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Preface

The three preceding editions of the FCA4AI Workshop showed that many researchers
working in Arti�cial Intelligence are deeply interested by a well-founded method for classi-
�cation and mining such as Formal Concept Analysis (seehttp://www.fca4ai.hse.ru/ ).
The �rst edition of FCA4AI was co-located with ECAI 2012 in Montpellier and published
as http://ceur-ws.org/Vol-939/ , the second edition was co-located with IJCAI 2013 in
Beijing and published ashttp://ceur-ws.org/Vol-1058/ , and �nally the third edition was
co-located with ECAI 2014 in Prague and published ashttp://ceur-ws.org/Vol-1257/ .
Based on that, we decided to continue the series and we took the chance to organize a new
edition of the workshop in Buenos Aires at the IJCAI 2015 Conference. This year, the work-
shop has again attracted many di�erent researchers working on actual and important topics,
e.g. recommendation, linked data, classi�cation, biclustering, pattern mining, ontology de-
sign, and various applications. This shows the diversity and the richness of the relations
between FCA and AI. Moreover, this is a good sign for the future and especially for young
researchers that are at the moment working in this area or who will do.

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data
analysis and classi�cation. FCA allows one to build a concept lattice and a system of de-
pendencies (implications) which can be used for many AI needs, e.g. knowledge discovery,
learning, knowledge representation, reasoning, ontology engineering, as well as information
retrieval and text processing. As we can see, there are many �natural links� between FCA
and AI.

Recent years have been witnessing increased scienti�c activity around FCA, in particular
a strand of work emerged that is aimed at extending the possibilities of FCA w.r.t. knowl-
edge processing, such as work on pattern structures and relational context analysis. These
extensions are aimed at allowing FCA to deal with more complex than just binary data,
both from the data analysis and knowledge discovery points of view and as well from the
knowledge representation point of view, including, e.g., ontology engineering.

All these investigations provide new possibilities for AI activities in the framework of
FCA. Accordingly, in this workshop, we are interested in two main issues:

� How can FCA support AI activities such as knowledge processing (knowledge discov-
ery, knowledge representation and reasoning), learning (clustering, pattern and data
mining), natural language processing, and information retrieval.

� How can FCA be extended in order to help AI researchers to solve new and complex
problems in their domains.

The workshop is dedicated to discuss such issues. This year, the papers submitted to the
workshop were carefully peer-reviewed by three members of the program committee and 10
papers with the highest scores were selected. We thank all the PC members for their reviews
and all the authors for their contributions.

The Workshop Chairs

Sergei O. Kuznetsov
National Research University, Higher Schools of Economics, Moscow, Russia

Amedeo Napoli
LORIA (CNRS � Inria Nancy Grand Est � Université de Lorraine), Vandoeuvre les Nancy,
France

Sebastian Rudolph
Technische Universität Dresden, Germany

3



Program Committee

Mathieu D'Aquin (Open University, UK)

Gabriela Arevalo (Universidad Nacional de Quilmes, Argentina)

Jaume Baixeries, UPC Barcelona, Catalunya

Karell Bertet (Université de La Rochelle, France, Germany)

Claudio Carpineto (Fondazione Ugo Bordoni, Roma, Italy)

Florent Domenach (University of Nicosia, Cyprus)

Sébastien Ferré (IRISA, Rennes, France)

Marianne Huchard (LIRMM/Université de Montpellier, France)

Dmitry I. Ignatov (NRU Higher School of Economics, Moscow, Russia)

Mehdi Kaytoue (INSA-LIRIS Lyon, France)

Florence Le Ber, Université de Strasbourg, France

Nizar Messai (Université de Tours, France)

Rokia Missaoui (Université du Québec en Outaouais, Ottawa, Canada)

Sergei A. Obiedkov (NRU Higher School of Economics, Moscow, Russia)

Jean-Marc Petit (INSA-LIRIS Lyon, France)

Uta Priss (Ostfalia University of Applied Sciences, Wolfenbüttel, Germany)

Chedy Raïssi (Inria/LORIA Nancy, France)

Artem Revenko, Technische Universität Dresden, Germany

Christian S�ac�area (Babes-Bolyai University, Cluj-Napoca, Romania)

Baris Sertkaya (SAP Dresden, Germany)

Henry Soldano (Université de Paris-Nord, France)

Laszlo Szathmary, University of Debrecen, Hungary

Petko Valtchev (Université du Québec à Montréal, Montréal, Canada)

Renato Vimiero (UFPE Recife, Brazil)

4



Contents

1 Invited Talk
Using Trust Networks to Improve Data Quality and Recommendations
Hernán Astudillo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Bridging DBpedia Categories and DL-Concept De�nitions Using Formal Concept
Analysis
Mehwish Alam, Aleksey Buzmakov, Victor Codocedo and Amedeo Napoli . . . . . . . 9

3 A Conceptual-KDD Tool for Ontology Construction from a Database Schema
Renzo Stanley and Hernán Astudillo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 SOFIA: How to Make FCA Polynomial?
Aleksey Buzmakov, Sergei O. Kuznetsov and Amedeo Napoli . . . . . . . . . . . . . . 27

5 Pattern Structures for News Clustering
Tatyana Makhalova, Dmitry Ilvovsky and Boris Galitsky . . . . . . . . . . . . . . . . . 35

6 Lazy Classication with Interval Pattern Structures: Application to Credit Scoring
Alexey Masyutin, Yury Kashnitsky and Sergei O. Kuznetsov . . . . . . . . . . . . . . 43

7 Reduction in Triadic Data Sets
Sebastian Rudolph, Christian S�ac�area and Diana Troanc�a . . . . . . . . . . . . . . . . 55

8 Lazy Associative Graph Classi�cation
Yury Kashnitsky and Sergei O. Kuznetsov . . . . . . . . . . . . . . . . . . . . . . . . . 63

9 Machine-assisted Cyber Threat Analysis Using Conceptual Knowledge Discovery
Martín Barrère, Gustavo Betarte, Víctor Codocedo, Marcelo Rodríguez, Hernán As-
tudillo, Marcelo Aliquintuy, Javier Baliosian, Carlos Raniery Paula Dos Santos, Jéfer-
son Campos Nobre, Lisandro Zambenedetti Granville and Amedeo Napoli . . . . . . . 75

10 RAPS: A Recommender Algorithm Based on Pattern Structures
Dmitry Ignatov and Denis Kornilov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Finding a Lattice of Needles in a Haystack: Forming a Query from a Set of Items of
Interest
Boris Galitsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5



6



Invited Talk
Using trust networks to improve data quality and

recommendations

Hernán Astudillo
Universidad Técnica Federico Santa María (UTFSM)

Avenida España 1680, Valparaíso, Chile
hernan@inf.utfsm.cl

Abstract

The boom in social computing has left us with large amounts of information, some of
it from automated sensors and some from humans, most of it incomplete, inconsistent,
wrong and/or stale. Doctorow noticed that people are lazy, dumb, and at times deceitful,
but we still want to use their data rather than none. We will introduce the related notions
of Reputation, Trust, Con�dence and Reliability, and will show how they can be used to
improve the quality of data and of recommendations. We will pay special attention to
explicit record of trust relationships among agents (human and otherwise), illustrate its
usage with some ongoing recommender system projects, and highlight recent advances
in trust aging.
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Bridging DBpedia Categories and DL-Concept
De�nitions using Formal Concept Analysis

Mehwish Alam, Aleksey Buzmakov, Victor Codocedo, Amedeo Napoli

LORIA (CNRS – Inria Nancy Grand Est – Université de Lorraine)
BP 239, Vandoeuvre-lès-Nancy, F-54506, France

{ firstname.lastname@loria.fr }

Abstract. The popularization and quick growth of Linked Open Data (LOD) has
led to challenging aspects regarding quality assessment and data exploration of
the RDF triples that shape the LOD cloud. Particularly, we are interested in the
completeness of data and its potential to provide concept de�nitions in terms of
necessary and suf�cient conditions. In this work we propose a novel technique
based on Formal Concept Analysis which organizes RDF data into a concept
lattice. This allows the discovery of implications, which are used to automatically
detect missing information and then to complete RDF data.

Keywords: Formal Concept Analysis, Linked Open Data, Data Completion.

1 Introduction

The World Wide Web has tried to overcome the barrier of data sharing by converging
data publication into Linked Open Data (LOD) [3]. The LOD cloud stores data in the
form of subject-predicate-objecttriples based on the RDF language1, a standard for-
malism for information description of web resources. In this context, DBpedia is the
largest reservoir of linked data in the world currently containing more than 4 million
triples. All of the information stored in DBpedia is obtained by parsing Wikipedia, the
largest open Encyclopedia created by the collaborative effort of thousands of people
with different levels of knowledge in several and diverse domains.

More speci�cally, DBpedia content is obtained from semi-structured sources of in-
formation in Wikipedia, namelyinfoboxesandcategories. Infoboxes are used to stan-
dardize entries of a given type in Wikipedia. For example, the infobox for “automo-
bile” has entries for an image depicting the car, the name of the car, the manufacturer,
the engine, etc. Theseattributesare mapped by the DBpedia parser to a set of “prop-
erties” de�ned in an emerging ontology2 [2] (infobox dataset) or mapped through a
hand-crafted lookup table to what is called the DBPedia Ontology. Categories are an-
other important tool in Wikipedia used to organize information. Users can freely assign
a category name to an article relating it to other articles in the same category. Exam-
ple of categories for cars are “Category:2010s automobiles”, “Category:Sports cars” or

1 Resource Description Framework - http://www.w3.org/RDF/
2 Emerging in the sense of “dynamic” or “in progress”.

9



“Category:Flagship vehicles”. While we can see categories in Wikipedia as an emerg-
ing “folksonomy”, the fact that they are curated and “edited” make them closer to a
controlled vocabulary. DBpedia exploits the Wikipedia category system to “annotate”3

objects using a taxonomy-like notation. Thus, it is possible to query DBpedia by using
annotations(e.g. all cars annotated as “Sport cars”). While categorical information in
DBpedia is very valuable, it is not possible to use a category as one could expect, i.e.
as a de�nition of a class of elements that are instances of the class or, alternatively, that
are “described” by the category. In this sense, such a category violates the actual spirit
of semantic Web.

Let us explain this with an example. The Web site of DBpedia in its section of
“Online access” contains some query examples using the SPARQL query language.
The �rst query has the description “People who were born in Berlin before 1900” which
actually translates into a graph-based search of entities of the type “Person”, which have
the property “birthPlace” pointing to the entity representing the “city of Berlin” and
another property named “birthDate” with a value less than 1900. We can see here linked
data working at “its purest”, i.e. the form of the query provides the right-hand side of a
de�nition for “People who were born in Berlin before 1900”. Nevertheless, the fourth
query named “French �lms” does not work in the same way. While we could expect
also a graph-based search of objects of the type “Film” with maybe a property called
“hasCountry” pointing to the entity representing “France”, we have a much rougher
approach. The actual SPARQL query asks for objects (of any type) annotated as “French
�lms”.

In general, categorization systems express “information needs” allowing human en-
tities to quickly access data. French �lms are annotated as such because there is a need
to �nd them by these keywords. However, for a machine agent this information need is
better expressed through ade�nition, like that provided for the �rst query (i.e. “People
who were born in Berlin before 1900”). Currently, DBPedia mixes these two paradigms
of data access in an effort to pro�t from the structured nature of categories, nevertheless
further steps have to be developed to ensure coherence and completeness in data.

Accordingly, in this work we describe an approach to bridge the gap between the
current syntactic nature of categorical annotations with their semantic correspondent
in the form of a concept de�nition. We achieve this by mining patterns derived from
entities annotated by a given category, e.g. All entities annotated as “Lamborghini cars”
are of “type automobile” and “manufactured by Lamborghini”, or all entities annotated
as “French �lms” are of “type �lm” and of “French nationality”. We describe how
these category-pattern equivalences can be described as “de�nitions” according toim-
plication rulesamong attributes which can be mined using Formal Concept Analysis
(FCA [7]). The method considers the analysis of heterogeneous complex data (not nec-
essarily binary data) through the use of “pattern structures” [6], which is an extension of
FCA able to process complex data descriptions. A concept lattice can be built from the
data and then used for discoveringimplication rules(i.e. association rules whose con�-
dence is 100%) which provide a basis for “subject de�nition” in terms of necessary and
suf�cient conditions. For more details read the complete version of this paper [1].

3 Notice that in DBPedia the property used to link entities and categories is called “subject”. We
use “annotation” instead of “subject” to avoid confusions with the “subject” in an RDF triple.
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This article is structured as follows: Section 2 gives a brief introduction to the the-
oretical background necessary to sustain the rest of the paper. Section 3 describes the
approach used for data completion in the DBpedia knowledge base. Finally, Section 4
concludes the paper.

2 Preliminaries

Linked Open Data (LOD) [3] is a formalism for publishing structured data on-line
using the resource description framework (RDF). RDF stores data in the form of state-
ments represented asxsubject; predicate; objecty. The pro�le of an RDF triplexs; p; oy
is given bypUY B q�p UY B q�p UY B Y Lqwhere a set of RDF triples is an RDF graph,
denoted byG. Here,U denotes a set of URI references,B refers to the blank node and
L to literals. For the sake of simplicity, in the current study we do no take into account
blank nodespB q. An RDF triple is represented asU � U � p U Y Lq. For convenience,
in the following we denote the set of predicate names asP and the set of object names
asO. LOD can then be queried and accessed through SPARQL4, which is a standard
query language for RDF data. SPARQL is based on matching graph patterns (present
in theWHEREclause of a query) against RDF graphs. For example, let us consider the
SPARQL query given in Listing 1.1, for all the entities of type Automobile manufac-
tured byLamborghini, annotated as “Sport_cars” and as “Lamborghini_vehicles”,

SELECT ?s WHERE {
?s dc:subject dbpc:Sports_cars .
?s dc:subject dbpc:Lamborghini_vehicles .
?s rdf:type dbo:Automobile .
?s dbo:manufacturer dbp:Lamborghini }

Listing 1.1: SPARQL for the formal context in Figure 1. Pre�xes are de�ned in Table 1.

Formal Concept Analysis (FCA)is a mathematical framework introduced in [7], but in
the following we assume that the reader already has necessary background of FCA. We
only explain it with the help of an example. For example, consider the formal context
in Figure 1 whereG � U, M � p P � Oqandpu; pp; oqq PI ðñ x u; p; oy PG, i.e.
xu; p; oy is a triple built from different triples manually extracted from DBpedia about
nine different Lamborghini cars (35 RDF triples in total). Given a subject-predicate-
object triple, the formal context contains subjects in rows, the pairs predicate-object
in columns and a cross in the cell where the triple subject in row and predicate-object
in column exists. Figure 1 depicts the concept lattice in reduced notation calculated
for this formal context and contains 12 formal concepts. Consider the �rst �ve cars
(subjects) in the table for which the maximal set of attributes they share is given by the
�rst four predicate-objectpairs. Actually, they form a formal concept depicted by the
gray cells in Figure 1 and labelled as “Islero, 400GT” in Figure 1 (actually, the extent
of this concept is “Islero, 400GT, 350GT, Reventon”). Given a concept lattice, rules can
be extracted from the intents of concepts which are comparable.

4 http://www.w3.org/TR/rdf-sparql-query/
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Predicates Objects
Index URI Index URI

A dc:subject a dbpc:Sport_Cars
b dbpc:Lamborghini_vehicles

B dbp:manufacturer c dbp:Lamborghini
C rdf:type d dbo:Automobile
D dbp:assembly e dbp:Italy
E dbo:layout f dbp:Four-wheel_drive

g dbp:Front-engine

Namespaces:
dc: http://purl.org/dc/terms/
dbo: http://dbpedia.org/ontology/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns\#
dbp: http://dbpedia.org/resource/
dbpc: http://dbpedia.org/resource/Category:

Table 1: Index of pairs predicate-object and namespaces.

A B C D E
a b c d e f g

Reventon � � � � � �
Countach � � � � �
350GT � � � � �
400GT � � � �
Islero � � � �
Veneno � �
Aventador Roadster� �
Estoque � � � �
Gallardo � � �

Fig. 1: The formal context shown on the left is built after scaling from DBpedia data given in
Table 1. Each cross (� ) corresponds to a triple subject-predicate-object. On the right the

corresponding concept lattice is shown.

3 Improving DBpedia with FCA

3.1 Problem context

Consider the following �ctional scenario. You are a bookkeeper in a library of books
written in a language you do not understand. A customer arrives and asks you for a book
about “Cars”. Since you do not know what the books are about (because you cannot read
them), you ask the customer to browse the collection on his own. After he �nds a book
he is interested to read, you will mark the symbol� on that book for future references.
Then, in an empty page you will write (� - Cars). After several cases like this, you will
probably end up with a page full of symbols representing different topics or categories
of your books, among them (a - Sports), (� - Football) and (� - History). Now you can
even combine symbols when customers ask you for “Sport Cars” which you translate
into �a . Actually, the demand for books about “Sport Cars” is so high that you create a
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new symbol: just for it. So doing, you have created your own categorization system of
a collection of books you do not understand.

In general, given a topic, you are able to retrieve books without many troubles,
however since you do not understand the books, you are restricted to the set of symbols
you have for doing this. Furthermore, if you are not careful some problems start to arise,
such as books marked with� and withouta . Finally, people do not get books marked
with : when they look for “Cars”, since they only search for the symbola .

It is easy to stablish an analogy on how DBpedia pro�ts from Wikipedia's catego-
rization system and the above scenario. DBpedia is able to retrieve entities when queried
with an annotation (as the example of “French �lms”), however any information need
not initially provided as a category is unavailable for retrieval (such as “French �lms
about the Art Nouveau era”). Incoherences in categorical annotations are quite frequent
in DBpedia, for example there are over 200 entities annotated as “French �lms” which
are not typed as “Films”. Finally, DBpedia is not able to provide inferencing. For ex-
ample, in Figure 1, the entities Veneno and Aventador, even though they are annotated
as “Lamborghini vehicles”, cannot be retrieved when queried simply by “vehicles”. In
such a way, it is exactly as if they were marked with a symbol such as: .

3.2 The completion of DBpedia data

Our main concern in this case lies in two aspects. Firstly, are we able to complete data
using logical inferences? For example, can wecompletethe information in the dataset
by indicating that the entities “Estoque” and “Gallardo” should be categorized as “Lam-
borghini vehicles” and “Sport cars”? Secondly, are we able tocompletethe descriptions
of a given type? For example, DBpedia does not specify that an “Automobile” should
have a “manufacturer”. In the following, we try to answer these two questions using
implications and association rules.

