Discrete Geodesics and Cellular Automata

Abstract : This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation—as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length.
Type de document :
Communication dans un congrès
Theory and Practice of Natural Computing, Dec 2015, Mieres, Spain. 2015, 〈10.1007/978-3-319-26841-5_11〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01252131
Contributeur : Gilles Dowek <>
Soumis le : jeudi 7 janvier 2016 - 11:45:52
Dernière modification le : vendredi 25 mai 2018 - 12:02:06
Document(s) archivé(s) le : vendredi 8 avril 2016 - 13:19:37

Fichiers

perihelion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pablo Arrighi, Gilles Dowek. Discrete Geodesics and Cellular Automata. Theory and Practice of Natural Computing, Dec 2015, Mieres, Spain. 2015, 〈10.1007/978-3-319-26841-5_11〉. 〈hal-01252131〉

Partager

Métriques

Consultations de la notice

412

Téléchargements de fichiers

114