
HAL Id: hal-01252400
https://inria.hal.science/hal-01252400

Submitted on 7 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-level checkpointing and partial verifications for
linear task graphs

Anne Benoit, Aurélien Cavelan, Yves Robert, Hongyang Sun

To cite this version:
Anne Benoit, Aurélien Cavelan, Yves Robert, Hongyang Sun. Two-level checkpointing and partial ver-
ifications for linear task graphs. 6th International Workshop in Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS15), Nov 2015, Austin, TX, United
States. �hal-01252400�

https://inria.hal.science/hal-01252400
https://hal.archives-ouvertes.fr


Two-level checkpointing and partial verifications
for linear task graphs

Anne Benoit1, Aurélien Cavelan1, Yves Robert1,2, Hongyang Sun1

1. Ecole Normale Superieure de Lyon and Inria, France
2. University of Tennessee Knoxville, USA

ABSTRACT
Fail-stop and silent errors are unavoidable on large-scale
platforms. Efficient resilience techniques must accommo-
date both error sources. A traditional checkpointing and
rollback recovery approach can be used, with added veri-
fications to detect silent errors. A fail-stop error leads to
the loss of the whole memory content, hence the obligation
to checkpoint on a stable storage (e.g., an external disk).
On the contrary, it is possible to use in-memory checkpoints
for silent errors, which provide a much smaller checkpoint
and recovery overhead. Furthermore, recent detectors offer
partial verification mechanisms, which are less costly than
guaranteed verifications but do not detect all silent errors.
In this paper, we show how to combine all these techniques
for HPC applications whose dependence graph is a chain of
tasks, and provide a sophisticated dynamic programming al-
gorithm returning the optimal solution in polynomial time.
Simulations demonstrate that the combined use of multi-
level checkpointing and partial verifications further improves
performance.

1. INTRODUCTION
Resilience is one of the major challenges for extreme-scale

computing. In particular, several types of errors should be
considered. In addition to classical fail-stop errors (such as
hardware failures), silent errors, also known as silent data
corruptions, constitute another threat that cannot be ig-
nored any longer [11, 14, 13, 10]. In order to deal with both
types of errors, a traditional checkpointing and rollback re-
covery strategy can be used [8], coupled with a verification
mechanism to detect silent errors [9].

Because verification mechanisms may be costly, alterna-
tive techniques capable to rapidly detect silent errors, with
the risk of missing some errors, have been recently developed
and studied [2, 7]. We call such verifications partial ver-
ifications, while perfect verifications (no error missed) are
guaranteed verifications. Furthermore, rather than check-
pointing only on stable storage, a lightweight mechanism of
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in-memory checkpoints can be provided: one keeps a local
copy of the data that has not been corrupted when a silent
error stroke, and can therefore be used to recover rapidly.
However, such local copies are lost if a fail-stop error oc-
curs, and hence copies on stable storage (i.e., classical disk
checkpoints) must also be provided.

Combining all these approaches is challenging even for a
simplified, yet realistic, application framework, consisting
for instance of a set of application workflows exchanging
data at the end of their executions. Such a framework can
be modeled as a task graph whose dependences follow a lin-
ear chain. This scenario corresponds to an HPC application
whose workflow is partitioned into a succession of (typically
large) tightly-coupled computational kernels, each of them
being identified as a task. At the end of each task, we can
perform either a partial or a guaranteed intermediate ver-
ification of the task output; or, likely less frequently, we
can perform a guaranteed verification followed by a memory
checkpoint (we do not take the risk of storing a corrupted
checkpoint, hence the need for a guaranteed verification); or
again, likely even less frequently, we can perform a guaran-
teed verification, a memory checkpoint and a disk checkpoint
in a row.

The main contribution of this paper is to provide a so-
phisticated dynamic programming algorithm that returns
the optimal solution, i.e., the solution that minimizes the
expected execution time. The originality is that we com-
bine both types of verifications and both types of check-
points. Furthermore, we present extensive simulations that
demonstrate the usefulness of mixing these techniques, and
in particular we demonstrate the gain obtained thanks to
multi-level checkpointing.