Consider rules provided in Table 2. Of course, the �rst three implications are only
true in our dataset. This is due to the fact that we use the “closed world” assump-
tion, meaning that our rules only apply in “our world of data” where all cars are of
“Lamborghini” brand, i.e. all other information about cars that we do not know can be
assumed as false [5]. While these implications are trivial, they provide a good insight
of the capabilities of our model. For instance, including a larger number of triples in
our dataset would allow discovering that, while not all automobiles are manufactured
by Lamborghini, they are manufactured by either a Company, an Organization or an
Agent. These threeclasses5 are types of the entity Lamborghini in DBpedia. Such a
rule would allow providing adomaincharacterization to the otherwise empty descrip-
tion of the predicate “dbo:manufacturer” in the DBpedia schema.

The association rule given in the fourth row in Table 2 shows the fact that 29%
of the subjects of type “Automobile” and manufactured by “Lamborghini” should be
categorized by “Sports cars” and “Lamborghini vehicles” to complete the data. This
actually corresponds to the entities “Estoque” and “Gallardo” in Figure 1. Based on this
fact, we can use association rules also to create new triples that allow the completion of
the information included in DBpedia.

5 In the OWL language sense.
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Rule Con�denceSupportMeaning

d ùñ c 100% 7 Every automobile is manufactured by
Lamborghini.

c ùñ d 100% 7 Everything manufactured by Lamborghini
is an automobile.

e ùñ b,c 100% 3 All the entities assembled in Italy are
Lamborghini automobiles.

c,d ùñ a,b 71% 7 71% of the Lamborghini automobiles are catego-
rized as “sport cars” and “Lamborghini vehicles”

Table 2: Association rules extracted from formal context in Figure 1.

3.3 Pattern structures for the completion process

The aforementioned models to support linked data using FCA are adequate for small
datasets as the example provided. Actually, LOD do not always consists of triples of
resources (identi�ed by their URIs) but contains a diversity ofdata typesand struc-
tures including dates, numbers, collections, strings and others making the process of
data processing much more complex. This calls for a formalism able to deal with this
diversity of complex and heterogeneous data.

Accordingly, pattern structures are an extension of FCA which enables the analysis
of complex data, such as numerical values, graphs, partitions, etc. In a nutshell, pattern
structures provide the necessary de�nitions to apply FCA to entities with complex de-
scriptions. The basics of pattern structures are introduced in [6]. Below, we provide a
brief introduction using interval pattern structures [8].

Let us consider Table 3 showing the predicatedbo:productionStartYearfor the sub-
jects in Figure 1. In such a case we would like to extract a pattern in the year of pro-
duction of a subset of cars. Contrasting a formal context as introduced in Section 2,
instead of having a setM of attributes, interval pattern structures use a semi-lattice
of interval descriptions ordered by a subsumption relation and denoted bypD; „ q6.
Furthermore, instead of having an incidence relation setI , pattern structures use a map-
ping function� : G Ñ D which assigns to anyg P G the corresponding interval
description� pgq PD. For example, the entity “350GT” in Table 3 has the description
� p350GTq � xr 1963; 1963sy.

Let us consider two descriptions� pg1q � xr l1
i ; r 1

i syand � pg2q � xr l2
i ; r 2

i sy, with
i P r1::ns wheren is the number of intervals used for the description of entities. The
similarity operation[ and the associated subsumption relation„ between descriptions
are de�ned as the convex hull of two descriptions as follows:

� pg1q [ � pg2q � xr min pl1
i ; l2

i q; maxpr 1
i ; r 2

i qsy

� pg1q„ � pg2q ðñ � pg1q [ � pg2q � � pg1q

� p350GTq [ � pIslero q � xr 1963; 1967sy

p� p350GTq [ � pIslero qq„ � p400GTq

Finally, a pattern structure is denoted aspG; pD; „ q; � q where operatorsp�ql be-
tween} pGqandpD; „ qare given below:

A l :�
¦

gPA

� pgq dl :� t g PG | d „ � pgqu

6 It can be noticed that standard FCA uses a semi-lattice of set descriptions ordered by inclusion,
i.e. (M; „ ).
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An interval pattern conceptpA; dqis such asA „ G, d P D, A � dl , d � A l . Using
interval pattern concepts, we can extract and classify the actual pattern (and pattern
concepts) representing the years of production of the cars. Some of them are presented
in the lower part of Table 3. We can appreciate that cars can be divided in three main
periods of time of production given by the intent of the interval pattern concepts.

Entity dbo:productionStartYear

Reventon 2008
Countach 1974
350GT 1963
400GT 1965
Islero 1967
Veneno 2012
Aventador Roadster -
Estoque -
Gallardo -

Interval Pattern Concepts
Reventon, Veneno xr2008; 2012sy
Countach, xr1974; 1974sy
350GT,400GT,Islero xr1963; 1967sy

Table 3: Upper table shows values of predicatedbp:productionStartYearfor entities in Figure 1.
The symbol - indicates that there are no values present in DBpedia for those subjects. Lower

table shows the derived interval pattern concepts .

3.4 Heterogeneous pattern structures

Different instances of the pattern structure framework have been proposed to deal with
different kinds of data, e.g. graph, sequences, interval, partitions, etc. For linked data
we propose to use the approach called “heterogeneous pattern structure” framework
introduced in [4] as a way to describe objects in a heterogeneous space, i.e. where there
are relational, multi-valued and binary attributes. It is easy to observe that this is actually
the case for linked data where the set of literalsL greatly varies in nature depending on
the predicate. For the sake of simplicity we provide only the most important details of
the model used for working with linked data.

When the range of a predicate (hereafter referred to as “relation”)p PP is such that
rangeppq „ U, we call p an “object relation”. Analogously, when the range is such
that rangeppq „ L , p is a “literal relation”. For any given relation (object or literal),
we de�ne the pattern structureKp � p G; pDp; [q ; � pq, wherepDp; „ q is an ordered
set of descriptions de�ned for the elements inrangeppq, and� p maps entitiesg P G
to their descriptions inDp. Based on that, the triplepG; H; � q is called a “heteroge-
neous pattern structure”, whereH �

‘
Dppp P Pqis the Cartesian product of all the

descriptions setsDp, and� maps an entityg P G to a tuple where each component
corresponds to a description in a setDp.

For an “object relation”, the order inpDp; „ qis given by standard set inclusion and
thus, the pattern structureKp is just a formal context. Regarding “literal relations”, such
as numerical properties, the pattern structure may vary according to what is more ap-
propriate to deal with that speci�c kind of data. For example, considering the predicate
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dbo:productionStartYeardiscussed in the previous section,Kdbo:productionStartYearshould
be modelled as an interval pattern structure. For the running example, the heterogeneous
pattern structure is presented in Table 4. Cells in grey mark aheterogeneous pattern
conceptthe extent of which contains cars “350GT, 400GT, Islero”. The intent of this
heterogeneous pattern concept is given by the tuplepta; bu; t cu; t du; xr1963; 1967syq,
i.e. “Automobiles manufactured by Lamborghini between 1963 and 1967”.

KA KB KC KD KE K dbo:productionStartYear

a b c d e f g
Reventon � � � � � � xr2008; 2008sy
Countach � � � � � xr1974; 1974sy
350GT � � � � � xr1963; 1963sy
400GT � � � � xr1965; 1965sy
Islero � � � � xr1967; 1967sy
Veneno � � xr2012; 2012sy
Aventador Roadster� � -
Estoque � � � � -
Gallardo � � � -

Table 4: Heterogeneous pattern structure for the running example. Indexes for properties are
shown in Table 1.

4 Conclusion

To conclude, in the current study we introduce a mechanism based on association rule
mining for the completion of the RDF dataset. Moreover, we use heterogeneous pattern
structures to deal with heterogeneity in LOD. This study shows the capabilities of FCA
for completing complex RDF structures.
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Abstract. The UNESCO convention on Intangible Cultural Heritage
(ICH) requires countries to document their oral traditions, performing
arts, traditional festivities, and so forth. Several institutions gather ICH,
traditionally by hand, and record and disseminate it through conven-
tional information systems (static knowledge in relational databases,
RDB). Two di�culties are that (1) review/re�nement of their underlying
database schemata by domain experts becomes disruptive, and (2) con-
tribution from community, non-expert users becomes hard, even impos-
sible. This article presents an interactive tool that implements a recent
technique to perform Knowledge Discovery in Databases (KDD) guided
by Formal Concept Analysis (FCA). The tool takes an RDB schema (in
SQL), translates it into a formal context and later in a concept lattice
using the CORON platform, allows domain experts to manipulate it and
produces a formal ontology (in RDFS). Later, the ontology can be used
to instantiate a semantic wiki as community collaboration tool, for ex-
ample. The technique and tool are illustrated with an example from the
ICH domain, using Chile's Culture Ministry online data. The tool is also
available online.

Keywords: Formal Concept Analysis, Knowledge Discovery in Databases,
Ontologies, Intangible Cultural Heritage

1 Introduction

The Chilean National Council of Culture and Arts 1 (CNCA) has undergone the
mission of documenting the ICH of di�erent areas of the country in the context
of a world-wide UNESCO2 convention to incentive the states parties3 and NGOs
to properly maintain their cultural knowledge. Considering the dynamic struc-
ture (data, concepts and relations) of this domain, the conventional information
management systems should be su�ciently exible in order to support changes
and community collaboration such as well-known wikis [5]. For these reasons,
CNCA needs a tool that allows to simplify the process of re�nement of their
current relational database model. KDD emerged as a tool to support humans

1 http://cultura.gob.cl
2 United Nations Educational, Scienti�c, and Cultural Organization
3 http://whc.unesco.org/en/statesparties/
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in the discovery and extraction of knowledge from large collections of data (usu-
ally stored in databases) where a manual approach for such task is very di�cult
(or nearly impossible) [3]. Thus, the human-centered nature of the approach is
a key factor in any KDD process [1] since it has to ensure that knowledge is not
only successfully found, but also understood by the �nal user. For this reason,
FCA proved to be a good support for a KDD process given its two-folded man-
ner of representing knowledge, i.e. as concepts containing an extent (instances
of the concept) and an intent (the attributes of the concept) [8]. To stress this
fact, we quote [7] in the relation of FCA and KDD: \the process of concept for-
mation in FCA is a KDD par excellence". FCA has been used to support KDD
in several tasks for di�erent domains. For example, [4] states that nearly 20%
of the papers in the FCA domain consist on knowledge discovery related ap-
proaches. Furthermore, in [2] FCA is presented as the cornerstone ofConceptual
Knowledge Discovery in Databases (CKDD)described as a human-centered pro-
cess supporting the visual analysis of a conceptual structure of data for a given
context of information. Since the principal di�culty of CNCA (reviewing and
re�nement of ICH model) are rooted in a database schema analysis and amelio-
ration which heavily requires human domain expertise, we rely on a CKDD tool
to redesign the data schema already in use and to elicit an ontological schema
from it.

In this article, we show a tool that implements an iterative and human-
centred approach based on KDD and FCA. This method uses the concept lattice
generated as a support for guiding the redesign process, considering the relevant
knowledge of experts. This approach was proposed in an earlier work [6], however
applies it in a web-based tool that allows any user work with his own schema.

The reminder of this article is organized as follows: Section 2 resumes the
method proposed, Section 3 describes in detail the principal functionalities of
the tool developed, Section 4 outlines an example for validating the tool with
a domain expert. Finally, Section 5 presents a discussion on future work and
concludes the paper.

2 Method

Figure 1 presents a 3-step CKDD process designed to take a database schema
and translating it into an ontological schema. In the following, we provide a
general view of the tasks at each step.

2.1 First step: Data Preprocessing

The �rst step starts by extracting the database schema and ends when it is
converted to a formal context. This step consists of three tasks: (1) Schema
processing, (2) Attribute integration and (3) Relational attribute scaling. How-
ever, this process is fully automatized by the tool, and does not require expert
intervention.
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Fig. 1: FCA-based KDD process

2.2 Second step: Formal Concept Analysis

This step receives a formal context and ends when a concept lattice is con-
structed. The tasks performed are: (1) Extensional stability calculation and (2)
Attribute-concepts identi�cation and these are calculated using the Coron Plat-
form. The extensional stability value and the attribute-concept calculated are
shown to a domain expert for the next step.

2.3 Third step: Interpretation

The �nal step receives a formal context and its associated concept lattice where
each attribute concept has been identi�ed and each formal concept contains an
extensional stability value. The tasks performed for this step are: (1) Question
creation/answering, (2) Modularization, (3) Ontological schema creation. The
options (1) and (2) allow the user to make another iteration sending a modi�ed
version of the formal concept received according to user feedback, but option (3)
allows the user to end the process, an \ontological schema" will be created and
it will be downloaded by the user in RDF �le format.

2.4 Ontological schema creation

The �nal task of the process converts the concept lattice into an ontological
schema which can be used for data integration and linked data publication.
This schema is obtained by creating a set of RDF triples for the elements of
the concept lattice. Table 1 shows a overview of the rules used to create the
ontological schema. This table is based on an adapted de�nition of the relational
data schema model.

Relational data schema model: A relational schema S = f R1; R2; :::; RjSj g
is de�ned as a set of tables or \relation schemas"Ri (A1; A2; :::; An ) consisting
of a table name Ri and a list of �elds A j which are value assignments of the
domain dom(A j ) to an entry in the table. The notation Ri :A j stands for the
�eld A j in table Ri .
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Table 1: Formal concepts translation into an ontological schema [6].

Concept Element Actions
> = ( S; S0) R i 2 S R i rdf:type rdfs:Class

e.g. cnca:Agent rdf:type rdfs:Class
? = ( A0; A) A j 2 A A j rdf:type rdfs:Property

A j rdfs:range rdfs:Literal
e.g. cnca:establishment rdf:type rdfs:Property

cnca:establishment rdfs:range rdfs:Literal
? = ( A0; A) related to: R i 2 A related to: R i rdf:type rdfs:Property

related to: R i rdf:range rdfs: R i

e.g. cnca:participant rdf:type rdfs:Property
cnca:participant rdfs:range cnca:Agent

? = ( A0; A) domain:Label 2 A cnca:Label rdf:type cnca:Domain
cnca:Domain rdf:type rdfs:Class
cnca:in domain rdf:type rdfs:Property

e.g. cnca:People rdf:type cnca:Domain
�A j = ( A0

j ; A 00
j ) R i 2 A0

j cnca: A j rdfs:domain cnca: R i

e.g. cnca:participant rdfs:domain cnca:Ritual
�A j = ( A0

j ; A 00
j ) (A j = domain:Label ^ cnca: R i cnca:in domain cnca:Label

R i 2 A0
j ) e.g. cnca:Agent cnca:in domain cnca:People

This task is also interactive allowing the user to take most of the decisions
w.r.t. how the ontological schema should be created. In the following, we refer
to cnca: as the pre�x used for the schema to be created.

Top Concept > = ( S; S0): All tables are modelled using the resource de-
scription framework schema (RDFS) elementrdfs:Classby default (e.g. cnca:Agent
a rdfs:Class). The user may choose to annotate some of them with the element
rdfs:Resource. For the set of attributes in S0, we provide a list of properties from
RDFS and the dublin core ontology 4 where the user can select mappings going
from the attributes to the ontology. For example, the attribute name is mapped
to the property rdfs:label. The special attribute id is disregarded as its value in
each entry is only considered to create a unique an valid URI5.

Bottom Concept ? = ( A0; A): All �elds in A are modelled according to
their nature: relational, non-relational attributes or special attributes.

{ Regular attributes are modelled by default using therdfs:Property while the
cnca: pre�x is added to its name (e.g. cnca:establishment a rdfs:Property). In
addition, the range of the property is set to rdfs:Literal (e.g. cnca:establishment
rdfs:range rdfs:Literal).

{ Relational attributes of the form related to:table are modelled withrdfs:Property
and the range is set to the table they refer to. Additionally, the user is asked
to rename the relation (e.g related to:Agent is modelled ascnca:participant

4 http://www.w3.org/wiki/Good_Ontologies#The_Dublin_Core_.28DC.29_
ontology

5 Universal resource identi�er.
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a rdfs:Property; cnca:participant rdfs:range cnca:Agent). While the user may
also be requested to create the inverse property, this feature is not available
in RDFS and for the sake of simplicity we have disregard the use of OWL
for now.

{ Special attributesof the form domain:Label are modelled di�erently. For each
di�erent domain:Label we create a resourcecnca:Label a cnca:Domainwhere
cnca:Domain a rdfs:Class(e.g. cnca:People a cnca:Domain). A single prop-
erty cnca:in domain a rdfs:Property; rdfs:range cnca:Domain; rdfs:domain
rdfs:Class is created to annotate classes created from tables.

Attribute concepts �A i = ( A0
i ; A00

i ): For each attribute concept, we use its
extent to set the domain of the already modelled properties in its intent creating
cnca:A i rdfs:domain cnca:R for all R 2 A0

i (e.g. cnca:participant rdfs:domain
(cnca:Festive Event,cnca:Ritual) ). For the special attributes of the form do-
main:Label, objects are annotated usingcnca:R cnca:in domain cnca:Label for
all R 2 A0

i (e.g. cnca:Agent cnca:in domain cnca:People).
There are some other actions taken during modelling, however for the sake

of space and simplicity we do not discuss these in here.

3 Tool

The web-based tool intended to construct an ontological schema for a speci�c
SQL relational database schema is compound of two principals components: (1)
the CORON platform to calculate concept lattices and the stabilities values
of each attribute-concept, and (2) the python backend application connecting
user interface with CORON in order to execute functions that manage formal
contexts, attribute-concept detections and ontology generation. Thus, the tool
allows domain experts obtain an ontology in RDF �le format.

3.1 Technology

This tool was developed on Python 2.7 and Flask micro-framework6. For develop-
ing the following technologies are used, namely: SQLAlchemy ORM7 to connect
Python to the DB schema, python concepts8 to translate the DB schema to a
formal context for the �rst time. Also we used the Coron Platform 9 to calcu-
late the concept lattices and their extensional stabilities in order to identify the
attribute concept in each iteration. RDFLib 10 was used for working with RDF
�les in Python. At this moment, the tool is available in http://dev.toeska.
cl/rstanley/rdb2ontology . Once there, you can create a user account and
connect it with your own MySQL DB schema.
6 Flask http://flask.pocoo.org/
7 Python Object Relational Mapper (ORM) http://www.sqlalchemy.org/
8 Concepts: a python library for Formal Concept Analysis https://pypi.python.org/

pypi/concepts
9 Coron System: a symbolic data-mining platform http://coron.loria.fr/site/

index.php
10 RDFLib https://github.com/RDFLib/rdflib
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Fig. 2: Screen capture of an iteration

3.2 Functionalities

To provide a way to modify the underlying formal context for the domain expert
we implemented some functionalities that can be looked at in �gure 2. These
actions are divided in two groups namedgeneral options groupmarked with #1
and attribute-speci�c options marked with #2. They are available for the domain
expert in each iteration. Firstly, the general options groupis composed by (1)
Modularization, (2) Download current context, (3) Abort process, (4) Export
to RDFS ontology. Secondly, theattribute-speci�c options group contains a set
of actions to modify each attribute depending of a expert decision, namely:
(1) Assign the attribute to all the objects?, (2) Eliminate the attribute from
a single/a set of objects?, (3) Split the attribute into di�erent attributes for
di�erent objects? For the sake of space and simplicity, we have left out the
explanation of each of these options as it can be found in depth in our previous
work [6].

