot concentrate on counting WDP steps alone. Rather, one also has to take the number
of interleaved steps w.r.t. the original TRS into account. Overcoming this complication,
Noschinski et al. [15] introduced a variation, called dependency tuples (DTs for short). The
DT transformation is however only applicable to innermost problems and it is not complete,
so that (non-confluent) TRSs with polynomial complexity can be turned into complexity
problems of exponential complexity.

Both WDPs and DTs enjoy nice properties that enable us to restrict to usable rules and
limit the monotonicity requirements for reduction pairs, which we discuss later. Since the
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8 Certification of Complexity Proofs using CeTA

two techniques are incomparable but both used in modern complexity tools, we provide a
formalization of either in IsaFoR. To be more precise, we have formalized the corresponding
complexity processors of Avanzini and Moser [2], which—unlike DPs—allow us to apply
WDPs and DTs also to relative problems.

As a case study, we decided to perform two different styles of proof: For DTs, we stuck
more to the original paper proof, where parallel positions are used to point to subterms
that are potential redexes; while for WDPs, we instead focused on contexts around potential
redexes. The former requires us to reason about valid positions, whereas the latter makes
it necessary to explicitly manage properties of contexts. Although both paper proofs are of
comparable length, in our formalization the theories on WDPs are around 30% shorter than
those on DTs (see also DT_Transformation(_Impl) and WDP_Transformation(_Impl)).
We suspect that this is not mere coincidence, but caused by the fact that contexts can be
mostly treated via explicit recursive functions, while positions require a different style of
proof that is not as amenable to automation.

For the remainder of this section, we fix a runtime complexity problem 〈S/W,Q, T 〉 over
signature F . For each f ∈ F , let f ] be a function symbol fresh with respect to F . For a
term t we denote sharping its root symbol by ](t), where ](x) = x and ](f(t1, . . . , tn)) =
f ](t1, . . . , tn). Sharping is homomorphically extended to sets and lists of symbols and terms.

Weak Dependency Pairs

We start with our formalization of WDPs as defined by Hirokawa and Moser [10].

I Definition 9. Let R be a TRS with defined symbols D(R). For every rule `→ r ∈ R, let
WDP(` → r) denote the new rule ](`) → COM(](u1), . . . , ](un)), where u1, . . . , un are the
maximal subterms of r that are either variables or have a root symbol in D(R). Then the
weak dependency pairs of R are defined by WDP(R) = {WDP(`→ r) | `→ r ∈ R}.

In the above definition COM denotes a “function” that assigns fresh function symbols of
appropriate arity (a common optimization is to omit such symbols in case the argument list
is singleton, i.e., COM(t) = t) to a given list of terms. The thusly generated symbols are
called compound symbols. Note that Definition 9 implies that for each rule ` → r there is
a unique ground context C such that r = C[u1, . . . , un]. This is captured by the following
two functions:

capD(t) =
{
� if t ∈ V or root(t) /∈ C
f(capD(t1), . . . , capD(tn)) if t = f(t1, . . . , tn) and f ∈ C

maxD(t) =
{
t if t ∈ V or root(t) /∈ C
maxD(t1), . . . ,maxD(tn) if t = f(t1, . . . , tn) and f ∈ C

where C is a set of symbols—which is supposed to contain the compound symbols and the
constructors of S ∪W—that is disjoint from sharped F-symbols and the defined symbols of
S ∪W, i.e., (D(S ∪W) ∪ ](F)) ∩ C = ∅. Intuitively, maxD(t) results in the list of maximal
subterms of t that are either variables or have a root not in C (the latter usually implies that
the root is a defined symbol; hence the notation), whereas capD(t) computes the surrounding
context. Together these two functions constitute a unique decomposition of a given term t,
satisfying the property t = (capD(t))[maxD(t)].
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For certification we never actually have to construct the set of WDPs.3 Instead it suffices
to check whether a given pair of terms (p, q) constitutes a WDP for a given rule `→ r. This
is done via the predicate:

is-WDP(p, q)(`→ r) ←→ p = ](`)∧ (∃C. ground(C)∧Fun(C) ⊆ C ∧ q = C[](maxD(r))])