To the best of our knowledge, the interplay of verifica-
tion mechanisms with two types of checkpoints, in-memory
and disk-based, has never been investigated for task graphs.
Our previous work [5] considers linear chains with a single
checkpoint type and guaranteed verifications (for the record,
the pioneering paper [12] for linear chains only dealt with
a single checkpoint type and no verification). The closest
work to this paper is our recent work [6] for divisible ap-
plications, where we address the same combined framework
(with two error sources, two checkpoint types and two veri-
fication types); however, in [6], we target long-lasting execu-
tions that are partitioned into periodic patterns that repeat
over time, and we compute the best pattern up to first-order
approximations. Here we do not have the flexibility of divis-
ible applications, since we insert resilience mechanisms only
at the end of the execution of a task. We may well have



a limited number of tasks, which prevents the use of any
periodic strategy. Instead, we use a completely different ap-
proach and design (quite involved) dynamic programming
algorithms that provide the optimal solution for any linear
task graph. We detail the model in Section 2, before giving
the dynamic programming algorithm in Section 3 and pro-
viding simulation results in Section 4. Finally, we conclude
in Section 5.

2. MODEL
We consider a chain of tasks T1, T2, . . . , Tn, where each

task Ti has a weight wi corresponding to tits computational
load. Furthermore, we assume that hardware faults (fail-
stop errors) and silent data corruptions (silent errors) co-
exist, as motivated in Section 1. Since these two types of
errors are caused by different sources, we assume that they
are independent and that both occurrences follow a Pois-
son process with arrival rates λf and λs, respectively. The
probability of having at least a fail-stop error during a com-
putation of length w is given by pf (w) = 1−e−λfw and that
of having at least a silent error during the same computation
is ps(w) = 1− e−λsw.

To deal with both fail-stop and silent errors, resilience
is provided through the use of a two-level checkpointing
scheme coupled with an error detection (or verification) mech-
anism. When a fail-stop error strikes, the computation is
interrupted immediately due to a hardware fault, so all the
memory content is destroyed: we then recover from the last
disk checkpoint or start again at the beginning of the ap-
plication. On the contrary, when a silent error is detected,
either by a partial verification or by a guaranteed one, we
roll back to the nearest memory checkpoint, and recover
from the memory copy there, which is much cheaper than
recovering from the last disk checkpoint.

We enforce that a memory checkpoint is always taken im-
mediately before each disk checkpoint. This can be done
with little overhead and it has been enforced in some prac-
tical multi-level checkpointing systems [4]. Also, a guar-
anteed verification is always taken immediately before each
memory checkpoint, so that all checkpoints are valid (both
memory and disk checkpoints), and hence only one memory
checkpoint and one disk checkpoint need to be maintained at
any time during the execution of the application. Further-
more, we assume that errors only strike the computations,
while verifications, memory copies, and I/O transfers are
protected from failures.

Let CD denote the cost of disk checkpointing, CM the cost
of memory checkpointing, RD the cost of disk recovery, and
RM the cost of memory recovery. Recall that when a disk
recovery is done, we also need to restore the memory state.
For simplicity, we assume that the cost RM is included in
the cost RD. Also, let V ∗ denote the cost of guaranteed
verification and V the cost of a partial verification. The
partial verification is also characterized by its recall, which
is denoted by r and represents the proportion of detected
errors over all silent errors that have occurred during the
execution. For notational convenience, we define g = 1 − r
to be the proportion of undetected errors. Note that the
guaranteed verification can be considered as one with recall
r∗ = 1. Since a partial verification usually incurs a much
smaller cost yet has a reasonable recall [2, 7], it is highly
attractive for detecting silent errors, and we make use of
them between guaranteed verifications.

Finally, the objective is to decide where to place disk
checkpoints, memory checkpoints, guaranteed verifications
and partial verifications, in order to minimize the expected
execution time of the application.

3. DYNAMIC PROGRAMMING
The goal is to find which task to verify, which task to

checkpoint, and also which type of verification or checkpoint
to perform, in order to minimize the expected execution time
of the task chain. To solve this problem, we have derived a
sophisticated multi-level dynamic programming algorithm.
Recall that we assume that a memory checkpoint always
comes with a guaranteed verification to ensure that the re-
sults are correct, and that a disk checkpoint always comes
with a memory checkpoint, as motivated in Section 2. For
convenience, we add a virtual task T0, which is checkpointed
on disk (and hence on memory), and whose recovery cost is
zero. This accounts for the fact that it is always possible
to restart the application from scratch at no extra cost. We
first describe in Section 3.1 the general scheme when adding
only guaranteed verifications, memory checkpoints and disk
checkpoints. We then show how to extend this dynamic pro-
gramming algorithm to partial verifications in Section 3.2.