4 Example

The database schema of CNCA11 includes nearly 100 tables, however, for this ex-
ample we have selected only 24 tables representing multi-disciplinary knowledge.
These tables contain 24 objects, 53 attributes, and 13 relational attributes. The
database schema for this example represents descriptions ofagents, collective
agents, festive events, culinary manifestations, geolocationsand more. Figure 3
depicts the concept lattice obtained from the formal context generated by the

11 Chilean National Council of Culture and Arts
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database schema. Table 2 shows the decisions taken by the domain expert during
14 iterations. These decisions are based on question answering, domain labeling
(modularization) or stoping the iterations.

Table 2: Iterations made by the domain expert

Iteration number Attribute Action

1 name Assign to all tables
2 background Split the attribute
3 background Split the attribute
4 views Eliminate from some tables
5 published Eliminate from some tables
6 description Assign to all tables
7 founding date Split the attribute
8 related to Agent Eliminate from Ritual table
9 - Domain labelling: Culinary descriptors
10 domain:culinary Eliminate from CulinaryPlace table
11 - Domain labelling: ICH
12 - Domain labelling: Agent descriptors
13 - Domain labelling: Festive descriptors
14 - Domain labelling Geo descriptors

Fig. 3: Initial lattice obtained automatically from database schema

Figure 4 illustrates the �nal concept lattice presenting the re�ned structure
after 14 iterations of the domain expert. We can distinguish several modules of
information that have been marked. The expert called these modules asICH
subdomainsidenti�ed from left to right, namely: Festive Event descriptors sub-
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Fig. 4: Final lattice obtained after 14 iterations. Each ICH subdomain found
have been marked.

domain, Agent descriptors subdomain, ICH inventory subdomain, Culinary de-
scriptors subdomain, Geographical subdomain, Photo subdomain.

5 Conclusions and Future Work

To conclude, in this article we have presented a web-based tool fully functional
based on an approach published in a previous work [6]. In this earlier work
a case study was exposed obtaining interesting results, however these results
were obtained executing calls to CORON platform in a manual way with the
intervention of a knowledge engineer. The di�erence between the previous work
and this work is that the tool allows a domain expert to get an ontological
schema himself in RDFS. In the example showed in section 4 we obtained 14
iterations from a similar excerpt of a database schema, however in the previous
case study executed in [6] we obtained 9 iterations, so the resulting concept
lattices were very similar. In each lattice the same modules were found, however,
the time to reach the same result was higher. We have to consider that the expert
used the tool without the assistance of a knowledge engineer. Currently, we are
implementing the next step of this tool related to construct a semantic wiki based
on the ontological schema. So even though the ontology obtained was simple,
the domain expert could enrich it by using annotations in a semantic wiki. Also,
this wiki could aid a domain expert in order to collaborate in the documenting
process.
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Abstract. In pattern mining, one of the most important problems is
�ghting exponential explosion of the set of patterns. A typical solution is
generating only a part of all patterns satisfying some criteria. The most
well-known criterion is support of a pattern, which has the monotonic-
ity property allowing one to generate only frequent (highly supported)
patterns. Many other useful criteria are not monotonic, which makes it
di�cult to generate best patterns e�ciently. In this paper we introduce
the notion of \generalized monotonicity" and Sofia algorithm that al-
low to generate top patterns in polynomial time modulo basic operations,
e.g., measure computation, for criteria that are not monotonic. This ap-
proach is applicable not only to itemsets, but to complex descriptions
such as sequences, graphs, numbers or interval tuples, etc. In this paper
we consider stability and D-measures which are not monotonic. In the
experiments, we compute top best patterns w.r.t. these measures and
obtain very promising results.

1 Introduction

To solve the problem of exponential explosion of patterns valid in a dataset
many kinds of interestingness measures were proposed [1]. For example, pattern
support, i.e., the number of objects covered by the pattern, is one of the most
well-known measures of pattern quality. Among others stability of a formal con-
cept [2] can be mentioned. Unlike support this measure is not monotonic w.r.t.
the order of pattern inclusion and it is hard to generate only most interesting
patterns w.r.t. these measures, so one has to �nd a large set of patterns and then
postprocess it, choosing the best ones.

Due to the increasing importance of pattern mining, e�cient approaches of
�nding best patterns are appearing. In [3] authors introduce an approach for
e�ciently searching the most interesting associations w.r.t. lift or leverage of a
pattern. Another approach is searching for cosine interesting patterns [4]. The
cosine interestingness of a pattern is not a monotonic measure but the authors
take advantage of a conditional anti-monotonic property of cosine interestingness
to e�ciently mine interesting patterns. However, all of the mentioned approaches
are not polynomial in the worst case.

In this paper we introduce a new algorithm Sofia (So�a, for Searching for
Optimal Formal Intents Algorithm) for extracting top best patterns of di�erent
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kinds, i.e., itemsets, string, graph patterns, etc.Sofia algorithm is applicable to a
class of measures, including classical monotonic measures, stability,d-freeness [5],
etc. For itemset mining, our algorithm can �nd top best patterns w.r.t. a measure
from this class in polynomial time, modulo complexity of measure computation.
For more complex description the time is polynomial modulo complexity of basic
operations (intersecting and testing containment on descriptions, computation
of a measure).

2 Preliminaries

FCA is a formalism convenient for describing models of itemset mining and
knowledge discovery [6]. Here we briey de�ne pattern structures and the corre-
sponding notations [7]. A pattern structure is a triple P = ( G; (D; u); � ), where
G is a set of objects, (D; u) is a meet-semilattice of descriptions such that
(8X � G)

d
X 2 D and � : G ! D maps an object to a description. The

intersection u gives similarity of two descriptions.
Let us denote the derivative operators of the Galois connection between 2G

and D by (�) � (see [7]). A pattern concept of a pattern structure ( G; (D; u); � )
is a pair (A; d), where A � G, called pattern extent and d 2 D, called pattern
intent , such that A � = d and d� = A. The set of all pattern concepts is partially
ordered w.r.t. inclusion on extents, i.e., (A1; d1) � (A2; d2) i� A1 � A2 (or,
equivalently, d2 v d1), making a lattice, called pattern lattice.

For real datasets, the number of patterns can be large. In order to reduce
the most interesting concepts di�erent measures can be used. In this paper we
rely on stability [2], which measures the independence of a concept intent w.r.t.
randomness in data. Because of limited space we do not discuss this measure in
details here. Moreover, since concept stability is hard to compute, we rely on an
estimate of concept stability which can be computed in polynomial time for a
single concept [8].

The approach proposed in this paper is based on projections introduced for
reducing complexity of computing pattern lattices [7]. A projection operator  :
D ! D is an \interior operator", i.e. it is (1) monotonic ( x v y )  (x) v  (y)),
(2) contractive (  (x) v x) and (3) idempotent (  ( (x)) =  (x)).

An o-projected pattern structure (projected pattern structure for simplicity)
 ((G; (D; u); � )) is a pattern structure  (P) = ( G; (D  ; u  );  � � ), where D  =
 (D ) = f d 2 D j 9 ~d 2 D :  ( ~d) = dg and 8x; y 2 D; x u  y :=  (x u y) [9].
Given a projection  we say that the �xed set of  is the set of all elements
from D which are mapped to themselves by . The �xed set of  is denoted
by  (D ) = f d 2 D j  (d) = dg. Any element outside of the �xed set of  is
pruned from the description space. We say that a projection 1 is simpler than
a projection  2, denoted by  1 <  2, if  1(D ) �  2(D ), i.e.,  2 prunes less
descriptions than  1.

Our algorithm is based on this order on projections. The simpler a projection
 is, the less patterns we can �nd in (P), and the less computational e�orts one
should take. Thus, we compute a set of patterns for a simpler projection, then
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we remove unpromising patterns and extend our pattern structure and the found
patterns to a more detailed projection. This allows to reduce the size of patterns
within a simpler projection in order to reduce the computational complexity of
more detailed projection.

3 Sofia Algorithm

3.1 Monotonicity w.r.t. a Projection

Our algorithm is based on the projection monotonicity, a new idea introduced
in this paper. Many interestingness measures for patterns, e.g., stability, are not
monotonic w.r.t. subsumption order on patterns, i.e., given patterns X and Y
such that X v Y , and a nonmonotonic measureM , one does not necessarily have
M (X ) � M (Y ). For instance, support is a monotonic measure w.r.t. pattern
order and it allows for e�cient generation of patterns with support higher than
a threshold [10]. The projection monotonicity is a generalization of standard
monotonicity and allows for e�cient work with a wider set of interestingness
measures.

De�nition 1. Given a pattern structure P and a projection  , a measureM is
called monotonic w.r.t. the projection  , if

(8p 2  (P))( 8q 2 P;  (q) = p)M  (p) � M (q); (1)

where M  (p) is the measureM of pattern p computed in  (P).

Here, for any pattern p of a projected pattern structure we check that a
preimage q of p for  , e.g. p =  (q), has a measure smaller than the measure
of p. It should be noticed that a measureM for a pattern p can yield di�erent
values if M is computed in P or in  (P). Thus we use the notation M  for the
measureM computed in  (P).

An important example is given by binary data or formal contexts (G; M; I ).
In this case, a projection m corresponds to the removal of an attributem 2 M ,
i.e.,  m (B ) = B \ (M n f mg) for any B � M . So De�nition 1 means that the
interestingness of an itemsetp w.r.t. a measureM computed in (G; M nf mg; I n
G�f mg) should be higher than the interestingness of the itemsetsp and p[f mg
(the preimages ofp for  m ) w.r.t. the measure M computed in (G; M; I ). If the
value of a measure for a pattern does not depend on a projection this de�nition
is related to a classical monotonic measure. Indeed, because of contractivity of
 ( (p) v p), for any monotonic measure one hasM ( (p)) � M (p).

Thus, given a measureM monotonic w.r.t. a projection  , if p is a pattern
such that M  (p) < � , then M (q) < � for any preimageq of p for  . Hence, if,
given a pattern p of  (P), one can �nd all patterns q of P such that  (q) = p, it
is possible to �nd the patterns of  (P) and then to �lter them w.r.t. M  and a
threshold, and �nally to compute the preimages of �ltered patterns.
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3.2 Monotonicity w.r.t. a Chain of Projections

However, given just one projection, it can be hard to e�ciently discover the
patterns, because the projection is either hard to compute or the number of
unpromising patterns that can be pruned is not high. Hence we introducea chain
of projections  0 <  1 < � � � <  k = 1, where the whole pattern lattice for  0(P)
can be easily computed and1 is the identity projection, i.e., ( 8x)1(x) = x. For
example, to �nd frequent itemsets, we typically search for small itemsets and,
then, extend them to larger ones. It corresponds to extension to a more detailed
projection.

Let us discuss what is a chain of projections in the case of a binary context
K = ( G; M; I ) with M = f m1; � � � ; mN g. It can be seen that any subcontext
Ks = ( G; N; I \ G � N ), where N � M , corresponds to a projection such that
 (B � M ) = B \ N . If we put M i = f m1; � � � ; mi g, then we can consider a chain
of projections corresponding to the subset of attributesM 1; M 2; � � � ; M . The
corresponding projections are properly ordered. Now we de�ne the projection
monotonicity of M w.r.t. a chain of projections.

De�nition 2. Given a pattern structure P and a chain of projections 0 <  1 <
� � � <  k = 1, a measureM is called monotonic w.r.t. the chain of projections
if M is monotonic w.r.t. all  i for 0 � i � k.

3.3 Algorithms

Given a measure monotonic w.r.t. a chain of projections, if we are able to �nd
all preimages of any element in the �xed set of i that belong to a �xed set
of  i +1 , then we can �nd all patterns of P with a value of M higher than a
given threshold � . We call this algorithm j -Sofia and its pseudocode is given in
Fig. 1. In lines 11-12 we �nd all patterns for  0(P) satisfying the constraint that
a value ofM is higher than a threshold. Then in lines 13-15 we iteratively extend
projections from smaller to bigger ones. The extension is done by constructing
the set Pi of preimages of the setPi � 1 (lines 2-5) and then by removing the
patterns that do not satisfy the constraint from the set Pi (lines 6-9).

The algorithm is sound and complete, because �rst, when we compute the set
of preimages of a patternp, the pattern p is a preimage of itself ( (p) = p) and
second, if we remove a patternp from the set P, then the value M (p) < � and,
hence, the measure value of any preimage ofp is less than� by the projection
chain monotonicity of M .

The worst-case time complexity of j -Sofia algorithm is

T(j -Sofia ) = T(F indP atterns ( 0))+

+ k � max
0<i � k

jP i j � (T(P reimages) + T(M )) ; (2)

whereT(X ) is time for computing operation X . Since projection 0 can be chosen
to be very simple, in a typical case the complexity ofF indPatterns (�;  0) can
be low or even constant. The complexities ofP reimages and M depend on the
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Data : A pattern structure P, a chain of projections 	 = f  0 ;  1 ; � � � ;  k g, a
measureM monotonic for the chain 	 , and a threshold � for M .

1 Function ExtendProjection( i , � , P i � 1)
Data : i is the projection number to which we should extend (0 < i � k), �

is a threshold value for M , and P i � 1 is the set of patterns for the
projection  i � 1 .

Result : The set P i of all patterns with the value of measure M higher
than the threshold � for  i .

2 P i  � ; ;
3 /* Put all preimages in  i (P) for any pattern p */
4 foreach p 2 P i � 1 do
5 P i  � P i [ Preimages( i,p )
6 /* Filter patterns in P i to have a value of M higher than � */
7 foreach p 2 P i do
8 if M  i (p) � � then
9 P i  � P i n f pg

10 Function Algorithm j - Sofia
Result : The set P of all patterns with a value of M higher than the

threshold � for P.
11 /* Find all patterns in  0(P) with a value of M higher than � */
12 P  � FindPatterns( �;  0) ;
13 /* Run through out the chain 	 and find the result patterns */
14 foreach 0 < i � k do
15 P  � ExtendProjection( i; �; P ) ;

Algorithm 1: The j -Sofia algorithm for �nding patterns in P with a value
of a measureM higher than a threshold � .

measure in use and on the instantiation of the algorithm. In many cases max
0<i � k

jP i j

can be exponential in the size of the input, because the number of patterns can
be exponential. It can be a di�cult task to de�ne the threshold � a priori such
that the maximal cardinality of Pi is not higher than a given number. Thus,
we introduce Sofia algorithm, which automatically adjusts threshold � ensuring
that max

0<i � k
jP i j < L . Here L can be considered as a constraint on the memory

used by the algorithm. It can be seen from Eq. (2) that Sofia algorithm has
polynomial time complexity if M and Preimages are polynomial. In the next
subsection we consider an important partial case whereSofia has polynomial
complexity.

3.4 Sofia Algorithm for Binary Data

In this subsection we have a formal contextK = ( G; M; I ) with M = f m1; � � � ; mN g
and we want to �nd itemsets X � M interesting w.r.t. a measureM . First, we
instantiate a chain of projections. In the case of binary data it corresponds to
the chain of contexts Ki = ( G; M i ; I \ G � M i ), where M i = f m1; � � � ; mi g, i.e.,
M i contains the �rst i attributes from M . It means that  i (X ) = X \ M i .
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Then we de�ne how the function P reimages works for this kind of chains
of projections. A set X � M i � 1 has two preimages in the powerset ofM i , i.e.
X and X [ f mi g. Hence, the computation complexity of �nding preimages for
any itemset X is constant. For the projection  0 corresponding to the context
(G; ; ; ; ) there is only one itemset; . Thus, the worst case complexity forj -Sofia
algorithm is

T(j -Sofia binary ) = jM j � max
0<i � N

jP i j � T(M ): (3)

In particular, the complexity of Sofia for binary data is jM j � L � T(M ), i.e., it
is polynomial modulo complexity of the measure.

3.5 Sofia Algorithm for Closed Patterns

Closed frequent itemsets are widely used as a condensed representation of all
frequent itemsets since [10]. Here we show how one can adapt our algorithm for
closed patterns. A closed pattern in i � 1(P) is not necessarily closed in i (P).
However, the extents of (P) are extents of P [7]. Thus, we associate the closed
patterns with extents, and then work with extents instead of patterns, i.e., a
pattern structure P = ( G; (D; u); � ) is transformed into PC = ( G; (DC ; uC ); � C ),
whereDC = 2 G . Moreover, for all x; y 2 DC we havex uC y = ( x � u y� ) � , where
diamond operator is computed inP and � C (g 2 G) = f gg. Hence, every pattern
p in DC corresponds to a closed patternp� in D .

A projection  of P induces a projection C of PC , given by  C (X � G) =
 (X � ) � , where diamond is computed in P. The function  C is a projection
because of the properties of (�) � operators and mappings. We use this approach
for representing closed patterns in our computer experiments.

4 Experiments and Discussion

Datasets
Decreasing order Increasing order Random order

L = 10 3 L = 10 4 L = 10 5 L = 10 3 L = 10 4 L = 10 5 L = 10 3 L = 10 4 L = 10 5

t # � t # � t # � t # � t # � t # � t # � t # � t # �
Mushrooms < 1 0.99 181 2 0.87 49 39 0.89 7 1 0.99 181 6 0.87 49 38 0.89 7 < 1 0.99 181 3 0.87 49117 0.89 7
Chess < 1 0.997 97 2 0.92 69 17 0.94 46 1 0.88 144 4 0.24 84 38 0.68 49 < 1 0.65 103 2 0.92 69 19 0.94 46
Plants 1 1 147 14 0.96 70146 0.94 37 3 1 147 29 0.96 70263 0.94 37 1 1 147 14 0.96 70143 0.94 37
Cars < 1 0.94 19 < 1 0.61 0 < 1 0.06 0 < 1 0.86 22 < 1 0.61 0 < 1 0.06 0 < 1 0.94 19 < 1 0.6 0 < 1 0.06 0

Table 1: Evaluation results of Sofia algorithm for D-measure.