In preparation for later results, we somewhat ambiguously use WDP(R) for R ⊆ S ∪ W
to denote an arbitrary set of rules (to be provided by the certificate) that is obligated to
contain a WDP for each rule in R, i.e.,

∀`→ r ∈ R.∃(p, q) ∈WDP(R). is-WDP(p, q)(`→ r) (5)

The main ingredient for soundness of WDPs is a simulation lemma that states that
when two terms are in a certain relation, then every R-rewrite sequence starting from the
first term can be simulated by a WDP(R) ∪ R-rewrite sequence starting from the second
one. The mentioned relation is crafted to fit the definition of WDPs. Intuitively, it relates
terms whose respective maximal defined subterms (computed by maxD) only differ by sharp
symbols. We write s1, . . . , sn ≤] t1, . . . , tn when for each i ≤ n we have that either si = ti
or ](si) = ti. Then the informal statement from above can be formalized as follows.

I Definition 10. A term t is good for a term s, written t� s, if and only if Fun(s) ⊆ F and
there are terms t1, . . . , tn and a ground context C with Fun(C) ⊆ C such that maxD(s) ≤]

t1, . . . , tn and t = C[t1, . . . , tn].

We borrow the terminology good for from Avanzini [1], although the above definition
slightly differs from the original one. As indicated above, its intuition is that two related
terms have the same redexes (or rather an over-approximation, namely, subterms with de-
fined root) where in addition those in the left term may be sharped.

Before we state the main lemma, we give some useful properties of maxD.

I Lemma 11. Let t be a term with maxD(t) = t1, . . . , tn. Then:
1. If Fun(t) ⊆ F and maxD(t) ≤] u1, . . . , un, then maxD(ui) = ui for all i ≤ n.
2. If Fun(tσ) ⊆ F then maxD(tσ) ≤] maxD(](t1)σ), . . . ,maxD(](tn)σ).

In the main simulation lemma below, Q is extended to a set of terms Q′ taking extensions
of the signature F (by sharped and compound symbols) into account. In particular, the
assumption on Q′ ensures that innermost problems are translated to innermost problems,
thereby allowing a proof-in-progress to continue with techniques that are specific to the
innermost case. The following lemma shows that this does not pose any problems for
rewriting, where Q¬F = {f(t1, . . . , tn) | f /∈ F}.

I Lemma 12. Every term t with Fun(t) ⊆ F that is Q-normal is also Q′-normal for any
Q′ ⊆ Q ∪Q¬F .

Proof. Assume that t is not Q′-normal. Then t = C[`σ] for some C, σ, and ` ∈ Q′; thus
either ` ∈ Q, contradicting Q-normality, or ` ∈ Q¬F , contradicting Fun(t) ⊆ F . J

I Lemma 13. Let R ⊆ S ∪W and Q′ ⊆ Q ∪ Q¬F . If s Q−→R t and u � s then there is a
term v such that u Q

′
−−→WDP(R)∪R v and v � t.

3 Which allows us to avoid a tedious formalization of COM that would have to manage the generation
of fresh symbols using a state monad or similar concept.

RTA 2015
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Proof. From s Q−→R t we obtain ` → r ∈ R, σ, and C with s = C[`σ] and t = C[rσ].
Moreover, all proper subterms of `σ are Q-normal. Let s1, . . . , sn denote the result of
maxD(s). Since every redex has a defined root, and all subterms of s with defined root
are either contained in, or subterms of one of s1, . . . , sn, we further obtain a context D
such that si = D[`σ] for some i ≤ n. By Definition 10 and u � s, we get u1, . . . , un

with s1, . . . , sn ≤] u1, . . . , un and a ground context D′ such that u = D′[u1, . . . , un] and
Fun(D′) ⊆ C. Intuitively, it is easy to see that the above, together with Lemma 11(1),
implies maxD(u) = u1, . . . , un (although the corresponding formalization is somewhat te-
dious). Recall that s = (capD(s))[s1, . . . , sn] and the considered redex is a subterm of si,
thus t = (capD(s))[maxD(t)] with maxD(t) = s1, . . . ,maxD(D[rσ]), . . . , sn. Moreover, from
s1, . . . , sn ≤] u1, . . . , un we have ui = ](D[`σ]) ∨ ui = D[`σ] and thus proceed by case
analysis:

Assume ui = ](D[`σ]).
If D 6= �, then maxD(D[rσ]) = D[rσ] and capD(D[rσ]) = �. We define v =
(capD(u))[u1, . . . , ](D[rσ]), . . . , un]. Then, u Q′

−−→WDP(R)∪R v with the same rule
`→ r, justified by choosing the context (capD(u))[u1, . . . , ](D), . . . , un] and employing
Lemma 12. Then, v � t, by definition of v and maxD(t) ≤] u1, . . . , ](D[rσ]), . . . , un.
If D = �, then the WDP corresponding to ` → r is used. From (5), we obtain a
term q and a ground context E with (](`), q) ∈ WDP(R) and q = E[](maxD(r))].
Define v = (capD(u))[u1, . . . , qσ, . . . , un]. Then u Q

′
−−→WDP(R)∪R v as witnessed by u =

(capD(u))[u1, . . . , ](`)σ, . . . , un] → (capD(u))[u1, . . . , qσ, . . . , un] = v together with
Lemma 12 (and noting that u is a proper subterm of ](`)σ if and only if u is a proper
subterm of `σ). Moreover, let maxD(r) = r1, . . . , rk, Ej = capD(](rj)σ), and vj =
maxD(](rj)σ) for all j ≤ k. Hence, v � t, with E′ = (capD(u))[. . . , E[E1, . . . , Ek], . . .]
and observing that v = E′[u1, . . . , ui−1, v1, . . . , vk, ui+1, . . . , un] as well as maxD(t) ≤]

u1, . . . , ui−1, v1, . . . , vk, ui+1, . . . , un. The latter follows from maxD(rσ) ≤] v1, . . . , vk,
which in turn is a consequence of Lemma 11(2) above.

Assume ui = D[`σ]. Then we can again employ the original rule ` → r. Let E =
(capD(u))[. . . , capD(D[rσ]), . . .] and v = E[u1, . . . , ui−1,maxD(D[rσ]), ui+1, . . . , un]. We
conclude u Q

′
−−→WDP(R)∪R v and v � t in a similar fashion as in the previous case. J

At this point, we obtain a simulation property for relative rewriting as an easy corollary.

I Corollary 14. u� s Q−→n
S/W t implies u Q

′
−−→n

WDP(S)∪S/WDP(W)∪W v � t for some v.

I Theorem 15 (WDP Processor). Let P = 〈S/W,Q, T 〉 be a runtime complexity problem.
Then the WDP processor transforms P into P ′ = 〈WDP(S) ∪ S/WDP(W) ∪ W,Q′, ](T )〉
for an arbitrary Q′ ⊆ Q ∪Q¬F , and ` P ′ : G implies ` P : G.

Proof. Assume ` P ′ : g for some g ∈ G. Moreover, for the sake of a contradiction, assume
that there is a term s ∈ T of size n and a rewrite sequence s Q−→m

S/W t of length m > g(n).
Since s ∈ T , we have ](s) ∈ T ] and trivially ](s)� s. Moreover, by Corollary 14, we obtain
a term v with ](s) Q

′
−−→m

WDP(S)∪S/WDP(W)∪W v, thereby contradicting the initial complexity
judgment. J

I Remark. Note that when P is an innermost problem, by setting Q′ = Q∪ ](Q) the WDP
processor generates again an innermost problem. In contrast, Avanzini and Moser [1, 2] set
Q′ to Q, thereby not retaining the innermost status as claimed.
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Dependency Tuples

According to Theorem 15, we cannot focus on applications of weak dependency pairs in
WDP(S) alone, but also have to account for applications of rules from S. This may have se-
vere consequences for a proof-in-progress. In the case of reduction pairs for instance, rather
strict monotonicity requirements have to be imposed even after the WDP transformation.
DTs overcome this weaknesses, but the corresponding transformation is sound only on in-
nermost problems. In contrast to WDPs, which capture outermost calls, a DT captures all
calls in a rule. The following definition is due to Noschinski et al. [15].

I Definition 16. Let R be a TRS with defined symbols D(R). For every rule ` → r ∈ R,
let DT(` → r) denote the new rule ](`) → COM(](u1), . . . , ](un)), where u1, . . . un are all
subterms of r that have a root symbol in D(R). Then the dependency tuples of R are defined
by DT(R) = {DT(`→ r) | `→ r ∈ R}.

