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Chapter 1

MIXTURE MODELS

Christophe Bierna
ki

1.1 Mixture models as a many-purpose tool

Finite mixture models are one of the probabilisti
 frameworks whi
h rea
h

an espe
ially diverse 
ommunity of people, in
luding statisti
ians and pra
ti-

tioners (s
ienti�
 or not). Initial reasons for being 
onfronted with mixtures

may be di�erent for impa
ted 
ommunities but lead �nally to 
lose inter
on-

ne
tions between them. Indeed, applied statisti
ians and pra
titioners usually

dis
over �nite mixture models from the numerous appli
ation �elds where they

meet numerous su

esses. It typi
ally gathers {∅,un,semi-} supervised 
las-

si�
ation and density estimation. The keys of these su

esses are both their

high meaningfulness and �exibility. However, �exibility is in return a matter of

algorithmi
 and mathemati
al questionings for methodologi
al and theoreti
al

statisti
ians. In parti
ular, it addresses estimation and model sele
tion issues,

on both 
omputational and mathemati
al aspe
ts. But, solutions to be pro-

vided to these issues highly bene�
iate to depend on initial related appli
ation

�elds.

1.1.1 Starting from appli
ations

Supervised 
lassi�
ation

In supervised 
lassi�
ation, data are 
omposed of n individuals x = (x1, . . . ,xn)
belonging to a spa
e X of dimension d, and also of an asso
iated partition in

K groups G1, . . . , GK . This partition is denoted by z = (z1, . . . , zn), where
zi = (zi1, . . . , ziK)′ is a ve
tor of {0, 1}K su
h that zik = 1 if individual xi

belongs to the kth groupGk, and zik = 0 otherwise (i = 1, . . . , n, k = 1, . . . ,K).

The data set is thus 
omposed of all pairs D = (x, z) = ((x1, z1), . . . , (xn, zn)).
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It is generally denoted as the learning data set. The aim is to estimate the

group zn+1 of any new individual xn+1 in X for whi
h the group would be

unknown. This aim 
an be reformulated as the estimation of an allo
ation rule

r from D and de�ned as follows:

r : X −→ {1, . . . ,K}
xn+1 7−→ r(xn+1).

(1.1)

An illustration is given in Figure 1.1. Note that the spa
e of individuals X
usually 
orresponds to Rd

in the 
ontinuous 
ase or also to {0, 1}d in the binary

situations. Other examples of X will be exhibited in Se
tion 1.1.4.
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Figure 1.1: Supervised 
lassi�
ation purpose: illustration with a learning data

set (x, z) in R2
with three groups. The new individual to be 
lassi�ed is

denoted by xn+1 and is displayed by a �•�.

−→•?

Semi-supervised 
lassi�
ation

In semi-supervised 
lassi�
ation, the aim is the same as in supervised 
lassi-

�
ation but the data set is 
omposed of nl
individuals (0 ≤ nl ≤ n) xl =

(x1, . . . ,xnl) for whi
h groupmemberships zl = (z1, . . . , z
l
n) are known, whereas

the nu = n− nl
remaining individuals xu = (xnl+1, . . . ,xn) have unknown la-

bels zu = (znl+1, . . . , zn). We will note D = (Dl,Du) with Dl = (xl, zl) and
Du = xu

. The main idea is thus that the unlabelled individuals may be useful

to learn an allo
ation rule (see M
La
hlan [1992℄ p. 37�43). Usually, unlabelled

individuals are expe
ted to be more numerous than the labelled ones sin
e the

latter are 
learly 
heaper to obtain. An illustration of the semi-supervised

setting is given in Figure 1.2.
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Figure 1.2: Semi-supervised 
lassi�
ation purpose: illustration with a learning

data set (x, zl) in R2
with three groups. The new individual to be 
lassi�ed is

denoted by xn+1 and is displayed by a �•�.

−→•?

Unsupervised 
lassi�
ation

In unsupervised 
lassi�
ation, or 
lustering, only individuals x are known and

thus observed data are restri
ted to D = x. The aim is fo
used to estimating

the partition z related to x and not to estimate a partition of all the spa
e X .

However, in some 
ases like mixtures (as we will seen later), a partition of all

the spa
e X 
an be given as a simple by-produ
t. In its more general, but also

more di�
ult, version, the number of groups K is unknown and thus has also

to estimated. An illustration of the 
lustering setting is displayed in Figure 1.3.
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Density estimation

In density estimation, data are 
omposed by individuals x = (x1, . . . ,xn) be-
longing to a spa
e X of dimension d and the aim is to estimate the distri-

bution x ∈ X 7→ f(x) from whi
h the sample arises. Then f 
an be used for

multi-purposes like hypothesis testing. An illustration of the density estimation

setting is given in Figure 1.4
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Figure 1.4: Density estimation purpose: illustration for data x in R2
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1.1.2 The mixture model answer

{∅,un,semi-} supervised 
lassi�
ations

The keystone to solve 
lassi�
ation questions relies on the rigorous de�nition

of a group. Intuitively, a group gathers elements whi
h resemble ea
h other. In

a probabilisti
 framework, the resemblan
e between elements belonging to the

same group may result by the fa
t that they arise from the same probability

distribution fun
tion (pdf). Then, juxtaposing distributions asso
iated to ea
h

group leads to a so-
alled mixture of distributions.