In the experiment we show how our algorithm in conjunction with stability
estimate behaves on di�erent datasets from UCI repository [11]. Here we should
note that stability and its estimate is monotone w.r.t. any projection [12] and,
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thus, we can combine it with Sofia . The datasets Mushrooms1 and Cars2 are
datasets having a relatively small number of closed patterns, which can be found
in some seconds, while the datasetsChess3 and Plants 4 have a lot of closed
patterns, which can be hardly found.

There are two obvious orders for adding an attribute inSofia algorithm: the
decreasing and increasing orders of attribute support. We consider also a random
order of attributes allowing one to discard any bias in the order of attributes.
Another point about our algorithm is that it does not ensure �nding L-top best
patterns. It �nds no more than L patterns allowing to compute the result in
polynomial time by adjusting the threshold � of stable patterns.

Thus, in our experiment we have checked which order is better for the at-
tributes and how many patterns we can �nd for a given L . Table 1 shows the
results and is divided into three parts corresponding to the order in which at-
tributes were added to the context. Then all parts are divided into three subparts
corresponding to a value ofL 2 f 103; 104; 105g. Hence, we have 9 experiments
and for every experiment we measure the computation time in seconds (t), the
ratio of found patterns to L (#) and the �nal � corresponding to the found
patterns. For example, in the Mushroomsdataset, adding the attributes in the
decreasing order of their support forL = 10000, the total computational time
is equal to 2 seconds; the algorithm found around 0:87 � L = 8700 patterns
representing all patterns with stability higher than 49.

In Table 1 we can see that our algorithm is e�cient in the big and small
datasets however the computational time and the number of found patterns
depend on the order of attribute addition, i.e., on a projection chain. We can
see that the computational time and the number of patterns for increasing order
are never better than those of decreasing order and random order. Decreasing
order and random order have nearly the same behavior, but in some cases the
random order gives slightly worse results than the decreasing order. In fact, in
the case of decreasing order we generate more patterns on earlier iterations of
our algorithm, i.e., we have more chances to �nd an unstable pattern and �lter
it as earlier as possible. Since concepts are �ltered earlier, we have more space
for the computation, thus having smaller threshold � and larger number of found
patterns, and we should process less patterns, thus saving the computation time.
We see that for the decreasing order of attributes the number of found patterns
is always around or higher than 0:9 � L , i.e., we �nd nearly as many patterns as
the requested limit L .

1 https://archive.ics.uci.edu/ml/datasets/Mushroom
2 https://archive.ics.uci.edu/ml/datasets/Car+Evaluation
3 https://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.

+King-Knight)
4 https://archive.ics.uci.edu/ml/datasets/Mushroom
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5 Conclusion

In this paper we have introduced a new kind of interestingness measures of
patterns monotonic w.r.t. a chain of projections. Based on this monotonicity we
introduce a new algorithm calledSofia that �nds the top best patterns for such
kind of measures in polynomial time. Our experiments justi�ed the e�ciency
of our algorithms. Many directions for future work are promising. First, we
should work on adaptation of Sofia for �nding di�erent kinds of patterns, e.g.,
itemset generators, sequences, graphs. Second, we should study the best chains
of projections and the best order of attributes for Sofia algorithm. Finally, the
study of new measures that can be used withSofia is also very important.
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Abstract. Usually web search results are represented as long list of doc-
ument snippets. It is di�cult for users to navigate through this collection
of text. We propose clustering method that uses pattern structure con-
structed on augmented syntactic parse trees. In addition, we compare our
method to other clustering methods and demonstrate the limitations of
the competitive methods.

1 Introduction and related works

Document clustering problem has been widely investigated in many applications
of text mining. One of the most important aspects of a text clustering problem is
a structured representation of text. The common approach to text representation
is the Vector Space Model [1], where the collection or corpus of documents is
represented as a term-document matrix. The main drawback of this model is its
inability to reect the importance of words with respect to a document and a
corpus. To tackle this issue the weighted scheme based on tf-idf score has been
proposed.

However, a term-document matrix built on a large texts collection may be
sparse and have high dimensionality. To reduce the feature space one may use
PCA, truncated SVD (Latent Semantic Analysis), random projection and other
methods. To handle synonyms as similar terms a Generalized Vector Space
Model [2, 3], a Topic-based Vector Model [4] and Enhanced Topic-based Vec-
tor Space Model [5] were introduced. The most common ways to clustering of a
term-document matrix are Hierarchical clustering, k-Means and also Bisecting
k-Means.

Graph models are also used for text representation. Document Index Graph
(DIG) was proposed by Hammouda [6]. Zamir and Etzioni [7] use su�x tree for
representing web snippets, where words are used instead of characters. The more
sophisticated model based on n-grams was introduced in [8].

In this paper, we consider a particular application of document clustering:
representation of web search results that could make it easier for users to �nd the
information they are looking for [9]. Clustering snippets on salient phrases (i.e.
key phrases that characterize a cluster) are described in [10, 11]. But the most
promising approach for document clustering is conceptual clustering, because it
allows to obtain overlapping clusters and to organize them into a hierarchical
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structure as well [12{17]. We present an approach to select the most signi�cant
clusters based on pattern structures [18]. This approach was introduced in [19].
The main idea is to construct a hierarchical structure of clusters using a reduced
representation of syntactic trees with discourse relations between them. Lever-
aging discourse information allows to combine news articles not only by keyword
similarity but by broader topicality and writing styles as well.

2 Clustering based on pattern structure

Parse Thickets Parse thicket [19] is de�ned as a set of parse trees for each
sentence augmented with a number of arcs, reecting inter-sentence relations. In
this work we use parse thickets based on a limited set of relations: coreferences
[20], Rhetoric structure relations [21] and Communicative Actions [22]. More
information could be found in [19].

FCA A formal context is a triple ( G; M; I ), where G and M be sets, called the
set of objects and attributes, respectively. LetI be a relation I � G� M between
objects and attributes, i.e. (g; m) 2 I if the object g has the attribute m. The
derivation operator (�)

0

are de�ned for A � G and B � M as follows:

A
0

= f m 2 M j8g 2 A : gImg

B
0

= f g 2 Gj8m 2 B : gImg

A
0

is the set of attributes common to all objects ofA and B
0

is the set of objects
sharing all attributes of B . The double application of (�)

0

is a closure operator,
i.e., (�)

00

is extensive, idempotent and monotone. Sets (A)
00

and (B )
00

are said to
be closed. A formal concept is a pair (A; B ), where A � G, B � M and A

0
= B ,

B
0

= A. A and B are called the formal extent and the formal intent, respectively.

Pattern Structure and Projections Pattern Structures are generalization of for-
mal contexts, where objects are described by more complex structures, rather
than a binary data. A pattern structure [18] is de�ned as a triple ( G; (D; u) ; � ),
whereG is a set of objects, (D; u) is a complete meet-semilattice of descriptions
and � : G ! D is a mapping an object to a description. The Galois connections
between set of objects and their descriptions are de�ned as follows:

A � := ug2 A � (g) for A � G

d� := f g 2 Gjd v � (g)g for d 2 D

A pair ( A; d) for which A � = d and d� = A is called a pattern concept.
A projection  is a kernel operator, i.e. it is monotone (x v y )  (x) v

 (y)), contractive (  (x) v x), and idempotent ( ( (x)) =  (x)). The map-
ping  : D ! D is used to replace (G; (D; u) ; � ) by (G; (D  ; u  ) ;  � � ), where
D  = f d 2 D j9d0 2 D :  (d0) = dg.
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In our case,an original paragraph of text and parse thickets constructed from
this paragraph correspond toan object and a description of pattern conceptsre-
spectively. To improve e�ciency and decrease time complexity we use projection
instead of a parse thicket itself. Projection on a parse thicket is de�ned as a set
of its maximal sub-trees and the intersection operator takes the form of pairwise
intersection of elements within noun and verb phrase groups.

3 Reduced pattern structures

A pattern structure constructed from the collection of short texts usually has
a huge number of concepts. To reduce the computational costs and improve
the interpretability of pattern concepts we introduce several metrics that are
described below.

Average and Maximal Pattern Score The average and maximal pattern score
indices are meant to assess how meaningful is the common description of texts
in the concept. The higher the di�erence of text fragments from each other, the
lower their shared content is. Thus, meaningfulness criterion of a pattern concept
hA; di is

Scoremax hA; di := max
chunk 2 d

Score(chunk)

Scoreavg hA; di :=
1

jdj

X

chunk 2 d

Score(chunk)

The score function Score(chunk) estimates description d using its weights
for di�erent parts of speech.

Average and Minimal Pattern Loss ScoreThis scores estimate how much infor-
mation contained in the description of a text is lost with respect to the origi-
nal text. The average pattern loss score calculates the average loss of a cluster
content with respect to texts in this cluster, while minimal pattern score loss
represents a minimal loss of content among all texts included in a concept.

ScoreLossmin hA; di := 1 �
Scoremax hA; di

ming2 A Scoremax hg; dg i

ScoreLossavg hA; di := 1 �
Scoreavg hA; di

1
jdj

P
g2 A Scoremax hg; dg i

We use a reduced pattern structure. We propose to create exactly mean-
ingful pattern concepts. For arbitrary sets of texts A1 and A2, corresponding
descriptions d1, d2 and candidate for a pattern concepthA1 [ A2 ; d1 \ d2i need
to satisfy the following constrains

ScoreLoss� hA1 [ A2 ; d1 \ d2i � �

Score� hA1 [ A2 ; d1 \ d2i � � 1 min f Score� hA1 ; d1i ; Score� hA2 ; d2ig
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Score� hA1 [ A2 ; d1 \ d2i � � 2 max f Score� hA1 ; d1i ; Score� hA2 ; d2ig

The �rst constraint provides condition for the construction of concepts with
meaningful content, while two other constrains ensure that we do not use con-
cepts with similar content.

4 Experiments

In this section we consider two examples for the proposed clustering method.
The �rst one corresponds to the case when clusters are overlapping and distin-
guishable, the second one is the case of non-overlapping clusters.

4.1 User Study

In the most cases it is quite di�cult to identify disjoint classes for a text collection
[23]. To con�rm this, we conducted experiments similar to the experiment scheme
described in [11]. We took web snippets obtained by querying the Bing search
engine API and asked a group of four experts to label ground truth for them.
We performed news queries related to world's most pressing news (for example,
\�ghting Ebola with nanoparticles", \turning brown eyes blue", \F1 winners",
\read facial expressions through webcam", \2015 ACM awards winners") to
make labeling of data easier for the experts.

According to the experts, it was di�cult to determine partitions, while over-
lapping clusters naturally stood out. As a result, in the case of non-overlapping
clusters we usually got a small number of large classes or a su�ciently large
number of classes consisting of 1-2 snippets. More than that, for the same set of
snippets we obtained quite di�erent partitions.

We used the Adjusted Mutual Information score to estimate pairwise agree-
ment of non-overlapping clusters, which were identi�ed by the experts. This
metric allows one to estimate agreement of two clustering results with correc-
tion for randomness partition.

MI adj =
MI (U; V) � E [MI (U; V)]

max (H (U); H (V )) � E [MI (U; V)]

whereU and V are partitions of the news set,MI (U; V) - the mutual information
between them andE [MI (U; V)] is the expected mutual information between
two random clusterings.

To study the behavior of the conventional clustering approach we consider
12 short texts on news query \The Ebola epidemic". Tests are available by link
1.

Experts identify quite di�erent non-overlapping clusters. The pairwise Ad-
justed Mutual Information score was in the range of 0,03 to 0,51. Next, we

1 https://drive.google.com/file/d/0B7I9HM34b_62TEFtUTRqdzdqWjA/view?usp=
sharing
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compared partitions to clustering results of the following clustering methods: k-
means clustering based on vectors obtained by truncated SVD (retaining at least
80% of the information), hierarchical agglomerative clustering (HAC), complete
and average linkage of the term-document matrix with Manhattan distance and
cosine similarity, hierarchical agglomerative clustering (both linkage) of tf-idf
matrix with Euclidean metric. In other words, we turned an unsupervised learn-
ing problem into the supervised one. The accuracy score for di�erent clustering
methods is represented in Figure 1. Curves correspond to the di�erent partitions
that have been identi�ed by people.

Fig. 1: Classi�cation accuracy of clustering results and \true" clustering (example 1).
Four lines are di�erent news labeling made by people. The y-axis values for �xed x-
value correspond to classi�cation accuracy of a clustering method for each of the four
labeling

As it was mentioned earlier, we obtain inconsistent \true" labeling. Thereby
the accuracy of clustering di�ers from labeling made by evaluators. This ap-
proach doesn't allow to determine the best partition, because a partition itself
is not natural for the given news set. For example, consider clusters obtained
by HAC based on cosine similarity (trade-o� between high accuracy and its
low variation): 1-st cluster: 1,2,7,9; 2-nd cluster: 3,11,12; 3-rd cluster: 4,8; 4-th
cluster: 5,6; 5-th cluster: 10.

Almost the same news 4, 8, 12 and 9, 10 are in the di�erent clusters. News
10, 11 should be simultaneously in several clusters (1-st, 5-th and 2-nd,3-rd
respectively).

4.2 Examples of pattern structures clustering

To construct hierarchy of overlapping clusters by the proposed methods, we use
the following constraints: � = 0 ; 75, � 1 = 0 ; 1 and � 2 = 0 ; 9. The value of � limits
the depth of the pattern structure (the maximal number of texts in a cluster),
put di�erently, the higher � , the closer should be the general intent of clusters.
� 1 and � 2 determine the degree of dissimilarity of the clusters on di�erent levels
of the lattice (the clusters are prepared by adding a new document to the current
one).

We consider the proposed clustering method on 2 examples. The �rst one was
described above, it corresponds to the case of overlapping clusters, the second
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one is the case when clusters are non-overlapping and distinguishable. Texts of
the second example are available by link2. Three clusters are naturally identi�ed
in this texts.

The cluster distribution depending on volume are shown in Table 1. We got
107 and 29 clusters for the �rst and the second example respectively.

Text number 1 2 3 4 5 6
Example 1 12 34 33 20 7 1
Example 2 11 15 3 0 0 0

Table 1: The clusters volume distribution for non-overlapping clusters (example 1) and
overlapping clusters (example 2)

In fact, this method is an agglomerative hierarchical clustering with overlap-
ping clusters. Hierarchical structure of clusters provides browsing of texts with
similar content by layers. The cluster structure is represented on Figure 2. The
top of the structure corresponds to meaningless clusters that consist of all texts.
Upper layer consists of clusters with large volume.

(a) pattern structure without re-
duction

(b) reduced pattern structure

Fig. 2: The cluster structure (example 2). The node on the top corresponds to the
\dummy" cluster, high level nodes correspond to the big clusters with quite general
content, while the clusters at lower levels correspond to more speci�c news.

Clustering based on pattern structures provides well interpretable groups.
The upper level of hierarchy (the most representative clusters for example 1)
consists of the clusters presented in Table 2.

MaxScore Cluster (extent) MaxScore Cluster (extent) MaxScore Cluster (extent)
7,8 f 3, 11, 12g 3,8 f 1, 2, 3, 7, 9g 3,2 f 3, 9, 11g
4,1 f 4, 8, 11g 3,3 f 2, 4, 11g 2,8 f 3, 10g
3,8 f 1, 5, 11g 3,3 f 2, 11g 2,4 f 1, 2, 6, 9, 10g
3,8 f 1, 11g 3,3 f 5, 6g 2,3 f 1, 5, 6g

Table 2: Scores of representative clusters

We also consider smaller clusters and select those for which adding of any
object (text) dramatically reduces the MaxScore f 1; 2; 3; 7; 9g and f 5; 6g. For

2 https://drive.google.com/file/d/0B7I9HM34b_62czFlZ29zZl9kblk/view?usp=
sharing
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other nested clusters signi�cant decrease ofMaxScore occurred exactly with
the an expansion of single clusters.

For the second example we obtained 3 clusters that corresponds to \true"
labeling.

Our experiments show that pattern structure clustering allows to identify
easily interpretable groups of texts and signi�cantly improves text browsing.

5 Conclusion

In this paper, we presented an approach that addressed the problem of short
text clustering. Our study shows a failure of the traditional clustering methods,
such as k-means and HAC. We propose to use parse thickets that retain the
structure of sentences instead of the term-document matrix and to build the
reduced pattern structures to obtain overlapping groups of texts. Experimen-
tal results demonstrate considerable improvement of browsing and navigation
through a texts set for users. Introduced indicesScore and ScoreLoss both
improve computing e�ciency and tackle the problem of redundant clusters.

An important direction for future work is to take into account synonymy and
to compare the proposed method to similar approach that use key words instead
of parse thickets.
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Abstract. Pattern structures allow one to approach the knowledge ex-
traction problem in case of arbitrary object descriptions. They provide
the way to apply Formal Concept Analysis (FCA) techniques to non-
binary contexts. However, in order to produce classi�cation rules a con-
cept lattice should be built. For non-binary contexts this procedure may
take much time and resources. In order to tackle this problem, we in-
troduce a modi�cation of the lazy associative classi�cation algorithm
and apply it to credit scoring. The resulting quality of classi�cation is
compared to existing methods adopted in bank systems.

1 Introduction

Banks and credit institutions face classi�cation problem each time they con-
sider a loan application. In the most general case, a bank aims to have a tool to
discriminate between solvent and potentially delinquent borrowers, i.e. the tool
to predict whether the applicant is going to meet his or her obligations or not.
Before 1950s such a decision was expert driven and involved no explicit statis-
tical modeling. The decision whether to grant a loan or not was made upon an
interview and after retrieving information about spouse and close relatives [4].
From the 1960s, banks have started to adopt statistical scoring systems that were
trained on datasets of applicants, consisting of their socio-demographic factors
and loan application features. As far as mathematical models are concerned, they
were typically logistic regressions run on selected set of attributes. Apparently,
a considerable amount of research was done in the �eld of alternative machine
learning techniques seeking the goal to improve the results of the wide-spread
scorecards [7,8,9,10,11].

All mentioned methods can be divided into two groups: the �rst one provides
the result di�cult for interpretation, so-called �black box� models, the second
group provides interpretable results and clear model structure. The key feature
of risk management practice is that, regardless of the model accuracy, it must
not be the black box. That is why methods such as neural networks and SVM
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classi�ers did not earn much trust within the banking community [4]. The divid-
ing hyperplane in an arti�cial high-dimensional space (dependent on the chosen
kernel) cannot be easily interpreted in order to claim the reject reason for the
client. As far as neural networks are concerned, they also do not provide the
user with a set of reasons why a particular loan application has been approved
or rejected. In other words, these algorithms do not provide the decision maker
with knowledge. The predicted class is generated, but no knowledge is retrieved
from data.