As for weak dependency pairs, our formalization uses a predicate to decide whether a
pair of terms (p, q) constitutes a dependency tuple of a rule `→ r. For a term t, let PosD(t)
denote the set of positions of subterms rooted by defined symbols of S ∪W.

is-DT(p, q)(`→ r) ←→
p = ](`) ∧

(
∃C p1 . . . pn.PosD(r) = {p1, . . . , pk} ∧ q = C[](r|p1), . . . , ](r|pn

)]
)
.

In the following, we use the notation DT(R) where R ⊆ S ∪W, for a set satisfying

∀`→ r ∈ R.∃(p, q) ∈ DT(R). is-DT(p, q)(`→ r) . (6)

In the remainder, we provide a simulation lemma akin to Lemma 13 for DTs. For a
term s, let RPos(s) denote the restriction of PosD(s) to redex-positions. More precisely,
RPos(s) = {q ∈ PosD(s) | ∃t. s|q Q−→S∪W t}. Closely following the proof by Avanzini [1], we
use the following notion of good for.

I Definition 17. A term t is good for a term s, written t≫ s, if and only if Fun(s) ⊆ F and
there is a context C such that t = C[](s|q1), . . . , ](s|qk

)] for positions {q1, . . . , qk} = RPos(s).

We now show that each R-derivation of length n can be simulated by a corresponding
derivation of DT(R) relative to R, of length n. In the proof of the central simulation lemma,
we use the following key observations.

I Lemma 18. Let R ⊆ S ∪ W. Suppose s Q−→R t is a step at redex position p with rule
`→ r. Abbreviate P = {pq | q ∈ PosD(r)} and Q = {q ∈ RPos(s) | q < p ∨ q || p}. Then:
1. If NF(Q) ⊆ NF(S ∪W) then RPos(t) ⊆ P ∪Q;
2. ](s|p) Q−→DT(R) C[](t|p1), . . . , ](t|pn

)] for some context C and {p1, . . . , pn} = P ;
3. ](s|q) Q−→∗R ](t|q) for all positions q ∈ Q.

I Lemma 19. Let R ⊆ S ∪W, suppose NF(Q) ⊆ NF(S ∪ W), and let Q′ ⊆ Q ∪ Q¬F . If
s Q−→R t and u≫ s, then there is a term v such that u Q

′
−−→∗R · Q

′
−−→DT(R) v and v≫ t.

Proof. Consider terms s, t and u with u≫ s Q−→R t. Let p denote the corresponding redex
position. Define a function f from positions in s to marked terms as follows: f(q) = ](t|q)
if q < p or q || p and f(q) = ](s|q) otherwise. Since u is good for s, by Definition 17 we
obtain a context C such that u = C[](s|q1), . . . , ](s|qk

)] for positions {q1, . . . , qk} = RPos(s).
From Lemma 18(3) and the definition of f we see that ](s|qi

) Q−→∗R f(qi) (i = 1, . . . , k) holds.
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Since Fun(sj) ⊆ F holds by assumption for all arguments of sj of ](s|qi
), with Lemma 12

we can refine these sequences to ](s|qi
) Q

′
−−→∗R f(qi) (i = 1, . . . , k).

Observe that p ∈ RPos(s), i.e. p = qi for some i ∈ {1, . . . , k}. In particular ](s|qi
) =

](s|p) = f(qi) by definition of f . Lemma 18(2) yields a context D such that f(qi) Q−→DT(R)
D[](t|p1), . . . , ](t|pn

)], and consequently f(qi) Q
′
−−→DT(R) D[](t|p1), . . . , ](t|pn

)], for positions
{p1, . . . , pn} = {pq | q ∈ PosD(r)}. Putting things together, we can thus construct a rewrite
sequence

C[](s|q1), . . . , ](s|qi), . . . , ](s|qk
)] Q

′
−−→∗R C[f(q1), . . . , f(qi), . . . , f(qk)]
Q′
−−→DT(R) C[f(q1), . . . , D[](t|p1), . . . , ](t|pn

)], . . . , f(qk)] .