3.1 Without partial verifications
Figure 1 illustrates the idea of the general algorithm with-

out using partial verifications. The algorithm contains three
dynamic programming levels, which are responsible for plac-
ing disk checkpoints, memory checkpoints, and guaranteed
verifications, respectively, and an additional step to compute
the expected execution time between any two verifications.
The following describes each step of the algorithm in detail.

Placing disk checkpoints. The first level focuses on
placing disk checkpoints. Let the function Edisk(d2) denote
the expected time needed to successfully execute all the tasks
from T1 to Td2 , where task Td2 is verified and checkpointed
on both disk and memory. In this function, we try all pos-
sible locations for the last checkpoint before Td2 . For each
possible location d1, we call the function recursively on d1
(to place disk checkpoints before Td1), and we add the ex-
pected time needed to execute the tasks from Td1+1 to Td2 .
This is done through the Emem(d1, d2) function, which also
decides where to place memory checkpoints, and accounts
for the cost of memory checkpoints. The cost of the disk
checkpoint CD is finally added after Td2 . Note that a lo-
cation d1 = 0 means that no further disk checkpoints are
added. In this case, we simply let Edisk(0) = 0, which ini-
tializes the dynamic program. We can express Edisk(d2) as
follows:
Edisk(d2) = min

0≤d1<d2
{Edisk(d1) + Emem(d1, d2) + CD}.

The total expected time needed to execute all the tasks T1

to Tn is given by Edisk(n).

Edisk(d2)

Emem(d1,m2)

Everif (d1,m1, v2)

E(d1,m1, v1, v2)

d0 d1 d2m1 m2v1 v2

Figure 1: Without partial verifications.



Placing memory checkpoints. The second level aims
at placing additional memory checkpoints between two disk
checkpoints. The function is first called from the first level
between two disk checkpoints, each of which also comes with
a memory checkpoint. We define Emem(d1,m2) as the ex-
pected time needed for successfully executing all the tasks
from Td1+1 to Tm2 , where there is a disk checkpoint at the
end of task Td1 , a memory checkpoint at the end of task Tm2 ,
and no other disk checkpoints. Note that there might be a
disk checkpoint after Tm2 , for instance when we first call
this function, but we do not account for the cost of this disk
checkpoint in Emem, only for the cost of the memory check-
point (the cost of the disk checkpoint is already accounted
for in Edisk). As before, we try all possible locations for the
last memory checkpoint between tasks Td1 and Tm2 . For
each possible location m1, we call the function recursively
on tasks Td1 to Tm1 , and then call the function for the next
level, Everif (d1,m1,m2), which computes the expected time
needed to execute the tasks from Tm1+1 to Tm2 (and decides
where to place verifications). Finally, we add the cost of
the memory checkpoint CM following Tm2 . We can express
Emem(d1,m2) as follows:

Emem(d1,m2) =

min
d1≤m1<m2

{Emem(d1,m1) + Everif (d1,m1,m2) + CM}.

If m1 = d1, there is no extra memory checkpoint between
d1 and m2, and therefore we initialize the dynamic program
with Emem(d1, d1) = 0.

Placing additional verifications. The third level looks
for where to insert additional verifications between two tasks
with memory checkpoints. The function is first called from
the second level between two memory checkpoints, each of
which also comes with a verification. Therefore, we define
Everif (d1,m1, v2) as the expected time needed for success-
fully executing all the tasks from Tm1+1 to Tv2 , knowing
that the last memory checkpoint is after Tm1 , the last disk
checkpoint is after Td1 , and there are no checkpoints between
Tm1+1 and Tv2 . Note that Everif (d1,m1, v2) accounts only
for the time required to execute and verify these tasks. As
before, we try all possible locations for the last verification
between Tm1 and Tv2 , and for each possible location v1,
we call the function recursively on tasks Tm1 to Tv1 . Fur-
thermore, we add the expected time needed to successfully
execute the tasks Tv1+1 to Tv2 , denoted by E(d1,m1, v1, v2),
knowing the position of the last disk checkpoint d1 and the
position of the last memory checkpoint m1. We express
Everif (d1,m1, v2) as follows:

Everif (d1,m1, v2) =

min
m1≤v1<v2

{Everif (d1,m1, v1) + E(d1,m1, v1, v2)}. (1)

Again, the case v1 = m1 means that no further verifica-
tions are added, so we initialize the dynamic program with
Everif (d1,m1,m1) = 0. The verification cost at the end
of Tv2 is accounted for in the function E(d1,m1, v1, v2).