On the contrary, alternative methods such as association rules and decision
trees provide the user with easily interpretable rules which can be applied to the
loan application. FCA-based algorithms also belong to the second group since
they use concepts in order to classify objects. The intent of the concept can be
interpreted as a set of rules that is supported by the extent of the concept. How-
ever, for non-binary context the computation of the concepts and their relations
can be very time-consuming. In case of credit scoring we deal with numerical
context, as soon as categorical variables can be transformed into a set of dummy
variables. Lazy classi�cation [16] seems to be appropriate to use in this case
since it provides the decision maker with the set of rules for the loan application
and can be easily parallelized. In this paper, we modify the lazy classi�cation
framework and test it on credit scoring data of a top-10 Russian bank.

The paper is structured as follows: section 2 provides basic de�nitions. Section
3 argues why the original setting can be inconsistent in case of a large numerical
context and describes the proposed modi�cation and its parameters. Section
4 describes voting schemes that can be used to classify test objects. Section
5 describes the data in hand and some experiments with parameters of the
algorithm. Finally, section 6 concludes the paper.

2 Main De�nitions

First, we recall some standard de�nitions related to Formal Concept Analysis,
see e.g. [1,2].

Let G be a set (of objects), let (D, u) be a meet-semi-lattice (of all possible
object descriptions) and let � : G ! D be a mapping. Then (G, D ,� ), where
D =(D, u), is called a pattern structure [1], provided that the set
� (G) := { � (g)|g 2 G} generates a complete subsemilattice (D � , u) of (D, u), i.e.,
every subset X of� (G) has an in�mum uX in (D, u). Elements of D are called
patterns and are naturally ordered by subsumption relation v :
given c, d 2 D one has cv d $ c u d = c. Operation u is also called asimilarity
operation. A pattern structure (G; D ; � ) gives rise to the following derivation
operators (�) � :

A � =
l

g2 A

� (g) for A 2 G;

d� = f g 2 G j d v � (g)g for d 2 (D; u):
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These operators form a Galois connection between the powerset ofG and
(D; u). The pairs (A; d) satisfying A � G, d 2 D, A � = d, and A = d� are called
pattern conceptsof (G,D , � ), with pattern extent A and pattern intent d. Oper-
ator ( �) �� is an algebraical closure operator on patterns, since it is idempotent,
extensive, and monotone [1].

The concept-based learning model for standard object-attribute representa-
tion (i.e., formal contexts) is naturally extended to pattern structures. Suppose
we have a set of positive examplesG+ and a set of negative examplesG� w.r.t.
a target attribute, G+ \ G� = ; , objects from
G� = G n(G+ [ G� ) are called undetermined examples. A pattern c2 D is an
� - weak positive premise (classi�er) i�:

jj c� \ G� jj
jjG� jj

� � and 9A � G+ : c v A �

A pattern h 2 D is an � - weak positive hypothesis i�:

jjh� \ G� jj
jjG� jj

� � and 9A � G+ : h = A �

In case of credit scoring we work with pattern structures on intervals as
soon as a typical object-attribute data table is not binary, but has many-valued
attributes. Instead of binarizing (scaling) data, one can directly work with many-
valued attributes by applying interval pattern structure. For two intervals [a1; b1]
and [a2; b2], with a1; b1; a2; b2 2 R the meet operation is de�ned as [15]:

[a1; b1] u [a2; b2] = [ min (a1; a2); max(b1; b2)].
The original setting for lazy classi�cation with pattern structures can be

found in [3].

3 Modi�cation of lazy classi�cation algorithm

In credit scoring the object-attribute context is typically numerical. Factors
can have arbitrary distributions and take wide range of values. At the same time
categorical variables and dummies can be present. With relatively large number
of attributes (over 30-40) it produces high-dimensional space of continuous vari-
ables. That is when the result of the meet operator tends to be very speci�c, i.e.
for almost every g 2 G only g and gn have the descriptin � (gn ) u � (g). This hap-
pens due to the fact that numerical variables, ratios especially, can have unique
values for every object. This results in that for test object gn the number of
positive and negative premises is close to the number of observations in those
context correspondingly. In other words, too speci�c descriptions are usually not
falsi�ed (i.e. there are no objects of opposite class with such description) and
almost always form either positive or negative premises. Therefore, the idea of
voting scheme for lazy classi�cation in the case of high dimensional numerical
context may turn out to be obscure. Thus, it seems reasonable to seek the con-
cepts with larger extent and with not too speci�c intent. At the same we would
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like to preserve the advantages of lazy classi�cation, e.g. no need to compute a
full concept lattice, easy parallelization etc. The way to increase the extent of the
generated concepts is to consider intersection of the test object with more than
one element from the positive (negative) context. What is the suitable number
of objects to take for intersection? In our modi�cation we consider this as a
parameter subsample size and perform grid search. The parameter is expressed
as percentage of the observations in the context. As subsample size grows, the
resulting intersection � (g1) u : : : u � (gk ) u � (g) becomes more generic and it is
more frequently falsi�ed by the objects from the opposite context. Strictly speak-
ing, in order to replicate the lazy classi�cation approach, one should consider all
possible combinations of the chosen number of objects from the positive (neg-
ative) context. Apparently, this is not applicable in the case of large datasets.
For example, having 10 000 objects in positive context and having subsample
size equal to only two objects will produce almost 50 mln combinations for in-
tersection with the test object. Therefore, we randomly take the chosen number
of objects from positive (negative) context as candidates for intersection with
the test object. The number of times (number of iterations) we randomly pick a
subsample from the context is also tuned through grid search. Intuition says , the
higher the value of the parameter the more premises are mined from the data.
However, the obvious penalty for increasing the value of this parameter is time
and resources required for computing intersections. As mentioned before, the
greater the subsample size, the more it is likely that(� (g1) u : : : u � (gk ) u � (g)) �

contains the object of the opposite class. In order to control this issue, we add a
third parameter which is alpha-threshold. If the percentage of objects from the
positive (negative) context that falsify the premise � (g1) u : : : u � (gk ) u � (g) is
greater than alpha-threshold of this context then the premise will be considered
as falsi�ed, otherwise the premise will be supported and used in the classi�cation
of the test object.

4 Voting schemes

The �nal classi�cation of a test object is based on a voting scheme among
premises. In most general case voting scheme F is a mapping:

F (gtest ; h+
1 ; :::; h+

p ; h�
1 ; :::; h�

n ) ! [� 1; 1; ; ]

where gtest is the test object with unknown class,h+
i is a positive premise8i =

1; p and h�
j is a negative premise8j = 1; n , -1 is a label for negative class, and 1

is a label for positive class (i.e. defaulters). In other words,F is an aggregating
rule that takes premises as input and gives the classi�cation label as an output.
Note that we allow for an empty label. If the label is empty it is said that the
voting rule abstains from classi�cation. There may be di�erent approaches to
build up aggregating rules. The voting scheme is built upon weighting function
! (�), aggregation operatorA(�) and comparing operator 
 .

F (! (�); A(�); 
 ) =

= ( Ap
i =1 [! (h+

i )]) 
 (An
j =1 [! (h�

j )])
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In order to con�gure a new weighting scheme it is su�cient to de�ne the op-
erators and the weighting function. In this paper we use the number of positive
versus negative premises. In this case the rule allows the test object to satisfy
both positive and negative premises which decreases the rejection from classi-
�cation. The weighting function, aggregation operator and comparing operator
are de�ned as follows:

A(h) =
X

h

! (h) =

(
1; if � (gtest ) v h
0; otherwise

a 
 b =

(
sign(b� a); if a 6= b
; ; a = b

So the label for a test objectgn is de�ned by the following mapping:

F (gtest ; h+
1 ; :::; h+

p ; h�
1 ; :::; h�

n ) =

= (
pX

i =1

[� (gtest ) v h+
i ]) 
 (

nX

j =1

[� (gtest ) v h�
j ])

However, one can think of margin b � a as a measure for discrimination
between two classes and consider the decision boundary based on receiver oper-
ating characteristic analysis, for instance. This approach is good for decreasing
the number of rejects from classi�cation, but it does not account for the sup-
port of the premises. Naturally, one would give more weight to the premise with
large image (with higher support). Also, if the number of positive and negative
premises is equal the rule rejects from classi�cation.

5 Experiments

The data we used for the computation represent the customers and their met-
rics assessed on the date of loan application. The applications were approved by
the bank credit policy and the clients were granted the loans. After that the
loans were observed for the fact of delinquency. The dataset is divided into two
contexts positive and negative. The positive context is the set of loans where
the target attribute is present. The target attribute in credit scoring is typi-
cally de�ned as more than 90 days of delinquency within the �rst 12 months
after the loan origination. So, the positive context is the set of bad borrowers,
and the negative context consists of good ones. Each context consists of 1000
objects in order that voting scheme concerned in the second section was appli-
cable. The test dataset consists of 300 objects and is extracted from the same
population as the positive and negative contexts. Attributes represent various
metrics such as loan amount, term, rate, payment-to-income ratio, age of the
borrower, undocumented-to-documented income, credit history metrics etc. The
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set of attributes used for the lazy classi�cation trials contained 28 numerical at-
tributes. In order to evaluate the accuracy of the classi�cation we calculate the
Gini coe�cient for every combination of parameters based on 300 predictions on
the test set. Gini coe�cient is calculated based on the margin between the num-
ber of objects within positive premises and negative ones. In fact, the margin is
the analog for the score value in credit scorecards. Gini coe�cient was chosen as
performance metric because it is conventionally used to evaluate the quality of
classi�cation models in credit scoring [4]. When the subsample size is low, the
intersections of the test object description and the members of positive (nega-
tive) context tend to be more speci�c. That is why, a relatively high number of
premises are mined and used for the classi�cation. As subsample size increases,
the candidates for premises start being generic and it is likely that there exists
certain amount of objects from the opposite context which also satisfy the de-
scription. If alpha-threshold is low, the frequency of rejects from classi�cation is
high. The dynamics of premise mining is demonstrated on the following graphs:

Fig. 1. The dynamics of negative � - weak premises mining

The average number of premises mined for a test object is dropping as ex-
pected with the increase in the subsample size and the drop is quicker for higher
alpha-thresholds. This supports the idea, that if lazy classi�cation is run in its
original setting upon the numerical context (i.e. when subsample size consists
of only one object) the number of premises generated is close to the number of
objects in the context, so the premises can be considered as too speci�c. The
descriptive graph above allows one to expect that the proposed parameters of
the algorithm can be tuned (grid searched), so as to tackle the trade-o� between
the high number of premises used for classi�cation and the size of their support.
The average number of positive premises tends to fall slightly faster compared
to negative premises. Below we present the classi�cation accuracy obtained for
di�erent combinations of parameters (grid search).
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Fig. 2. The dynamics of � - weak positive premises mining

Table 1. Gini coe�cients for the parameters grid search

Subsample size
Alpha-threshold Number of iterations 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9%
0.0% 100 40% 44% 39% 18% 1% 0% 0% 0% 0%

150 35% 46% 35% 5% 0% 0% 0% 0% 0%
200 42% 37% 36% 12% 5% 1% 0% 0% 0%
500 39% 44% 44% 25% 6% 1% 0% 0% 0%
1000 44% 47% 44% 41% 11% 3% 0% 0% 0%
2000 44% 48% 46% 36% 17% 4% 0% 0% 0%

0.1% 100 33% 37% 40% 40% 44% 43% 34% 32% 34%
150 41% 34% 33% 43% 41% 47% 41% 37% 37%
200 40% 40% 34% 42% 51% 43% 44% 41% 36%
500 37% 42% 47% 49% 51% 49% 43% 41% 34%
1000 37% 42% 46% 48% 49% 48% 43% 43% 37%
2000 39% 43% 45% 49% 51% 49% 46% 41% 38%
5000 43% 40% 44% 49% 46% 50% 48% 38% 36%

0.2% 100 29% 38% 42% 32% 43% 37% 46% 43% 37%
150 27% 42% 41% 41% 36% 47% 48% 45% 41%
200 32% 40% 43% 42% 42% 49% 46% 47% 48%
500 39% 46% 46% 48% 47% 48% 51% 48% 51%
1000 41% 50% 48% 47% 49% 53% 52% 52% 47%
2000 38% 48% 50% 48% 47% 53% 52% 53% 50%

0.3% 100 35% 38% 39% 42% 39% 45% 34% 45% 39%
150 27% 43% 44% 42% 42% 39% 37% 40% 46%
200 34% 46% 47% 45% 49% 47% 45% 45% 52%
500 31% 45% 49% 50% 49% 46% 50% 51% 47%
1000 37% 48% 49% 49% 49% 47% 52% 51% 51%
2000 38% 46% 48% 51% 51% 50% 50% 52% 52%
5000 40% 47% 46% 51% 52% 51% 49% 51% 53%
10000 40% 44% 43% 46% 46% 48% 50% 52% 54%
20000 40% 43% 42% 46% 47% 49% 50% 52% 53%

0.4% 100 28% 39% 44% 48% 43% 50% 53% 42% 49%
150 34% 42% 43% 42% 43% 52% 50% 45% 47%
200 33% 46% 43% 47% 51% 49% 49% 42% 45%
500 37% 50% 50% 49% 49% 49% 51% 47% 48%
1000 40% 48% 50% 50% 51% 52% 50% 48% 50%
2000 37% 48% 49% 49% 49% 47% 52% 49% 51%
5000 39% 42% 42% 43% 45% 47% 49% 52% 49%
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We observe the area with zero Gini coe�cients where the alpha-threshold is
zero and the subsample size is relatively high. That is due to the fact that almost
no premises were mined during the lazy classi�cation run. It is quite intuitive
because as the subsample size grows, the intersection of the subsample with a
test object results in a generic description, which is very likely to be falsi�ed at
least by one object from the opposite context. In this case the rejection from
classi�cation takes place almost for all test objects. The �rst thing that is quite
intuitive is that the more iterations are produced, the higher is the Gini on
average:

Fig. 3. Average Gini grouped by the di�erent number of iterations (over all other pa-
rameter values)

The more times the subsamples are randomly extracted the more knowledge
(in terms of premises) is generated. By increasing the number of premises used for
classi�cation according to voting scheme, we are likely to capture the structure of
the data in more detail. However, the number of iterations is not the only driver
of the classi�cation accuracy in our case. We �nd a range with relatively high
Gini in the area of mild alpha-threshold and relatively high subsample size. It
also seems natural as soon as the support of a good predictive rule (i.e. premise)
is expected to be higher than its support in the opposite context. We elaborate
further and run additional grid search in range of parameters providing high
Gini coe�cient:
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Table 2. Gini coe�cients for the parameters grid search on speci�ed area

Subsample size
Alpha-thresh-old Number of iterations 1.0% 1.1% 1.2% 1.3% 1.4% 1.5%
0.3% 500 51% 49% 48% 43% 41% 38%

1000 52% 51% 48% 45% 43% 39%
2000 54% 53% 49% 47% 46% 38%
5000 55% 52% 50% 47% 46% 40%
10000 56% 53% 50% 47% 47% 40%
20000 55% 53% 51% 46% 48% 41%

According to performed grid search the range with the highest Gini (55%-
56%) on the test sample is in range with following parameter values: alpha-
threshold = 0,3%, number of iterations = 10000, subsample size = 1,0%. The
result was compared to three benchmarks that are traditionally used in the credit
scoring within the bank system: logistic regression, scorecard and decision tree.
It should be cleared what is implied by the scorecard classi�er. Mathematical
architecture of the scorecard is based on logistic regression which takes the trans-
formed variables as input. The transformation of the initial variables which is
typically used is weight of evidence transformation (WOE-transformation [13]).
It is wide-spreaded in credit scoring to apply such a transformation to the input
variables as soon as it accounts for non-linear dependencies and it also provides
certain robustness coping with potential outliers. The aim of the transformation
is to divide each variable into no more than k categories. The thresholds are
derived so as to maximize the information value of a variable [13]. Having each
variable binned into categories, the log-odds ratio is calculated for each category.
Finally, instead of initial variables the discrete valued variables are considered as
input in logistic regression. The properties of the decision tree were as follows:
we ran CART with two possible child nodes from each parent node. The crite-
rion for optimal threshold calculation was the greatest entropy reduction. The
number of terminal nodes was not explicitly restricted; however, the minimum
size of the terminal node was set to 50. As far as logistic regression is concerned,
the variable selection was performed based on stepwise approach [14]. As for
scorecard, the variables were initially selected based on their information value
after the WOE-transformation. The comparison of the classi�ers performance
based on test sample of 300 objects is given in Table 3.
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Table 3. Modi�ed lazy classi�cation algorithm versus models adopted in the bank

Gini on test sample
Logistic regression 47.38%
Scorecard
(Logistic based on WOE-transformation)

51.89%

CART (minsize= 50) 54.75%
MLCA
(s = 1%, a=0.3%,
n=10000)

56.30%

6 Conclusion

When dealing with large numerical datasets, lazy classi�cation may be prefer-
able to classi�cation based on explicitly generated classi�ers, since it requires less
time and memory resources [3]. However, the original lazy classi�cation setting
in case of high dimensional numerical feature space meets certain limitation.
The limitation is that, when intersecting descriptions of a test object and every
object from the context, one is likely to acquire premises with image consisting
only of those two objects. In other words, the premises tend to be very speci�c
for the context and, therefore, the number of positive and negative premises is
likely to be equal to the number of the objects in the contexts. The weighting
cannot be considered helpful in this case as soon as the premises will have very
similar low support. In this paper, we modi�ed the original lazy classi�cation
setting by making it, in fact, a stochastic procedure with three parameters: sub-
sample size, number of iterations and alpha-threshold. In e�ect, the modi�ed
algorithm mines the premises with relatively high support that will be used for
the classi�cation of the test object. The classi�cation is then carried out upon
the prede�ned voting scheme. We applied the introduced procedure to the retail
loan classi�cation problem. The data we used for was provided during the pilot
project with one of the top-10 banks in Russia, the details are not provided due
to non-disclosure agreement. The positive and negative contexts both had 1000
objects with 28 numerical attributes. The accuracy of the algorithm was evalu-
ated on the test dataset consisting of 300 objects. Gini coe�cient was chosen as
accuracy metric. We performed the basic grid search by running the modi�ed
lazy classi�cation algorithm with di�erent parameter values. The classi�cation
accuracy of the algorithm was compared to the conventionally adopted models
used in the bank. The benchmark models were logistic regression, scorecard and
decision tree. The proposed algorithm outperforms the logistic regression the
scorecard with the subsample size parameter around 1%, alpha-threshold equal
to 0,3% and with number of iterations over 5000. The performance of the decision
tree is at the comparable level with the proposed algorithm, however, the mod-
i�ed lazy classi�cation is slightly better in terms of Gini coe�cient. As an area
for further research, one can consider and compare accuracy when other voting
schemes are used. It is expected that taking into account premises' speci�city
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one can improve overall accuracy of the classi�cation algorithm or, alternatively,
one will reach the same accuracy given less number of iterations, which can save
the time resources required for the calculations.
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Algorithm 1 Lazy Classi�cation by Sub-Samples in Numeric Context
Input: f P osdata ; Negdata g � positive and negative numerical contexts.
N + ; N � � number of objects in the contexts. It is preferable that the positive and
negative contexts are of the same size.
M � number of attributes.
sub:smpl � percentage of the context randomly used for intersection with the test
object (parameter).
num:iter � number of iterations (resamplings) during the premise mining (parameter).
alpha:threshold is the maximum allowable percentage of the opposite context for that
the premise is not falsi�ed (parameter).
t � test object.