Let v be the last term of this sequence. We claim that v is good for t. Abbreviate Q = {q ∈
RPos(s) | q < p ∨ q || p}. Observe that by Lemma 18(1), RPos(t) ⊆ Q ∪ {p1, . . . , pn} holds.
Since in particular Q ⊆ {q1, . . . , qi−1, qi+1, . . . qk} and f(q) = ](t|q) holds by definition of f
for all positions q ∈ Q, it is not difficult to see that v≫ t holds. J

The lemma is straightforward to generalize to Q-restricted relative rewrite sequences.

I Corollary 20. Suppose NF(Q) ⊆ NF(R∪S), and let Q′ ⊆ Q∪Q¬F . Then u≫ s Q−→n
S/W t

implies u Q
′
−−→n

DT(S)/DT(W)∪S∪W v≫ t for some v.

I Theorem 21 (DT Processor). Let P = 〈S/W,Q, T 〉 be an innermost runtime complexity
problem. Then the DT processor transforms P into P ′ = 〈DT(S)/DT(W)∪S ∪W,Q′, ](T )〉
for an arbitrary Q′ ⊆ Q ∪Q¬F , and ` P ′ : G implies ` P : G.

Proof. Soundness follows from Corollary 20, by reasoning similar to Theorem 15. J

Whenever WDPs or DTs are employed in a complexity proof, CeTA requires a clear
indication which of the two methods has been applied. Moreover, the set of all WDPs (or
DTs) has to be provided, as well as the extension of the strategy component: Q′ \ Q. All
other information is computed by CeTA, e.g., the set of compound symbols, renaming of
variables, etc.

6 Usable Rules and Usable Replacement Maps

Computing usable rules is a simple syntactic technique for innermost termination; detecting
that certain rules can never be applied in derivations starting from a given set of terms, and
may thus be discarded. While for termination analysis, we start from right-hand sides of
dependency pairs (instantiated by normal form substitutions); for complexity analysis, we
employ the corresponding set of starting terms. Existing results on innermost usable rules
for termination analysis made it quite easy to integrate usable rules for complexity analysis
into IsaFoR, cf. Usable_Rules_Complexity(_Impl) and Usable_Replacement_Map(_Impl).

Avanzini [1, Def. 14.44] as well as Hirokawa and Moser [10, Def. 14] define usable rules
via usable symbols. Our formalization simplifies and generalizes both definitions.

I Definition 22. Let the set of starting terms T be included in T (F ′,V). We define US
to be a set of usable symbols and U a set of usable rules for S/W w.r.t. T , if the following
three conditions are satisfied..
F ′ ⊆ US
whenever `→ r ∈ S ∪W and Fun(`) ⊆ US, then `→ r ∈ U , and
whenever `→ r ∈ U then Fun(r) ⊆ US.
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We believe the above definition to be simpler than previous ones, since we avoid reflexive
transitive closures and do not distinguish between dependency pairs and other rules. Still,
it is easy to check that Definition 22 simulates previous definitions, by choosing US =
F ′ ∪Fun(U), where U is the set of usable rules as defined by Avanzini [1] and Hirokawa and
Moser [10]. Moreover, Definition 22 is a generalization of the former, since all symbols of
left-hand sides are considered, as opposed to just root symbols.

I Example 23. Let S ∪ W = {f](g) → f](f(g)), g] → com, f(g) → f(f(g)), g → a} and
T = BT({f], g]}, {a},V). Then according to [1, 10] all rules are usable, whereas Definition 22
allows us to use F ′ = {f], g], a}, US = {f], g], a, com}, and U = {g] → com}.

For soundness of usable rules it is easy to prove that every derivation starting from T
does only contain terms in T (US,V). Hence we can remove all non-usable rules.

I Theorem 24. If U is a set of usable rules for S/W w.r.t. T , then ` 〈S∩U/W∩U ,Q, T 〉 : G
implies ` 〈S/W,Q, T 〉 : G.

The whole formalization of this theorem via usable symbols, including definitions, occu-
pies only 100 lines, without having to reuse existing results on usable rules in IsaFoR. This is
in contrast to IsaFoR’s integration of the variant of usable rules used in AProVE, cf. the end of
Section 5.1 in [15]. Here, usable rules are based on unification and normal form checks, but
only work for innermost rewriting. In this part of the formalization, we heavily reused the
existing results for termination, and only little had to be added w.r.t. complexity analysis.
As an example, for complexity with its relative rewrite relation, it was required to switch
between a sequence of S/W-steps and a sequence that explicitly lists every single step in
each relative →∗W · →S · →∗W -step.