Computing the expected execution time between
two verifications. Finally, to compute the expected time
needed for successfully executing several tasks between two
verifications, we need the position of the last disk check-
point d1, the position of the last memory checkpoint m1,
and the positions of the two verifications v1 and v2. We de-
fine Wv1,v2 =

∑v2
k=v1+1 wk as the error-free time to execute

tasks Tv1+1 to Tv2 . On the one hand, if a fail-stop error oc-
curs with probability pf (Wv1,v2), then the execution stops
and we must recover from the last disk checkpoint. In this
case, we lose T lost(Wv1,v2) time, pay the cost of recovery
RD (set to 0 if d1 = 0), and re-execute the tasks starting
from Td1 . The re-execution is done in three steps. First, we
call Emem(d1,m1) to compute the expected time needed to
re-execute the tasks from the last disk checkpoint after Td1
to the last memory checkpoint after Tm1 . Then, we call the
function Everif (d1,m1, v1) to account for the time needed
to re-execute the tasks between the last memory checkpoint
after Tm1 to the next verification after Tv1 . Finally, we re-
execute tasks Tv1+1 to Tv2 with E(d1,m1, v1, v2).

On the other hand, with probability 1−pf (Wv1,v2), there
is no fail-stop error. In this case, we pay Wv1,v2 by executing
all the tasks from Tv1+1 to the next verification after Tv2 .
Then we add the cost of the guaranteed verification V ∗.
After the verification, there is a probability ps(Wv1,v2) of
detecting a silent error. If a silent error is detected, we can
recover from the last memory checkpoint with a cost RM
(set to 0 if m1 = 0), and only re-execute the tasks from
there by calling the function Everif (d1,m1, v1) followed by
E(d1,m1, v1, v2), as before. Therefore:

E(d1,m1, v1, v2) =

pf (Wv1,v2)
(
T lost(Wv1,v2) +RD + Emem(d1,m1)

+ Everif (d1,m1, v1) + E(d1,m1, v1, v2)
)

+
(

1− pf (Wv1,v2)
)(

Wv1,v2 + V ∗ + ps(Wv1,v2)
(
RM

+ Everif (d1,m1, v1) + E(d1,m1, v1, v2)
))
. (2)

In order to compute the expected execution time, we need
to compute T lost(Wv1,v2), which is the expected time loss
due to a fail-stop error occurring during the execution of
tasks Tv1+1 to Tv2 . It can be expressed as (see [?] for the
details):

T lost(Wv1,v2) =
1

λf
− Wv1,v2

eλfWv1,v2 − 1
. (3)

Now, substituting T lost(Wv1,v2) into Equation (2) and sim-
plifying, we obtain:

E(d1,m1, v1, v2) = eλsWv1,v2

(
eλfWv1,v2 − 1

λf
+ V

)
+ eλsWv1,v2

(
eλfWv1,v2 − 1

)
(RD + Emem(d1,m1))

+
(
eλsWv1,v2 eλfWv1,v2 − 1

)
Everif (d1,m1, v1)

+
(
eλsWv1,v2 − 1

)
RM .

Complexity. The complexity is dominated by the compu-
tation of the table Everif (d1,m1, v2), which contains O(n3)
entries, and each entry depends on at most n other entries
that are already computed. All tables are computed in a
bottom-up fashion, from the left to the right of the intervals.
Hence, the overall complexity of the algorithm is O(n4).

3.2 With partial verifications
It may be beneficial to further add partial verifications be-

tween two guaranteed verifications. The intuitive idea would
be to add yet another level to the dynamic programming



algorithm, and to replace E(d1,m1, v1, v2) in Equation (1)

by a call to a function E
(intuitive)
partial (d1,m1, v1, p2, v2), with

p2 = v2, which would compute the expected time needed
to execute all the tasks from Tv1+1 to Tp2 and add further
partial verifications (computed from the left to the right).