Output: margin t � measure that is produced by the voting rule.
yt � class labels predicted for the test object.

for iter from 1 to num:iter do
S=random.sample(P osdata ,size=sub:smpl�N + ) � mine positive � - weak premises
descr = � (g1) u ::: u � (gs ) u � (t)
Negimage = f x 2 descr� jx 2 Negdata g
if jjNegimage jj < alpha:threshold � N � then

Add descr to positive � - weak premises set
else

Do nothing
end if
S=random.sample(Negdata ,size=sub:smpl � N � ) � mine � - weak negative
premises
descr = � (g1) u ::: u � (gs ) u � (t)
P osimage = f x 2 descr� jx 2 P osdata g
if jjP osimage jj < alpha:threshold � N + then

Add descr to negative � - weak premises set
else

Do nothing
end if

end for
p = dim (set of positive � - weak premises)
n = dim (set of negative � - weak premises)
Choose voting scheme:A(�); w(�); 

pos:power = Ap

i (w(h+
i ))

neg:power = An
j (w(h�

j ))
margin = pos:power � neg:power
yt = pos:power 
 neg:power
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Abstract. Even if not explicitly stated, data can be often interpreted
in a triadic setting in numerous scenarios of data analysis and process-
ing. Formal Concept Analysis, as the underlying mathematical theory
of Conceptual Knowledge Processing gives the possibility to explore the
structure of data and to understand its structure. Representing knowl-
edge as conceptual hierarchies becomes increasingly popular as a basis
for further communication of knowledge. While in the dyadic setting
there are well-known methods to reduce the complexity of data without
a�ecting its underlying structure, these methods are missing in the tri-
adic case. Driven by practical requirements, we discuss an extension of
the classical reduction methods to the triadic case and apply them to a
medium-sized oncological data set.

1 Introduction

Formal Concept Analysis has constantly developed in the last 30 years, one im-
portant point in its evolution being, the extension to Triadic Formal Concept
Analysis (3FCA) proposed by Lehmann and Wille in [7]. Wille introduces Con-
ceptual Knowledge Processing as an approach to knowledge management which
is based on Formal Concept Analysis as its underlying mathematical theory [12,
14]. Dealing with three-dimensional data-sets, 3FCA is used to build triadic
landscapes of knowledge [13]. The present paper is part of a broader discussion
on a navigation paradigm in triadic conceptual landscapes.

Triadic FCA has been successfully used in inherently triadic scenarios such as
collaborative tagging [6], triadic factor analysis [4], or investigation of oncological
databases [10]. Despite the fact that 3FCA is just an extension of FCA, the
graphical representation for the dyadic case does not have an intuitive extension
to the triadic case. An initial investigation based on locally displaying smaller
parts of the space of triconcepts, usingperspectivesfor navigation has been done
in [9].

For dyadic contexts, reducible objects and attributes can be deleted, without
a�ecting the underlying conceptual structure. Clarifying and reducing is thus a
preprocessing stage, in order to simplify the structure of the context for further
analysis. For triadic data sets, these notions have not been de�ned until now.
This paper is devoted to reduction procedures in triadic contexts and an analysis
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of the e�ects of reducing in a medical data set is provided in the applications
section. The paper concludes with a discussion about how an e�cient navigation
environment for di�erent types of conceptual structures could combine existing
tools (see Applications section) with newly developed navigation paradigms for
triadic concept sets, starting from the same underlying data set (which does not
have to be necessarily a typical triadic set).

2 Preliminaries

This section is devoted to some basic notions of triadic formal concept analysis
as they have been introduced in [7, 11]. For further information about the dyadic
case or more speci�c results about 3FCA we refer the interested reader to the
standard literature [3].

De�nition 1. A triadic context (also: tricontext ) is a quadruple(K 1; K 2; K 3; Y ),
where K 1; K 2 and K 3 are sets andY � K 1 � K 2 � K 3 is a ternary relation be-
tween them. The elements ofK 1; K 2; K 3 are called (formal) objects, attributes
and conditions, respectively. An element(g; m; b) 2 Y is read object g has at-
tribute m under condition b.

The following de�nition shows how dyadic contexts can be obtained from a
triadic one in a natural way.

De�nition 2 (Derived contexts). Every triadic context (K 1; K 2; K 3; Y ) gives
rise to the following projected dyadic contexts:

K (1) := ( K 1; K 2 � K 3; Y (1) ) with gY(1) (m; b) :, (g; m; b) 2 Y ,
K (2) := ( K 2; K 1 � K 3; Y (2) ) with mY (2) (g; b) :, (g; m; b) 2 Y ,
K (3) := ( K 3; K 1 � K 2; Y (3) ) with bY(3) (g; m) :, (g; m; b) 2 Y .

For f i; j; k g = f 1; 2; 3g and Ak � K k , we de�ne K ( ij )
A k

:= ( K i ; K j ; Y ( ij )
A k

), where

(ai ; aj ) 2 Y ( ij )
A k

if and only if (ai ; aj ; ak ) 2 Y for all ak 2 Ak .

Intuitively, the contexts K ( i ) represent \attened" versions of the triadic con-
text, obtained by putting the \slices" of ( K 1; K 2; K 3; Y ) side by side. Moreover,
K ( ij )

A k
corresponds to the intersection of all those slices that correspond to ele-

ments of Ak .
The derivation operators in the triadic case are de�ned using the dyadic

derivation operators in the projected formal dyadic contexts.

De�nition 3 ( (i )-derivation operators). For f i; j; k g = f 1; 2; 3g with j < k
and for X � K i and Z � K j � K k the (i )-derivation operators are de�ned by:

X 7! X ( i ) := f (aj ; ak ) 2 K j � K k j (ai ; aj ; ak ) 2 Y for all ai 2 X g.
Z 7! Z ( i ) := f ai 2 K i j (ai ; aj ; ak ) 2 Y for all ( aj ; ak ) 2 Z g.

Obviously, these derivation operators correspond to the derivation operators of
the dyadic contexts K ( i ) ; i 2 f 1; 2; 3g.
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De�nition 4 ( (i; j; X k )-derivation operators). For f i; j; k g = f 1; 2; 3g and
X i � K i ; X j � K j ; X k � K k , the (i; j; X k )-derivation operators are de�ned by

X i 7! X ( i;j;X k )
i := f aj 2 K j j (ai ; aj ; ak ) 2 Y for all ( ai ; ak ) 2 X i � X k g

X j 7! X ( i;j;X k )
j := f ai 2 K i j (ai ; aj ; ak ) 2 Y for all ( aj ; ak ) 2 X i � X k g.

The (i; j; X k )-derivation operators correspond to those of the dyadic contexts
(K i ; K j ; Y ( ij )

X k
).

Triadic concepts are de�ned using the above derivation operators and are
maximal cuboids of incidences.

De�nition 5. A triadic concept (short: triconcept) of K := ( K 1; K 2; K 3; Y ) is
a triple (A1; A2; A3) with A i � K i for i 2 f 1; 2; 3g and A i = ( A j � Ak )( i ) for
every f i; j; k g = f 1; 2; 3g with j < k . The setsA1; A2, and A3 are called extent,
intent, and modus of the triadic concept, respectively. We letT(K) denote the
set of all triadic concepts ofK.

A complete trilattice is a triordered set (L; . 1; . 2; . 3) in which the ik -joins
exist for all i 6= k in f 1; 2; 3g and all pairs of subsets ofL . We denote the set of
all order �lters of the complete trilattice L with respect to the preorder . i by
F i (L ). A principal �lter is denoted by [x) := f y 2 L j x . i yg. A subset X of L
is said to be i � densewith respect to L if each principal �lter of ( L; . i ) is the
intersection of some order �lters from X .

Theorem 1 (The basic theorem of triadic concept analysis). Let K :=
(K 1; K 2; K 3; Y ) be a triadic context. Then T(K) is a complete trilattice of K for
which the ik -joins can be described as follows

r ik (Xi ; Xk ) := bik

� [
f A i j (A1; A2; A3) 2 X i g;

[
f Ak j (A1; A2; A3) 2 X k g

�
:

In general, a complete trilattice (L . 1; . 2; . 3) is isomorphic to T(K) if and
only if there exist mappings ~� i : K i ! F i (L )( i = 1 ; 2; 3) such that ~� i (K i ) is
i -dense with respect toL and A1 � A2 � A3 � Y , \ 3

i =1 \ a i 2 A i ~� i (ai ) 6= ;
for all A1 � K 1, A2 � A2, A3 � K 3. In particular, L �= T(L; L; L; Y L ) with
YL := f (x1; x2; x3) 2 L 3 j (x1; x2; x3) is joinedg.

3 Reduced tricontexts

In the dyadic case, a context is calledclari�ed if there are no identical rows and
columns, more precisely,

De�nition 6. A dyadic context (G; M; I ) is clari�ed if for any objects g; h 2 G,
from g0 = h0 follows g = h, and for all attributes m; n 2 M , m0 = n0 implies
m = n.

In the triadic case, we can make use of the same idea applied on the "at-
tened" projection of the tricontext. Since a triconcept (A1; A2; A3) is a maximal
triple of triadic incidences, removing identical "rows" in the tricontext does not
alter the structure of triconcepts.
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De�nition 7. A triadic context (K 1; K 2; K 3; Y ) is clari�ed if for every i 2
f 1; 2; 3g and everyu; v 2 K i , from u( i ) = v( i ) follows u = v.

Context reduction is one of the most important operations performed in the
dyadic case, with no e�ect on the conceptual structure. This consists in the
removal of reducible objects and attributes. Reducible objects and attributes
are precisely those objects and attributes which can be written as combinations
of other objects and attributes, respectively. Formally,

De�nition 8. A clari�ed context (G; M; I ) is called row reducedif every object
concept is _-irreducible and column reduced if every attribute concept is ^ -
irreducible.

Remark 1. Due to the symmetry of the context, if we switch the role of the
objects with that of the attributes and look at the context ( M; G; I � 1), then
the context is row reduced if every object concept (attribute concept in the
former context) is _-irreducible. So we can consider only_-irreducible concepts
by "switching the perspective".

Similar to the dyadic case, objects, attributes, and conditions which can
be written as combinations of others have no inuence on the structure of the
trilattice of K, hence they can be reduced.

De�nition 9. A clari�ed tricontext (K 1; K 2; K 3; Y ) is called object reduced if
every object concept from the context(K 1; K 2 � K 3; Y (1) ) is _-irreducible, at-
tribute reduced if every object concept from the context(K 2; K 3 � K 1; Y (2) ) is
_-irreducible, and condition reduced if every object concept from the context
(K 3; K 1 � K 2; Y (3) ) is _-irreducible.

Proposition 1. Let g 2 K 1 be an object andX � K 1 with g 62X but g(1) =
X (1) in K (1) = ( K 1; K 2 � K 3; Y (1) ), i.e. g is _-reducible in K (1) . Then

T(K 1; K 2; K 3; Y ) �= T(K 1 n f gg; K 2; K 3; Y \ ((K 1 n f gg) � K 2 � K 3)) :

Proof. By Theorem 1, it su�ces to de�ne a map ~� 1: K 1 ! F 1(T(K 1 n
f gg; K 2; K 3; Y \ (K 1 n f gg � K 2 � K 3)) such that ~� 1(K 1) is 1-dense inF1(T(K 1 n
f gg; K 2; K 3; Y \ (K 1 n f gg � K 2 � K 3)). This can be done by ~� 1(h) := � (h) if
h 6= g and ~� 1(g) := \ x 2 X � 1(x) elsewhere.

Let (A1; A2; A3) 2 T(K) with g 2 A1. Since A1 = ( A2 � A3)(1) , we have
g 2 (A2 � A3)(1) , wherefrom follows that (A2 � A3)(3)(3) � g(1) = X (1) . Then
X (1)(1) � (A2 � A3)(1) = A1, henceX � A1. We have that � 1(g) � \ x 2 X � 1(x).
By a similar argument, we can prove the converse inclusion, hence the equality.

This proves that ~� 1(K 1) is 1-dense, i.e., the two trilattices are isomorphic.2

Example 1. The following example shows how reduction works:

b1
m1 m2 m3

g1 �
g2 �
g3

b2
m1 m2 m3

g1 � �
g2 �
g3 �

b3
m1 m2 m3

g1 �
g2 � �
g3 �
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The non-trivial triconcepts of this context are: ( f g1g; f m1g; f b1; b2; b3g), ( f g2g;
f m3g; f b1g), ( f g1; g2; g3g; f m1g; f b2; b3g), ( f g1g; f m1; m3g; f b2g), ( f g2g;
f m1; m2g; f b3g). We can observe that by reducingg3, the number of triconcepts
remains unchanged and the trilattice will be the same.

We obtain the following characterization for reducible elements.

Proposition 2. Let K = ( K 1; K 2; K 3; Y ) be a tricontext and ai 2 K i , i =
1; 2; 3. Then the elementai is reducible if and only if there exist a subsetX � K i

with Y ( jk )
X = Y ( jk )

a i , where Y ( jk )
X := f (bj ; bk ) 2 K j � K k j 8bi 2 X: (bi ; bj ; bk ) 2

Yg, for f i; j; k g = f 1; 2; 3g.

Proof. The element ai 2 K i is reducible if and only if there exists a subset
X � K i , such that they have the same derivative, i.e.,a( i )

i = X ( i ) in K ( i ) . Now
(bj ; bk ) 2 Y ( jk )

a i if and only if ( a;bj ; bk ) 2 Y which is equivalent to (bj ; bk ) 2
a( i )

i = X ( i ) . 2

Remark 2. Remember that �nite tricontexts can be represented as slices consist-
ing of dyadic contexts. Moreover, this representation has a sixfold symmetry. In
order to represent the triadic context in a plane, we just put these slices one next
to the other (see previous example). This proposition states thatai is reducible
if and only if the slice of ai is the intersection of some slices corresponding to the
elements of a certain subsetX � K i . This has a striking similarity to the dyadic
case, where, for example, an object is reducible, if its row is the intersection of
the rows from a certain subsetX of objects. This also gives us an algorithmic
approach to the problem of �nding all reducible elements in a tricontext.

Similar to the dyadic case, where double arrow have been introduced in order
to identify those rows and columns which are not reducible (remember that a
row or a column is not reducible, if it contains a double arrow), we can de�ne a
similar notion for tricontexts, where the role of the double arrow will be played
by the symbol A.

De�nition 10. Let K := ( K 1; K 2; K 3; Y ) be a tricontext. For g 2 K 1; m 2
K 2; b 2 K 3 we de�ne the following relations, where. is the arrow relation from
dyadic FCA:

{ (g; m; b) 2 / , g . (m; b)
{ (g; m; b) 2 4 , m . (g; b)
{ (g; m; b) 2 . , b . (g; m)
{ (g; m; b) 2 A , (g; m; b) 2 / and (g; m; b) 2 4 , and (g; m; b) 2 .

Remark 3. An element ai 2 K i will be reducible if and only if its corresponding
slice, i.e., (K j ; K k ; Y ( jk )

a i ) does not contain the triadic arrow A.

In the dyadic case, object and attribute concepts are playing an important
role, see for instance the Basic Theorem on Concept Lattices. We might ask if
there is a similar notion in the triadic case. Due to the structure of triconcepts,
it proves that an object concept, for instance, should be de�ned as a set of
triconcepts.
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De�nition 11. Let K := ( K 1; K 2; K 3; Y ) be a tricontext, g 2 K 1, m 2 K 2, and
b 2 K 3 be objects, attributes, and conditions, respectively. Theobject conceptof
g is de�ned as  � (g) := f (A1; A2; A3) 2 T(K) j A1 = g(1)(1) g, where (�)( i ) is the
derivation operator g in K ( i ) , i 2 f 1; 2; 3g. Similar, the attribute concept of m is
de�ned as � � (m) := f (A1; A2; A3) 2 T(K) j A2 = m(2)(2) g, while the condition
concept of b is de�ned as � � (b) := f (A1; A2; A3) 2 T(K) j A2 = b(3)(3) g.

Lemma 1. Let (K 1; K 2; K 3; Y ) be a tricontext, ai 2 K i , i 2 f 1; 2; 3g. Let
� 1(a1) := [  �

1 (a1)) be the �lter generated by the triadic object concept �
1 (a1) in

(T(K); . 1) (and similar � 2(a2), and � 3(a3) for attribute and conditions tricon-
cepts, respectively). Then� i (K i ) := f � i (ai ) j ai 2 K i g is i -dense in (T(K); . 1

; . 2; . 3).