Since both variants of usable rules are incomparable, CeTA supports both. The certificate
just requires the set of usable rules. It is then automatically inferred which of the two
variants of usable rules is applicable.

Even less usable rules are obtained when employing argument filters from reduction
pairs, a well-known technique from termination analysis. This technique has already been
adapted for complexity, but we did not find any details in the literature. Thus, in the
remainder of this section, we clarify how usable rules, reduction pairs, argument filters,
and usable replacement maps can be combined. The upcoming theorem generalizes and
improves existing complexity results on reduction pairs ([1, Thm. 14.10], [11, Cor. 20], and
[15, Thm. 26]), since usable replacement maps can simulate safe reduction pairs of [11], cf.
[1, Lemma 14.34].

Before presenting the main theorem, we first recapitulate the notion of usable replace-
ment maps ([1, Def. 14.5] and [11, Def. 8]). These mainly indicate a superset of all positions
where redexes may occur within terms of a derivation. To be more precise, for a replacement
map µ, two TRSs R and R′, and two sets of terms Q and T ; µ is a usable replacement map
(written URM(µ,Q,R, T ,R′)), if for all t ∈ T and t Q−→∗R s, all redexes of s w.r.t. Q−→R′ are
at µ-replacing positions of s.

Sufficient criteria to estimate usable replacement maps have been described in [11] for
full and innermost rewriting, and in [1, Lemma 14.34] for WDPs and DTs, where currently
CeTA only supports innermost rewriting, WDPs and DTs.

We will first present the main theorem, and then explain its ingredients and how to apply
it. Here, a complexity pair (�,%) consists of two partial orders which are both closed under
substitutions, which are compatible (% · � · % ⊆ �) and where % is reflexive. A reduction
pair is a complexity pair where % is closed under contexts and � is strongly normalizing.
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14 Certification of Complexity Proofs using CeTA

I Theorem 25. Let 〈S/W,Q, T 〉 be an innermost runtime complexity problem with T =
BT(D, C,V). Define R = S ∪ W. Let µS , µW be replacement maps, let π be an argument
filter, let U be a set of usable rules, and let (�,%) be a complexity pair. If all of the following
conditions are satisfied, then ` 〈S/W,Q, T 〉 : G.
1. Whenever i /∈ π(f), then % ignores the i-th argument of f .
2. Both URM(µS ,Q,R, T ,S) and URM(µW ,Q,R, T ,W).
3. Whenever i ∈ µS(f) (µW(f)), then � (%) is monotone in the i-th argument of f .
4. S ∩ U ⊆ � and W ∩ U ⊆ %.
5. If `→ r ∈ P and ` ∈ T then `→ r ∈ U .
6. U is closed under right-hand sides of usable rules w.r.t. R for both µS and π ∩ µW .
7. ` 〈�/∅,∅, T 〉 : G

In the theorem, we have two replacement maps µS and µW for the strict and weak rules
as in [1, Thm. 14.10], but additionally there is the usual argument filter π indicating ignored
argument positions of % which is used to reduce the set of usable rules. Let us shortly walk
through all conditions of the theorem.
1. π is the standard argument filter as known from termination proofs via reduction pairs,

e.g., if [f(x1, x2, x3)] = 2x2 + 1
2x3, then π(f) = {2, 3}.

2. Both µS and µW are estimated usable replacement maps, which can be computed by
one of the methods above, where especially [1, Lemma 14.34] is often only applicable to
generate µS .

3. The maps µS and µW indicate at which positions redexes may occur, and hence the
corresponding orders � and % must be monotone w.r.t. these positions.

4. Only usable rules have to be oriented by the complexity pair.
5. In the generation of usable rules, one starts to include all rules which have basic terms

on their left-hand sides
6. and then performs the closure of usable rules w.r.t. an argument filter as in [16].
7. Finally, one extracts the derivation bound from the strict order �, and eventually derives

the same bound for the input complexity problem.