However, the problem becomes much harder with partial
verifications. The main reason is that when computing an
interval between two partial verifications, there is a proba-
bility g that the error remains undetected after the partial
verification. When this happens, we need to account for
the time lost executing the following tasks until the error is
detected (eventually by the guaranteed verification) or until
the execution is interrupted by a fail-stop error. This is only
possible if we know the optimal positions of the partial verifi-
cations after the interval up to the next guaranteed verifica-
tion. This requires the dynamic programming algorithm to
first compute the values at the right of the current interval,
hence progressing the opposite way as what was done so far.
Therefore, the function becomes Epartial(d1,m1, v1, p1, v2)
(expected time needed to execute all the tasks from Tp1+1

to Tv2), and it tries all positions p2 for the next partial verifi-
cation. But then, it also requires to remove some terms that
account for re-executed work from the intervals on the left
of the current interval (because we do not have this infor-
mation yet), and to re-inject them later in the computation.
Altogether we have quite a complicated algorithm! Due
to lack of space, we refer to the extended version [?] for
a detailed presentation of the whole algorithm, whose com-
plexity is now O(n6).

4. PERFORMANCE EVALUATION
In this section, we conduct a set of simulations to assess

the relative efficiency of our approach under realistic scenar-
ios. We instantiate the model with actual parameters from
the literature and we compare the performance of three al-
gorithms: (i) a single level algorithm ADV ∗ with only disk
checkpoints (and additional guaranteed verifications), (ii)
a two-level algorithm combining memory and disk check-
points ADMV ∗ (as in Section 3.1), and (iii) the complete
algorithm using additional partial verifications ADMV (as
in Section 3.2). The optimal positions of verifications and
disk checkpoints can be easily derived for ADV ∗ , using a sim-
plification of the proposed dynamic programming algorithm
in Section 3.1 with no additional memory checkpoints.

Simulation setup. We make several assumptions on
the input parameters. First, we assume that the recov-
ery cost is equivalent to the corresponding checkpointing
cost, i.e., RD = CD and RM = CM . This is reasonable be-
cause writing a checkpoint and reading one typically takes
the same amount of time. Then, we assume that a guaran-
teed verification must check all the data in memory, making
its cost in the same order as that of a memory checkpoint,
i.e., V ∗ = CM . Furthermore, we assume partial verifica-
tions similar to those proposed in [7, 2, 3], with very low
cost while offering good recalls. In the following, we set
V = V ∗

100
and r = 0.8. Also, the total work is fixed to

25000 seconds and it is distributed uniformly between up
to 50 tasks. All these choices are somewhat arbitrary and
can easily be modified in the evaluations; we believe they
represent reasonable values for current and next-generation
HPC applications. The code is publicly available at http:

//graal.ens-lyon.fr/~yrobert/chain2levels for the in-

platform #nodes λf λs CD CM
Hera 256 9.46e-7 3.38e-6 300s 15.4s
Atlas 512 5.19e-7 7.78e-6 439s 9.1s

Coastal 1024 4.02e-7 2.01e-6 1051s 4.5s
Coastal SSD 1024 4.02e-7 2.01e-6 2500s 180.0s

Table 1: Platform parameters.

terested readers to experiment with their parameters.

Platform settings. Table 1 presents the four platforms
used in the simulations and their main parameters. These
platforms have been used to evaluate the Scalable Check-
point/Restart (SCR) library by Moody et al. [10], who pro-
vide accurate measurements for λf , λs, CD and CM using
real applications. Note that the Hera platform has the worst
error rates, with a platform MTBF of 12.2 days for fail-stop
errors and 3.4 days for silent errors. In comparison, and
despite its higher number of nodes, the Coastal platform
features a platform MTBF of 28.8 days for fail-stop errors
and 5.8 days for silent errors. In addition, the last platform
uses SSD technology for memory checkpointing, which pro-
vides more data space, at the cost of higher checkpointing
costs.

Algorithm performance. The first column of Figure 2
presents, for each platform, the normalized makespan with
respect to the execution time without error for different
numbers of tasks. First, note that varying the number of
tasks has an impact on both the size of the tasks and the
maximum number of checkpoints and verifications that the
algorithms can choose from. On the one hand, when the
number of tasks is small (i.e., less than 5), the probability of
having an error during the execution (either a fail-stop or a
silent) increases quickly and reaches more than 10% on Hera
for a single task. As a consequence, the application experi-
ences more recoveries and re-executions (with significantly
larger tasks), which increases the final overhead. However,
when the number of tasks is large enough (i.e., more than 5),
then tasks become small and the probability of having an
error during the execution drops below 1% for one task, re-
ducing recovery and re-execution costs at the same time.