Proof. Following the construction used in the proof of Theorem 1, the princi-
pal �lter of the triadic concept ( A1; A2; A3) in ( T(K); . i ) is

T
a i 2 A i

f (B1; B2; B3) 2
T(K) j ai 2 B i g 2 F i (T(K)). Combining this with the fact that for ( B1; B2; B3) 2
T(K), ai 2 B i i� a( i )( i )

i � B i , we obtain an i -dense set of order �lters� i (K i ) and
� i (ai ) = f (B1; B2; B3) 2 T(K) j ai 2 B i g for ai 2 K i and i = 1 ; 2; 3. 2

4 Applications

In this section we discuss some applications of the previous results on a cancer
registry database comprising information about several thousand patients. Even
if the original data set does not have an inherently triadic format, one can select
triadic subsets herefrom which are then suitable for further analysis. This proves
that even many-valued dyadic contexts can be interpreted and studied from a
triadic point of view. For more about this interpretation mechanism we refer to
[10]). In order to prepare the data for a triadic interpretation, the knowledge
management suite ToscanaJ ([1]) and Toscana2Trias, a triadic extension devel-
oped at Babes-Bolyai University Cluj-Napoca have been used. Toscana2Trias
uses the TRIAS algorithm developed by R. Jaeschke et al. [5]. It connects to
a database and displays the table names (or attribute names). The user may
de�ne, according to his own view, which are the objects, the attributes and the
conditions. The ternary incidence relation is then read from the database. More-
over, if a conceptual schema has been built upon the data set, i.e., the data
has been preprocessed for ToscanaJ, then the user has even more control over
the selection of objects, attributes and conditions. From the conceptual schema,
a part of the scaled attributes can be considered as conditions, the rest being
considered as attributes in the tricontext. Triadic concepts are then computed,
using the Trias algorithm and displayed in a variety of formats. If the data set
is larger, the visualization becomes easily obscure because of the number of tri-
concepts. In this case, one can make use of the navigation paradigm discussed
in [9].

The cancer registry database, in its original form, contains 25 attributes
for each patient, including an identi�cation number, for example Tumor se-
quence, Topography, Morphology, Behavior, Basis of diagnosis, Di�erentiation
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degree, Surgery, Radiotherapy, Hormonal Therapy, Curative Surgery, Curative
Chemotherapyetc. These attributes are all interpreted as conceptual scales and
represented as conceptual landscapes for an enhanced knowledge retrieval.

The triadic approach makes possible to investigate these data from a totally
di�erent point of view. While a typical usage of ToscanaJ implies the combination
of several scales into a so-calledbrowsing scenario, 3FCA gives a certain depth
to the scale-based navigation of the conceptual landscapes.

For the �rst example, we have selected a number of 4686 objects, 11 attributes
(all 8 degrees of certainty in the oncological decision process, in-situs carcinoma
and tumor sequence 1, i.e., just one tumor) and three conditions (Gender =
Male, age< 59, and survival > 30 months). This selection generated a relation
with 44545 tuples (crosses in the tricontext) and 63 triconcepts and a clari�ed
tricontext with 61 objects. Herefrom, 38 objects could be reduced as well as 7
attributes (all of them being certainty-related, due to the speci�c selection we
have made), resulting in a relation with 77 tuples.

For the next example, the selection was restricted to types of tumors (as
attributes) versus stage (as conditions). A clari�ed tricontext resulted, with 13
objects, 5 attributes and 8 conditions, and 23 triconcepts. Three more objects,
one attribute and one condition could be further reduced.

5 Conclusions and Future Work

In this paper we have de�ned the notion of reduction for triadic FCA and the
notion of triadic object, attribute, and condition concept, showing that these
triconcepts are playing for the basic theorem of 3FCA the same role to that
played by object and attribute concepts in the dyadic case.

In the applications section, we have shown how reducing a tricontext elimi-
nates redundant information, hence increasing the e�ciency in determining its
underlying conceptual structure. Moreover, due to the selection procedure spe-
ci�c to the Toscana2Trias extension, reducible objects (or attributes, conditions)
may give important clues about the structure of the data subset.

This contribution is a natural development of the navigation paradigm dis-
cussed in [9], which will include reduction as a preprocessing stage. The ToscanaJ
knowledge management suite and its triadic extension Toscana2Trias makes pos-
sible to generate triadic data sets in a natural way, even if the underlying data
does not have a natural triadic structure (as, for instance, folksonomies have). A
navigation tool for triadic conceptual landscapes is imperatively necessary, and
the local navigation approach described in [9] makes use of a similar approach
to that of combining scales in ToscanaJ, hence restricting only to a local view. A
selection of the starting points for navigation could be performed by user de�ned
constraints. More speci�cally, the user de�nes two lists: one containing required
and one forbidden objects, attributes and conditions. This selection will focus on
a subset of triconcepts, wherefrom navigation can start. For a detailed discussion
of user de�ned constraints for FCA, including complexity results, we refer to [8].
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Lazy associative graph classi�cation

Yury Kashnitsky, and Sergei O. Kuznetsov

National Research University Higher School of Economics
Moscow, Russia

f ykashnitsky, skuznetsov g@hse.ru

Abstract. In this paper, we introduce a modi�cation of the lazy as-
sociative classi�cation which addresses the graph classi�cation problem.
To deal with intersections of large graphs, graph intersections are ap-
proximated with all common subgraphs up to a �xed size similarly to
what is done with graphlet kernels. We illustrate the algorithm with a
toy example and describe our experiments with a predictive toxicology
dataset.

Keywords: graph classi�cation, graphlets, formal concept analysis, pat-
tern structures, lazy associative classi�cation

1 Introduction

Classi�cation methods for data given by graphs usually reduce initial graphs
to numeric representation and then use standard classi�cation approaches, like
SVM [1] and Nearest neighbors with graph kernels [2], graph boosting [3], etc.
By doing so, one usually constructs numeric attributes corresponding to sub-
graphs of initial graphs or computes graph kernels, which usually are also based
on the number of common subgraphs of special type. In this paper, we suggest an
approach based on weak classi�ers in the form of association rules [4] applied in
a \lazy" way: not all of the association rules are computed to avoid exponential
explosion, but only those that are relevant to objects to be classi�ed. Lazy classi-
�cation is well studied experimentally [5], here we extend the approach to graphs
and propose a uniform theoretical framework (based on pattern structures [6])
which can be applied to arbitrary kinds of descriptions. We show in a series
of experiments with data from the Predictive Toxicology Challenge (PTC [7])
that our approach outperforms learning models based on SVM with graphlet
kernel [8] and kNN with graphlet-based distance.

The rest of the paper is organized as follows. In Section 2, we give main
de�nitions on labeled graphs, pattern structures, and lazy associative classi�ca-
tion. In Section 3, we consider an example. In Section 4, we discuss the results of
computational experiments on PTC dataset. In Section 5, we give the conclusion
and discuss directions of further research.
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2 Main de�nitions

In this section, we give the de�nitions of the main concepts used in the paper.

2.1 Labeled graphs and isomorphism

First, we recall some standard de�nitions related to labeled graphs, see
e.g. [9,10,11].

Undirected graph is a pair G = ( V; E). Set V is referred to as a set ofnodes
of a graph. SetE = ff v; ug j v; u 2 Vg [ E0, a set of unordered elements ofV , is
called a set ofedges, and E0 � V | is a set of loops. If E0 = ; , then G is called
a graph without loops.

Graph H = ( VH ; EH ) is called asubgraphof graph G = ( VG ; EG ), if all nodes
and edges ofH are at the same time nodes and edges ofG correspondingly, i.e.
VH � VG and EH � EG .

Graph H = ( VH ; EH ) is called an induced subgraphof graph G = ( VG ; EG ),
if H is a subgraph ofG, and edges ofH are comprised of all edges ofG with
both nodes belonging toH .

Given sets of nodesV , node labelsL V , edgesE, and edge labelsL E , a labeled
graph is de�ned by a quadruple G = (( V; lv); (E; le)) such that

{ lv � V � L V is the relation that associates nodes with labels, i.e.,lv is a set
of pairs (vi ; l i ) such that node vi has label l i ,

{ le � V � V � L E is the relation that associates edges with labels, i.e.,le is
a set of triples (vi ; vj ; l ij ) such that edge (vi ; vj ) has label l ij .

Example 1. A molecule structure can be represented by a labeled graph.

C4

C3H1
2N CH2

3

Cl6H5O

Here V = f 1; 2; 3; 4; 5; 6g, E = f (1; 3); (2; 3); (3; 4); (4; 5); (4; 6)g,
lv = f (1; NH 2); (2; CH3); (3; C); (4; C); (5; OH ); (6; Cl)g,
le = f (1; 3; 1); (2; 3; 1); (3; 4; 2); (4; 5; 1); (4; 6; 1)g, and edge type 1 corresponds to
a single bond (ex.HN 2| C) while edge type 2 { to a double bond (ex.C = C).

A labeled graph G1 = (( V1; lv1); (E1; le1)) dominates a labeled graphG2 =
((V2; lv2); (E2; le2)) with given order � (e.g. natural, lexicographic) on vertex
and edge labels, orG2 � G1 (or G2 is a subgraph of G1), if there exists an
injection ' : V2 ! V1 such that it:

{ respects edges: (v; w) 2 E2 ) (' (v); ' (w)) 2 E1,
{ �ts under labels: lv2(v) � lv1(' (v)) ; (v; w) 2 E2 ) le2(v; w) � le1(' (v); ' (w)).

Two labeled graphsG1 and G2 are called isomorphic (G1 ' G2) if G1 � G2

and G2 � G1.
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Example 2. G1 : C4

C3H1
3C OH2

NH6
2Cl5

G2 : C4

C3H1
2N Cl2

OH6H5
3C

G1 ' G2 as9' : V2 = f 1; 2; 3; 4; 5; 6g ! V1 = f 1; 2; 3; 4; 5; 6g = (6 ; 5; 4; 3; 1; 2),
satisfying the de�nitions of graph dominance and isomorphism.

An injective function f : V ! V 0 is called asubgraph isomorphismfrom G to
G0, if there exists a subgraph ofG0: S � G0, such that f is a graph isomorphism
from G to S, or G ' S.

Example 3. G1 : C4

C3H1
3C OH2

NH6
2

G2 : C4

C3H1
2N Cl2

OH6H5
3C

G1 is subgraph-isomorphic toG2.

Given labeled graphsG1 and G2, a set G1 u G2 =
f G j G � G1; G2; 8G� � G1; G2 G� 6� Gg is called a set ofmaximal common
subgraphsof graphs G1 and G2. We also refer to G1 u G2 as to intersection of
graphs G1 and G2, and to u { as to similarity operator de�ned on graphs.

Example 4.

8
>>>>><

>>>>>:

C

CH2N CH3

ClHO

9
>>>>>=

>>>>>;

u

8
>>>>><

>>>>>:

C

CH3C OH

OHH2N

9
>>>>>=

>>>>>;

=

8
>>>>><

>>>>>:

C

CH2N

HO

; C

CH3C

OH

9
>>>>>=

>>>>>;

For sets of graphsG = f G1; : : : ; Gk g and H = f H1; : : : ; Hn g the similarity
operator is de�ned in the following way:

G u H = MAX � f Gi u H i j Gi 2 G; H j 2 Hg

Given sets of labeled graphsG1 and G2, we say that a set of graphsG1 is
subsumedby a set of graphsG2, or G1 v G2, if G1 u G2 = G1.

2.2 Graphlets

De�nition 1. A labeled graphg is called a k-graphlet of a labeled graphG if
g is a connected induced subgraph of graphG with k nodes [12].

De�nition 2. A set of labeled graphsGk is called ak-graphlet representation
of a labeled graphG if any g 2 G is a unique (up to subgraph isomorphism)k-
graphlet of graphG, i.e
8g 2 Gk graph g is a k-graphlet of G, 8g1; g2 2 G one does not haveg1 � g2.

De�nition 3. k-graphlet distribution of a labeled graphG is the setf (gi ; ni )g,
wheregi is a k-graphlet of G and ni is the number ofk-graphlets in G isomorphic
to gi .
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Example 5. G1 :
H

H

H

H

H

CH3

G2 :
H

H

OH

H

H

OH

G1 = f C � C = C; C � C � H; C = C � H; C � C � Cg,
G2 = f C� C = C; C� C� H; C = C� H; C � C� O; C = C� O; C� O� H g { are
3-graphlet representations of graphsG1 and G2 correspondingly (with benzene
rings comprised of carbon molecules C). 3-graphlet distributions of graphsG1

and G2 are given in Table 1.

Table 1. 3-graphlet distributions of graphs G1 and G2 (benzene rings are comprised
of carbon molecules C).

CC=C CCH C=CH CCO C=CO COH CCC
G1 7 8 5 0 0 0 1
G2 6 4 4 2 2 2 0

Graphlets were introduced in biomedicine and are used to compare real cellu-
lar networks with their models. It is easy to demonstrate that two networks are
di�erent by simply showing a short list of properties in which they di�er. It is
much harder to show that two networks are similar, as it requires demonstrating
their similarity in all of their exponentially many properties [12].

Graphlet distribution serves as a measure of network local structure agree-
ment and was shown to express more structural information than other metrics
such as centrality, local clustering coe�cient, degree distribution etc. In [12],
they considered all 30 combinations1 of graphlets with 2, 3, 4 and 5 nodes.

2.3 Pattern structures

Pattern structures are natural extension of ideas proposed in Formal Concept
Analysis [13], [6].

De�nition 4. Let G be a set (of objects), let(D; u) be a meet-semi-lattice (of
all possible object descriptions) and let� : G ! D be a mapping between objects
and descriptions. Set� (G) := f � (g)jg 2 Gg generates a complete subsemilattice
(D � ; u) of (D; u), if every subsetX of � (G) has in�mum uX in (D; u).
Pattern structure is a triple (G; D ; � ), where D = ( D; u), provided that the
set � (G) := f � (g) j g 2 Gg generates a complete subsemilattice(D � ; u) [6,11].

1 https://parasol.tamu.edu/dreu2013/OLeary
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De�nition 5. Patterns are elements ofD . Patterns are naturally ordered by
subsumption relation v : given c; d 2 D one hasc v d , cu d = c. Operation u
is also called asimilarity operation. A pattern structure (G; D ; � ) gives rise
to the following derivation operators (�) � :

A � =
l

g2 A

� (g) for A 2 G;

d� = f g 2 G j d v � (g)g for d 2 (D; u):

Pairs (A; d) satisfying A � G; d 2 D; A � = d, and A = d� are called
pattern concepts of (G; D ; � ).

Example 6. Let f 1; 2; 3g be a set of objects,f G1; G2; G3g { be a set of their
descriptions (i.e., graph representations):

G1 : C

CH3C NH2

NH2H2N

G2 : C

CH2N OH

H3C Cl

G3 : C

CH2N OH

ClH2N

D is the set of all sets of labeled graphs,u is a graph intersection operator,
D = ( D; u). A set of objects (graphs) f 1; 2; 3g, their \descriptions" (i.e. graphs
themselves)D = f G1; G2; G3g (� (i ) = Gi ; i = 1 ; : : : ; 3), and similarity operator
u comprises a pattern structure (f 1; 2; 3g; D ; � ).
f 1; 2; 3g� = f NH 2 � C = Cg, becausef NH 2 � C = Cg is the only graph,
subgraph-isomorphic to all three graphs 1; 2, and 3. Likewise,
f NH 2 � C = Cg� = f 1; 2; 3g, because graphs 1; 2, and 3 subsume graphf NH 2 �
C = Cg.
f 1; 2g� = f CH3 � C = C � NH 2g, becausef CH3 � C = C � NH 2g is a graph,
subgraph-isomorphic to 1, and 2, but not to graph 3. Likewise,
f CH3 � C = C � NH 2g� = f 1; 2g, because only graphs 1, and 2 subsume graph
f CH3 � C = C � NH 2g, but graph 3 does not.

Here is the set of all pattern concepts for this pattern structure:

f
 

f 1; 2; 3g ; C

CH2N !

;

 

f 1; 2g ; C

CH3C

NH2

!

;

 

f 1; 3g ; C

CH2N

NH2

!

;

 

f 2; 3g ; C

CH2N OH

Cl

!

; (1; f G1g) ; (2; f G2g) ; (3; f G3g) ; (; ; f G1; G2; G3g)g:

For some pattern structures (e.g., for the pattern structures on sets of graphs
with labeled nodes) even computing subsumption of patterns may be NP-hard.
Hence, for practical situations one needs approximation tools, which would re-
place the patterns with simpler ones, even if that results in some loss of infor-
mation. To this end, we use a contractive monotone and idempotent mapping
 : D ! D that replaces each pattern d 2 D by  (d) such that the pattern
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structure (G; D ; � ) is replaced by (G; D ;  � � ). Under some natural algebraic
requirements that hold for all natural projections in particular pattern struc-
tures we studied in applications, see [11], the meet operationu is preserved:
 (X u Y) =  (X ) u  (Y ): This property of a projection allows one to relate
premises in the original representation with those approximated by a projection.
In this paper, we utilize projections to introduce graphlet-based classi�cation
rules.

2.4 Lazy associative classi�cation

Consider a binary classi�cation problem with a set of positive examplesG+ ,
negative examplesG� , test examplesGtest , and a pattern structure
(G+ [ G� ; D ; � ) de�ned on the training set.

De�nition 6. A pattern h 2 D is a positive premise i� [11]

h� \ G� = ; and h� \ G+ 6= ;

A positive premise is a subset of theleast general generalizationof descriptions
of positive examples, which is not contained in (does not cover) any negative
example. A negative premiseis de�ned similarly. Various classi�cation schemes
using premises are possible, as an example consider the following simplest scheme
from [6]: if the description � (g) of an undetermined exampleg contains a positive
premiseh, i.e., h v � (g), then g is classi�ed positively. Negative classi�cations are
de�ned similarly. If � (g) contains premises of both signs, or if� (g) contains no
premise at all, then the classi�cation is contradictory or undetermined, respec-
tively, and some probabilistic techniques allowing for a certain tolerance should
be applied.

De�nition 7. Class association rule(CAR) [5] for a binary classi�cation prob-
lem is an association rule in a formh ! f + ; �g , whereh is a positive or negative
premise, respectively.

The de�nition means that for a binary graph classi�cation problem, for in-
stance, we can mine classi�cation association rules in a formf gi g ! f + ; �g ,
i.e. if a test graph subsumes a subgraphgi , that is common only to positive
(negative) training examples, it is therefore classi�ed as positive (negative). We
elaborate this idea in the next subsection. As there might be lots of such CARs,
we might come up with a single classi�cation rule taking into account these
CARs. For instance, we can count all positive and negative CARs for each test
object and classify it with a majority voting procedure. Of course, the idea is eas-
ily generalized to multi-label classi�cation problem. The described classi�cation
schemes are explored in [5].

Another advantage of the lazy classi�cation framework is its obvious par-
allelization. Suppose there areK processors. If we consider classi�cation of an
unlabeled object we can divide the training set intoK separate subsets. Then,
for each subset we perform intersections between the labeled objects with the un-
labeled one to be classi�ed. After all unfalsi�ed intersections are found we can go
on to the classi�cation phase which involves voting based on those intersections.
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2.5 Graphlet-based lazy associative classi�cation

In this subsection, we combine the ideas of pattern structures and their pro-
jections, graphlets, and lazy associative classi�cation, and introduce our algo-
rithm. First, we recall the de�nition of k-projection producing all graphs with
less than or equal tok nodes.

