Discrete Geodesics and Cellular Automata

Abstract : This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation—as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length.
Type de document :
Communication dans un congrès
Theory and Practice of Natural Computing, Dec 2015, Mieres, Spain. 2015, 〈10.1007/978-3-319-26841-5_11〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01252131
Contributeur : Gilles Dowek <>
Soumis le : jeudi 7 janvier 2016 - 11:45:52
Dernière modification le : vendredi 25 mai 2018 - 12:02:06
Document(s) archivé(s) le : vendredi 8 avril 2016 - 13:19:37

Fichiers

perihelion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Pablo Arrighi, Gilles Dowek. Discrete Geodesics and Cellular Automata. Theory and Practice of Natural Computing, Dec 2015, Mieres, Spain. 2015, 〈10.1007/978-3-319-26841-5_11〉. 〈hal-01252131〉

Partager

Métriques

Consultations de la notice

439

Téléchargements de fichiers

131