We included this theorem into CeTA, where in the certificate just the complexity pair
and the usable rules have to be provided, in combination with the strict rules for the split
processor of Theorem 2. Since currently IsaFoR only has an interface for reduction pairs the
latter condition in 3 does not have to be checked at runtime. All other information will be
automatically inferred. To this end, we had to modify our interface of reduction pairs which
now has to provide means of querying monotonicity of � w.r.t. specific positions.

Using this theorem, CeTA could now certify most combinations of applying a complexity
pair with usable rules and/or usable replacement maps in our experiments. Possible im-
provements at this point are the inclusion of better estimations of usable replacement maps,
and better support for the complexity pairs itself, e.g., by removing the restriction to upper
triangular matrix interpretations.

7 Experiments

We have tested our new formalization in combination with the only two complexity tools
that apply several of the methods described in this paper: AProVE [8] (version 2015.01) and
TCT [2] (version 2.2). Both were run on the termination problem data base, version 9.0.2,4

4 The TPDB is available at http://termcomp.uibk.ac.at/.



M. Avanzini and C. Sternagel and R. Thiemann 15

Full Rewriting Innermost Rewriting
TCT TCT AProVE

certification full certification full certification full
new old new old new

constant 0 0 18 0 0 38 1 53
linear 134 67 182 234 117 278 159 249

quadratic 165 107 201 291 157 341 250 350
cubic 165 110 202 299 160 354 283 387

polynomial 165 110 203 301 160 361 283 387
Table 1 Experimental Results

which was also used for the complexity category of the FLoC Olympic Games of 2014. All
tests were conducted on a machine with 8 dual core AMD Opteron™ 885 processors running
at 2.60GHz on 64Gb of RAM and within a timeout of 60 seconds per test.

Table 1 collects our experimental findings.Here we show totals on estimated upper bounds
(from constant to polynomial of unknown degree) on runtime complexities w.r.t. full and
innermost rewriting, the former being only supported by TCT. To delineate the extend of
our new formalization, we have compared the tools when run in various modes:

In certification mode (columns certification new) we restrict tools to those methods that
can also be certified by CeTA version 2.19. We contrast this data with results obtained
from the version of TCT that ran in certification mode at the recent termination competi-
tion (columns certification old). Note that until now, AProVE did not feature certification
support, consequently respective results are not present in the table.
In full mode (columns full) we show totals when tools are run in their default setting,
i.e., possibly employing methods that cannot be certified by CeTA.

Overall, the experiments confirm significant improvements of CeTA’s support for complex-
ity analysis. For instance with TCT we certified polynomially bounded innermost runtime
complexity of 301 systems. This corresponds to 83% of the systems that can be handled by
TCT when run in full mode. In contrast, relying on our old formalization TCT could handle
only 44% of the systems. The statement remains essentially correct for AProVE and TCT
w.r.t. full rewriting.

Even more important might have been our preliminary experiments, where several proofs
have been rejected by CeTA. Although the reason have often just been bugs in the proof-
output of the tools, we also revealed and fixed (or at least reported to the developers) some
more severe problems: one tool modified the sets D and C in the set of starting terms
T = BT(D, C,V) when deleting rules by the usable rules processor in a way that made the
tool unnecessarily weak (and unsound for lower complexity bounds); one tool had a bug when
computing usable rules which could be exploited to generate linear derivation bounds for
non-terminating TRSs; and also some match-bounds certificates have been rejected where
the corresponding code had to be disabled. Finally, also the required adaptation of Q to
Q′ ⊆ Q∪Q¬F , as discussed in Section 5, was only detected by earlier versions of CeTA which
did not support this possibility.

Conclusion. We presented our formalization of several techniques for complexity analysis
that are now part of the formal library IsaFoR: match-bounds, weak dependency pairs, de-
pendency tuples, usable rules, and usable replacement maps. Moreover, we reported on the
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resulting increase in power of our certifier CeTA, which is now able to certify more than three
quarters of all complexity proofs that are generated by state-of-the-art tools.
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A URMs for termination and AProVE’s approximation of URMs

In the meantime we have also formalized how URMs can be used for innermost DP problems.
Here, in contrast to the usual rule removal, the strict order does not have to be monotone
in all arguments.