De�nition 8. Given a graph pattern structure(G; D ; � ), we call  k (G) = f H i =
((Vi ; lv i ); (E i ; lei )) j H i � G; H i is connected;jVi j � kg a k-projection , de�ned
for graph descriptions G.

Obviously, this operator is a projection, i.e. contractive, monotone, and idempo-
tent function.

De�nition 9. Given a graph pattern structure (G; D ; � ), k-graphlet deriva-
tion operator � k =

S
1� l � k  l � � takes an objectg described by graphG and

produces all l -graphlets ofG for l = 1 ; : : : k.

Example 7. For object 1 with \graph description" G1 from example 5 � 3(1) is
the set of all 1-,2-, and 3-graphlets of graph 1:
� 3(1) = f C; H; C � C; C = C; C � H; C � C = C; C � C � H; C =
C � H; C � C � Cg. To clarify, here � (1) = f G1g; � 3(1) =  3(� (1)) =  3(G1) =
f H i = (( Vi ; lv i ); (E i ; lei )) j H i � G1; jVi j � 3g.

De�nition 10. Given k-graphlet representationsGk
1 and Gk

2 of labeled graphs
G1 and G2, the intersection Gk

1 u k Gk
2 is called k-graphlet intersection of G1

and G2. The u k operator is further called k-graphlet similarity operator .

Example 8. For graphs 1 and 2 with \graph descriptions" G1 and G2 from exam-
ple 5G1 u3 G2 = f C; H; C � C; C = C; C� H; C � C = C; C� C� H; C = C� H g
is the set of all common 1-, 2-, and 3-graphlets of graphs 1 and 2.

Here are the main steps of our algorithm:

1. All k-graphlet intersections of test examples and positive training examples
are computed:h+ = Gtr u k G+ ;

2. Each intersectionh+ is tested on subsumption by negative training examples.
If some of them subsumesh+ , then this intersection is falsi�ed . Otherwise,
h+ gives a vote for positive classi�cation of the test exampleGtr ;

3. The same procedure is done for each intersection ofGtr with negative ex-
amples;

4. Test exampleGtr is classi�ed according to the weighted majority rule where
each unfalsi�ed intersection is given a weight equal to its cardinality (the
cardinality of the corresponding set of graphs).
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3 A toy example

We illustrate the principle of our method with a toy example. Let us consider
the following training and test sets comprised of molecular descriptions of toxic
(G1 { G4) and non-toxic (G5 { G7) chemical compounds. The task is to build
a discriminative classi�er able to determine whether the objects from the test
set (G8 � G11) are toxic or not. The main steps of the algorithm, described in
the previous section, are briey illustrated with Tables 2 and 3. First, we build
3-graphlet intersections of test and training examples (we use only graphlets
with 3 nodes for the purpose of illustration). Then, a \+" or \|" sign with
cardinality of intersection is put in Table 3 if this intersection is not subsumed
by any example of the opposite class. Otherwise, the counter-example subsuming
this intersection is given.

Positive examples:

G1 : C

CA B

DD

G2 : C

CA B

DB

G3 : C

CA B

EA

G4 : C

CA E

EB

Negative examples:

G5 : C

CA D

DD

G6 : C

CA E

B D

G7 : C

CB D

ED

Test examples:

G8 : C

CA B

ED

G9 : C

CA D

B E

G10 : C

CA D

D E

G11 : C

CA B

DA

3-graphlet intersections of training and test examples are given in Table 2. For
instance, graphsG1 and G8 have 4 common 3-graphlets: A{C{B, A{C=C, B{
C=C, and C=C{D. In this simple case, we do not di�erentiate between a single
and a double bond (e.g., ACC here stands for A{C=C without ambiguity).

Further, Table 3 summarizes the procedure. For instance, a '+4' sign for
graphs G1 and G8 means that all common 3-graphlets ofG1 and G8 (i.e., A{C{
B, A{C=C, B{C=C, and C=C{D) are not subgraph-isomorphic to any of the
negative examplesG5 { G7 altogether at the same time. Thus, this intersection
\gives a vote" of weight 4 (the cardinality of the mentioned set of graphlets)
for positive classi�cation of G8. On the contrary, all common 3-graphlets ofG4

and G8 (A{C=C, B{C=C, and C=C{E) are altogether subgraph-isomorphic to
negative exampleG6, therefore, the intersection of G4 and G8 doesn't \give a
vote" for positive classi�cation of G8.

Thus, moleculesG8 and G11 are classi�ed as toxic,G9, G10 are classi�ed as
non-toxic.

4 Experiments

The proposed algorithm was tested with the 2001 Predictive Toxicology
Challenge dataset in comparison with SVM with graphlet kernel and k-Nearest-
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Table 2. All common 3-graphlets of test ( G8 � G11 ) and training examples.

G8 G9 G10 G11

G1 ACB, ACC, BCC, CCD ACC, BCC, CCD ACC, CCD ACB, ACC, BCC, CCD
G2 ACB, ACC, BCC, CCD ACC, BCC, CCD ACC, CCD ACB, ACC, BCC, CCD
G3 ACB, ACC, BCC, CCE ACC, BCC, CCE ACC, CCE ACB, ACC, BCC
G4 ACC, BCC, CCE ACC, BCC, BCE, CCE ACC, CCE ACC, BCC
G5 ACC, CCD ACC, ACD, CCD ACC, ACD, CCD ACC, ACD, CCD
G6 ACC, BCC, CCD, CCE ACC, BCC, CCD, CCE ACC, CCD, CCE ACC, BCC, CCD
G7 BCC, CCD, CCE, DCE BCC, CCD, CCE CCD, CCE, CDE BCC, CCD

Table 3. Lazy classi�cation table

G1 G2 G3 G4 G5 G6 G7 ScoreClass
G8 +4 +4 +4 G6 G1 {4 {4 4:0 +
G9 G6 G6 G6 +4 {3 {4 {3 0:6 |
G10 G5 G5 G6 G6 {3 {3 {3 0:9 |
G11 +4 +4 +3 G6 {3 G1 G1 8:0 +

Neighbor with graphlet-based Hamming distance. SVM classi�ers are considered
to be good benchmarks for graph classi�cation problem [8]. We implemented a
Scikit-learn [14] version of Support Vector Classi�er with graphlet kernel and
graphlets having up to 5 nodes. We also adopted a k-Nearest-Neighbor for graph
classi�cation problem by de�ning a Hamming distance between two graphs (0 if
two objects have a certain graphlet in common, 1 otherwise). For instance, for
two graphs from example 5 in case of graphlets with up to 3 nodes this distance
is equal to 7 (G1 subsumes graphletC � C � C not subsumed byG2, while G2

subsumes graphletsf O; C � O; O � H; C � C � O; C = C � O; C � O � H g
not subsumed byG1).

The training set is comprised of 417 molecular graphs of chemical compounds
with indication of whether a compound is toxic or not for a particular sex and
species group out of four possible groups:f mice, ratsg � f male, femaleg. Thus, 4
separate sets were built for male rats (MR, 274 examples, 117 are toxic for male
rats, 157 are non-toxic), male mice (MM, 266 examples, 94 are positive, 172 are
negative), female rats (FR, 281 examples, 86 are positive, 195 are negative) and
female mice (FM, 279 examples, 108 are positive, 171 are negative).

We run 5-fold cross-validation for each group (MR, MM, FR, FM) and com-
pared average classi�cation metrics for each fold. The results for male rats are
presented in Table 4 (we got similar results for other groups).

The parameters for SVM and kNN classi�ers were tuned through the pro-
cess of GridSearch cross-validation2. The 'K nodes' parameter determines the
maximum number of nodes in graphlet representation of graphs, i.e. when it is
equal to 4, all graph are approximated with their 4-graphlet representation, or
all unique (in the sense of isomorphism) graphlets with up to 4 nodes.

As we can observe, graphlet-based lazy associative classi�cation is reason-
able with at least 3-graphlet descriptions. In case of 2-graphlet descriptions the

2 http://scikit-learn.org/stable/modules/grid\_search.html

71



Table 4. Experimental results for the male rats group. \GLAC" stands for \Graphlet-
based lazy associative classi�cation", \SVM" here denotes \Support Vector Machine
with graphlet kernel" \kNN" here stands for a k-Nearest-Neighbor classi�er with Ham-
ming distance.

K nodes Accuracy Precision Recall F-score Time (sec.)

GLAC

2 0.36 0.32 0.33 0.32 5.78
3 0.68 0.83 0.68 0.75 17.40
4 0.59 0.57 0.62 0.59 65.72
5 0.55 0.7 0.62 0.66 196.03

SVM

2 0.45 0.15 0.33 0.21 1.54
3 0.52 0.35 0.35 0.35 9.03
4 0.41 0.27 0.28 0.28 61.31
5 0.36 0.24 0.25 0.24 295.89

kNN

2 0.45 0.15 0.33 0.21 3.35
3 0.34 0.21 0.23 0.22 15.75
4 0.48 0.31 0.32 0.31 73.38
5 0.45 0.30 0.31 0.30 211.58

algorithm often refuses to classify test objects, because 2-graphlet intersections
of positive and test objects are falsi�ed by negative objects and vice versa. But
3-graphlet descriptions are optimal for this method as the model is probably
over�tted in case of 4- and 5-graphlet descriptions.

5 Conclusion

In this paper, we have proposed an approach to graph classi�cation based on
the combination of graphlets, pattern structures and lazy classi�cation. The key
principle of lazy classi�cation is that one does not have to produce the whole set
of classi�cation rules whatever they are. Instead, one generates those rules that
allow one to classify the current test object. The framework favors the complex
structure of objects as soon as the algorithm does not require a training phase.

We have carried out a number of experiments in molecule classi�cation within
the proposed lazy classi�cation framework. We compared classi�cation perfor-
mance of our method and SVM with graphlet kernel and KNN with graphlet-
based distance. The reason for such a choice is that SVM classi�ers are considered
to be good benchmarks for graph classi�cation problem, while kNN is a famous
lazy classi�cation method.

In our experiments graphlet-based lazy classi�cation - following the same
learning curve as the other methods - shows better classi�cation performance
compared to the classical methods in case of molecule toxicology prediction
problem. Further, we plan to investigate the over�tting problem for our algo-
rithm, in particular, the dependency of classi�cation metrics on the number of
considered nodes in graphlets. Other types of descriptions and a parallel version
of our algorithm are also promising directions of study.
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Abstract. Over the last years, computer networks have evolved into
highly dynamic and interconnected environments, involving multiple het-
erogeneous devices and providing a myriad of services on top of them.
This complex landscape has made it extremely di�cult for security ad-
ministrators to keep accurate and be e�ective in protecting their systems
against cyber threats. In this paper, we describe our vision and scienti�c
posture on how arti�cial intelligence techniques and a smart use of se-
curity knowledge may assist system administrators in better defending
their networks. To that end, we put forward a research roadmap involv-
ing three complimentary axes, namely, (I) the use of FCA-based mecha-
nisms for managing con�guration vulnerabilities, (II) the exploitation of
knowledge representation techniques for automated security reasoning,
and (III) the design of a cyber threat intelligence mechanism as a CKDD
process. Then, we describe a machine-assisted process for cyber threat
analysis which provides a holistic perspective of how these three research
axes are integrated together.

1 Introduction

The goal of this paper is to introduce some novel applications of formal concept
analysis [13], knowledge discovery in databases and, in a broader sense, arti�-
cial intelligence techniques to support security analysis of computer networks
and systems. Computer networks are very dynamic environments composed by
diverse entities which, on a daily basis, hold thousands of virtual activities. Ad-
ditionally, they often require con�guration changes to satisfy existing or new
operational requirements (e.g. new services, upgrading existing versions, replac-
ing faulty hardware). Such dynamicity highly increases the complexity of security
management. Even if automated tools help to simplify security tasks there is a

? mbarrere@�ng.edu.uy, m.barrere@imperial.ac.uk
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need for advanced and exible solutions able to assist security analysts in better
understanding what is happening inside their networks.

The research work we put forward is being developed in the context of the
AKD (Autonomic Knowledge Discovery) project [7], a research collaboration
e�ort involving �ve teams with di�erent expertises. We have identi�ed several
key aspects in which the use of arti�cial intelligence techniques, and particularly
formal concept analysis (FCA), can quickly improve on the current state of
a�airs for processes and tasks in the �eld of computer and network security. We
describe how we envision an adaptation of the conceptual knowledge discovery
on databases (CKDD) machinery to provide support in developing scienti�cally
grounded techniques for the domain of cyber threat intelligence. In particular,
we are concerned with vulnerability management and cyber threat analysis. We
also motivate the bene�ts of using ontology engineering methods and tools to
improve the state of the art of security-oriented automated reasoning.

The remainder of this paper is organized as follows: Section 2 points out the
scienti�c challenges of the research that is being developed in the context of the
AKD project. Section 3 motivates three di�erent research �elds in which arti�cial
intelligence techniques can be used to provide machine-assisted support to the
domain of cyber security. Section 4 describes a cyber threat analysis process
aimed at detecting and recognizing security threats within computer systems
and points out how and where the techniques previously discussed apply. Finally,
Section 5 concludes and summarizes research perspectives.

2 Scienti�c challenges

Vulnerabilities, understood as program aws or con�gurations errors, are used
by attackers to bypass the security policies of computer systems. Therefore,
vulnerability management mechanisms constitute an essential component of any
system intended to be protected. During the last decades, strong research e�orts
as well as dozens of security tools have been proposed for dealing with security
vulnerabilities [5]. However, current security solutions still seem to work under
certain boundaries that prevent them to act intelligently and exibly, i.e. strictly
sticked to the available security information in order to analyze, report and
eventually remediate found problems.

In addition to this inexibility, remediating vulnerabilities is already a com-
plex problem and despite the great advances made in this area, remediation tasks
are reactive by nature and they can be hard to perform due to costly activities
and performance degradation issues. They may also generate consistency con-
icts with other system policies. Therefore, our scienti�c posture in this context
is that instead of detecting vulnerable states and then applying several correc-
tive actions, it would be better to anticipate and avoid these vulnerable states in
the �rst place. This objective constitutes a challenging problem. Firstly, mech-
anisms for understanding the behavior and dynamics of the system are needed.
Secondly, sometimes vulnerabilities are not known, so techniques for analyzing
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the available knowledge and extracting measures that might allow the system to
make decisions are essential.

The aforementioned security challenge gets more complex when considered
in dynamic networked scenarios. The accelerated growth of highly heterogeneous
and interconnected computer networks has severely increased the complexity of
network management. This phenomenon has naturally a�ected network security
where traditional solutions seem unable to cope with this evolving and chang-
ing landscape. The main problem is that even when current security techniques
may enable high levels of automation, they might fail to achieve their purpose
when certain aspects of a managed environment slightly change. We need to pro-
vide systems with mechanisms to understand, reason about, and anticipate the
surrounding environment. In light of this, we �rmly believe that an advanced,
exible, and clever management of security knowledge constitutes one of the
key factors to take security solutions to the next level. Our vision is that, in-
dependently of the nature of an automated solution (automatically assisting an
administrator or automatically making security decisions), the ability to intelli-
gently manage knowledge is essential.

In the broad sense of knowledge management, several scienti�c areas within
the arti�cial intelligence domain can contribute to achieve our vision. In this
work, we identify domains such as formal concept analysis (FCA), ontological
engineering, information retrieval (IR), case-based reasoning (CBR), and con-
ceptual knowledge discovery on databases (CKDD), as sound scienti�c areas
that may support a new level of smart cyber security solutions. Fig. 1 illustrates
our research strategy for the short, medium and long term.

I. Enriching vulnerability
management techniques
with FCA

!
II. Improving security
knowledge represen-
tation for automated
reasoning

!
III. Enhancing cyber
threat intelligence
mechanisms

Fig. 1: Research strategy for the short, medium and long term

In the short term (I), our objective is to understand to what extent FCA can
enrich and advance the state of the art of vulnerability management techniques.
Vulnerability management can be usually seen as the cyclical process of assessing
and remediating vulnerabilities. Anticipation techniques are not considered in
the classical de�nition, although the concept of foreseeing future vulnerabilities
perfectly �ts the vision of exible and adaptive systems. Therefore, the idea is
to begin solving basic problems within the sub-area of vulnerability assessment
and progress towards FCA-based mechanisms for anticipating and remediating
security vulnerabilities. We understand that a clever use of available knowledge
requires a formal and robust underlying machinery that allows systems to pro-
cess, reason, extract, and extrapolate information and knowledge among other
features. In the medium term (II), we aim at investigating the link between
current security standard e�orts such as the STIX language [3] and knowledge
representation methods such as security ontologies. The results of this research
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activity may provide a robust support to intelligently deal with security issues.
In the long term (III), the objective is to integrate the results and experience
obtained in (I) and (II) to develop novel approaches to deal with cyber secu-
rity threats supported by KDD-based techniques. In the following section, we
explain in detail each one of these stages, their impact and importance, and how
we envision their development.

3 Research roadmap

3.1 Enriching vulnerability management techniques with FCA

One of the main objectives of our research is the study of vulnerability an-
ticipation mechanisms from the perspective of FCA. Usually, a vulnerability is
considered as a combination of conditions that if observed on a target system, the
security problem described by such vulnerability is present on that system [5].
Each condition in turn is understood as the state that should be observed on a
speci�c object. When the object under analysis exhibits the speci�ed state, the
condition is said to be true on that system. In this context, a vulnerability is a
logical combination of conditions and therefore, identifying known vulnerabilities
implies the evaluation of logical predicates over computer system states. In brief,
we characterize vulnerabilities and system states by the properties they present.
From a technical perspective, the OVAL language [2] maintained by MITRE [1],
is a standard XML-based security language which permits the treatment and
exchange of this type of vulnerability descriptions in a machine-readable man-
ner.

V1 : c1 ^ c2

V2 : c1 ^ (c2 _ c3)
V3 : : c2 _ c3 _ c4

V4 : : c3

Table 1: Vulnerabilities as logical
formul�

Table 2: Semi-lattice representation
of the vulnerability set

As an example, let us consider Table 1 depicting four vulnerabilitiesV =
f V1; V2; V3; V4g as logical formul�, where ^ ; _; : represent the logical connectors
AND; OR; NOT respectively, andC = f c1; c2; c3; c4g are four system conditions
(e.g. \port 80 is open", \httpd server is up", \�rewall is o�", etc.). A system
state s is de�ned as a set of conditionsci 2 C such that ci is true on s. Therefore,
the process of vulnerability assessment over a system states can be de�ned as
follows:

f (s) =
�

vulnerable 9Vi 2 V; s:t:Vi (s) = true
safe otherwise
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