Hungarian Scaling of Polynomial Eigenproblems

Marianne Akian 1, 2 Stephane Gaubert 1, 2 Andrea Marchesini 2, 1 Françoise Tisseur 3
2 MAXPLUS - Max-plus algebras and mathematics of decision
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : We study the behaviour of the eigenvalues of a parametric matrix polynomial P in a neighbourhood of zero. If we suppose that the entries of P have Puiseux series expansions we can build an auxiliary matrix polynomial Q whose entries are the leading exponents of those of P. We show that preconditioning P via a diagonal scaling based on the tropical eigenvalues of Q can improve conditioning and backward error of the eigenvalues.
Type de document :
Communication dans un congrès
SIAM Conference on Applied Linear Algebra (SIAM LA), Oct 2015, Atlanta, United States. 〈http://www.siam.org/meetings/la15/〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01252398
Contributeur : Marianne Akian <>
Soumis le : jeudi 7 janvier 2016 - 15:13:15
Dernière modification le : jeudi 12 avril 2018 - 01:49:41

Identifiants

  • HAL Id : hal-01252398, version 1

Citation

Marianne Akian, Stephane Gaubert, Andrea Marchesini, Françoise Tisseur. Hungarian Scaling of Polynomial Eigenproblems . SIAM Conference on Applied Linear Algebra (SIAM LA), Oct 2015, Atlanta, United States. 〈http://www.siam.org/meetings/la15/〉. 〈hal-01252398〉

Partager

Métriques

Consultations de la notice

286