I Theorem 26. Let (P,Q,R) be an innermost DP problem where Pd and Rd should be
deleted. Let (%,�) be a reduction pair. Let µ be a usable-replacement map for the DP
problem, i.e., URM(µS ,Q,R, {t · σ},Rd) for all s → t ∈ P and Q-normal substitutions σ.
Let
Pd ∪Rd ⊆ �
P \ Pd ⊆ � ∪%
R \Rd ⊆ %
� is monotone in all positions specified by µS .

Then the processor which replaces (P,Q,R) by (P \ Pd,Q,R \Rd) is sound.
(Observe that it might not suffice to demand R \ Rd ⊆ � ∪ % since then there is not

necessarily monotonicity: for % we have monotonicity everywhere and only for Rd we have
monotonicity of �.)
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AProVE already uses this processor since some years, and its approximation of a URM is
described in http://www0.cs.ucl.ac.uk/staff/C.Fuhs/papers/JAR11-induction.pdf,
Section 5.1. However, what is interesting, is that some of the corresponding proofs have
been rejected by previous versions of CeTA, since the computed URM’s of AProVE are more
precise than those that are described in [11] and in the work of Mirtha-Lina Fernandez:
”Relaxing monotonicity for innermost termination”. This precision might also be useful in
TCTand the complexity part of AProVE!

I Example 27. Consider the proof given in file examples/urm_termination.html. In step
(26), AProVE does not enforce that s is monotone in its argument. This is in contrast to
the µi approximation in [11] which enforces this constraint. The CPF proof is provided in
examples/urm_termination.xml.

I Definition 28 (AProVE-version of URM, reformulating almon to replacement maps µapprox,
replaced symbols f by specific rules `→ r, integrated icap). Fix some TRS R.

Define US(t) as (an over-approximation of) the set of usable rules of t, i.e., all rules which
can occur in R-innermost derivations when starting from tσ for some substitution σ such
that Sσ ⊆ NF(Q). (This might be based on symbols or on icap or whatever)

Let I be a set of triples of term-sets and terms and rules, where each (S, t, ` → r) ∈ I
indicates that we are interested in whether instances tσ (such that Sσ are normal forms)
trigger an application of rule `→ r. We define an according replacement map µI and approx
inductively:

(S, t, `→ r) ∈ I =⇒ (S, t, `→ r) ∈ approx

and

(S, f(t1, . . . , tn), `→ r) ∈ approx
=⇒ `′ → r′ ∈ R
=⇒ mgu(`′, f(icap(t1), . . . , icap(tn))) = σ

=⇒ Sσ ∪ args(`′σ) ⊆ NF(Q)

=⇒ `→ r ∈ Uargs(`′)(r′)
=⇒ (args(`′), r′, `→ r) ∈ approx

and

(S, f(t1, . . . , tn), `→ r) ∈ approx
=⇒ `→ r ∈ US(ti)
=⇒ i ∈ µI(f) ∧ (S, ti, `→ r) ∈ approx

I Lemma 29 (Lemma 14 in JAR reformulated and generalized). Let Sσ ⊆ NF(Q), V(S) ⊇
V(t), and tσ Q−→∗ C[`δ] Q−→ C[rδ] be an innermost derivation for a rule ` → r ∈ R. Let
(S, t, `→ r) ∈ I. Then `δ is at an µI replacing position of C[`δ].

I Corollary 30. Let R be a TRS and NF(Q) ⊆ NF(R). Let S ⊆ R be a set of rules which
should be deleted (or shifted to the weak component).

For complexity proofs over T = BT(D, C,V) (where D might be a set of sharp symbols
and R might include DTs or WDPs) and strict rules S ⊆ R, define

I = {({x1, . . . , xn}, f(x1, . . . , xn), `→ r) | f ∈ D, `→ r ∈ S}.
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Then URM(µI ,Q,R, T ,S).
For termination proofs with DPs P, define

I = {({s}, t, `→ r) | s→ t ∈ P, `→ r ∈ S}.

Then URM(µI ,Q,R, {tσ},S) for every s→ t ∈ P where sσ ∈ NF(Q).

All results have already been formalized in IsaFoR and are accessible in CeTA (version
682405863b25).

TODO: integrate in TCTand AProVE (complexity part) and perform experiments.
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