Single level algorithm. The second column of Figure 2
shows the number of disk checkpoints (with associated mem-
ory checkpoints) and guaranteed verifications used by the
ADV ∗ algorithm on the four platforms and for different num-
bers of tasks. We observe that the number of guaranteed
verifications is often set to the maximum (i.e., the number
of tasks) while the number of checkpoints remains relatively
small (i.e., less than 10 for all the platforms). This is be-
cause checkpoints are costly, and verifications help reducing
the amount of time lost due to silent errors. Because they
are cheap, the algorithm tends to place as many as possible.
The algorithm limits their number only when the number
of tasks is large enough (i.e., 50 on Hera) or the cost of the
verification is too high, as it is on Coastal SSD.

Two-level algorithm. The third column of Figure 2 presents
the number of disk checkpoints, memory checkpoints and
guaranteed verifications used by the ADMV ∗ algorithm on
the four platforms and for different number of tasks. When
using additional memory checkpoints, we observe that the
number of guaranteed verifications remains similar to that
of the number shown in the previous column concerning
the ADV ∗ algorithm. However, the algorithm now uses
additional memory checkpoints, which drastically reduces
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Figure 2: Performance of the three algorithms on the four platforms. Each line represents a platform.

the amount of time lost in re-execution when a silent er-
ror is detected. In particular, we observe that the two-
level checkpointing algorithm ADMV ∗ always lead to a bet-
ter makespan compared to the single level algorithm ADV ∗ ,
with 2% on Hera or 2.5% on Coastal, as shown in the first
column, thus demonstrating the usefulness of our approach.

With partial verifications. The last column of Figure 2
presents the number of disk checkpoints, memory check-
points, guaranteed verifications and additional partial veri-
fications used by the ADMV algorithm on the four platforms
and for different numbers of tasks. With our settings, par-
tial verifications are always more cost-effective than guar-
anteed verifications. But due to their smaller recall, they
are only worth it if one can use a lot of them, which is only
possible when the number of tasks is large enough. There-
fore, the algorithm only starts to use partial verifications
when the number of tasks is greater than 30 on Hera, 40
on Coastal and 50 on Atlas, where the silent error rate is
the highest among the four platforms. Overall, adding par-
tial verifications has a limited impact on the final overhead,
with the exception of the Coastal SSD platform, where the
cost of checkpoints and verifications are much higher than
on the other platforms. Partial verifications being 100 times
cheaper than guaranteed verifications, they remain the only
affordable resilience tool on this platform, which also im-
proves the makespan (a little bit less than 1% with 50 tasks)
compared to the simple ADMV ∗ algorithm, as shown in the
first column of Figure 2.

5. CONCLUSION
In this paper, we proposed a two-level checkpointing scheme

to cope with both fail-stop errors and silent data corruptions
on large-scale platforms. While numerous studies have dealt
with either error source, few have dealt with both, while it is
mandatory to address both sources simultaneously at scale.
By combining standard disk checkpointing technique with
in-memory checkpoints and verification mechanisms (par-
tial or guaranteed), we have designed a multi-level dynamic
programming algorithm that computes the optimal solution
for a linear application workflow in polynomial time. Sim-
ulations based on realistic parameters on several platforms
show consistent results, and confirm the benefit of the com-
bined approach. While the most general algorithm has a
high complexity in O(n6), where n is the number of tasks,
it executes within a few seconds for n = 50, and therefore
can be readily used for real-life linear workflows whose size
rarely exceed ten or twenty tasks.

One interesting future direction is to assess the useful-
ness of this approach on general application workflows. The
problem gets much more challenging, even in the simpli-
fied scenario where each task requires the entire platform
to execute. In fact, in this simplified scenario, it is already
NP-hard to decide which task to checkpoint in a simple join
graph (n−1 source tasks and a common sink task), with only
fail-stop errors striking (hence a single level of checkpoint
and no verification at all) [1]. Still, heuristics are urgently
needed to address the same problem as in this paper, with
two error sources, two checkpoint types and two verification
types, if we are to deploy HPC workflows efficiently at scale.
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