Thus, the individual x1 ∈ X belongs to the group Gk if and only if this

individual is a realization of a random variable (rv) X1 ∈ X 
onditionally to

the fa
t that {Z1k = 1}, where Z1 = (Z11, . . . , Z1K)′ is a ve
tor of {0, 1}K
indi
ating the group membership of X1. We still use the notation Zik = 1
if the individual X1 belongs to the kth group Gk, and Z1k = 0 otherwise

(k = 1, . . . ,K). The distribution of X1 
onditionally to the group Gk, or

equivalently the pdf of the rv X1|Z1k = 1, is written

X1|Z1k = 1 ∼ fk. (1.2)
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In addition, the pdf of Z1 
orresponds to the multinomial distribution of order 1

Z1 ∼ M(π), (1.3)

with π = (π1, . . . , πK) where πk (k = 1, . . . ,K) designates the mixing propor-

tion of the 
omponent k in the mixture or equivalently the un
onditional prob-

ability that an individual arises from this 
omponent, it means (

∑K
k=1 πk = 1

and πk ≥ 0):

πk = p(Z1k = 1). (1.4)

It means also that ea
h groupG1, . . . , GK is present with proportions π1, . . . , πK ,

respe
tively. The joint pdf of the 
ouple (X1,Z1) is thus written

f(x1,x1) =

K∏

k=1

[πkfk(x1)]
z1k , (1.5)

and the marginal pdf of X1 is straightforwardly dedu
ed. It 
orresponds to the

so-
alled mixture pdf f :

X1 ∼ f =

K∑

k=1

πkfk. (1.6)

From this model, the pdf of Z1 
onditional to {X1 = x1}, it means of the rv

Z1|X1 = x1, is given by

Z1|X1 = x1 ∼ M(t1), (1.7)

where t1 = (t11, . . . , t1K) et t1k (k = 1, . . . ,K) is a 
onditional probability

easily obtained by the Bayes theorem

t1k = p(Z1k = 1|X1 = x1)

=
πkfk(x1)

f(x1)
. (1.8)

Thanks to these 
onditional probabilities, an allo
ation rule r 
an be pro-

posed for ea
h individual x1 of X by the so-
alledmaximum a posteriori method

(denoted now by MAP). It simultaneously gives a united answer to all issues

addressed by supervised 
lassi�
ation, semi-supervised 
lassi�
ation and 
lus-

tering. This simply 
onsists of assigning an individual to the group with the

largest 
onditional probability:

∀x1 ∈ X r(x1) = k if t1k ≥ t1h for h = 1, . . . ,K. (1.9)

Beyond the intuitive appearan
e of su
h an allo
ation rule, a more subtle notion

is hidden. Indeed, 
onsidering equal wrong assignment 
osts for ea
h group (it

is often a realisti
 
ase), using the MAP rule is stri
tly equivalent to minimize

the 
lassi�
ation error probability e(r) asso
iated to every rule r and de�ned
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by

e(r) =

K∑

k=1

πk

K∑

h=1,h 6=k

p(r(X1) = h|Zik = 1) (1.10)

= 1− E(X1,Z1)[Z1r(X1)]. (1.11)

This optimal rule is often designated as the Bayes rule in de
ision theory. It


an also be extended to the 
ase of unbalan
ed 
osts. All details 
an be found in

numerous referen
es as M
La
hlan [1992℄ (Chap. 1) or Flury [1997℄ (Chap. 7).

Density estimation

Mixture models design also an extremely �exible family of distributions. It is

illustrated in Figure 1.5 where a Gaussian mixture is used to approximate the

distribution of the grey s
ale distribution of an image.
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Figure 1.5: Illustration of the �exibility of mixtures for the density estimation

purpose: (a) a grays
ale image, (b) the grays
ale histogram asso
iated to the


hara
ter and (
) its estimation by a univariate Gaussian mixture.

1.1.3 Classi
al mixture models

Independen
e and parametri
 assumptions

From the mixture point of view, all 
lassi�
ation purposes rely �rst on 
al
u-

lating 
onditional probabilities and then on using the optimal MAP rule. Sin
e

the 
onditional probabilities are expressed in fun
tion of the mixing propor-

tions π1, . . . , πK and of the 
onditional pdfs f1, . . . , fK , su
h quantities have to

be estimated not only from available data D but also by means of more or less

realisti
 assumptions, in any 
ase often simplisti
, whi
h are available on the

mixture model.

A �rst assumption 
on
erns the sampling type. Pairs individuals-labels

(x1, z1),. . . , (xn, zn) are assumed to i.i.d. (independently and identi
ally dis-

tributed) arise from n pairs of rv (X1,Z1), . . . , (Xn,Zn) following the same
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distribution as (X1,Z1), distribution de�ned by (1.5). Su
h an hypothesis is

performed both in 
lustering and in (semi-)supervised 
lassi�
ation even if la-

bels are not observed in the former situation. Note that this independen
e

assumption may be relaxed like in hidden Markov models where independen
e

between 
onditional rv X1|Z1k=1, . . . ,Xn|Znk=1 is preserved whereas it is re-

laxed between rv Z1, . . . ,Zn (see for instan
e Besag [1986℄, M
La
hlan and

Peel [2000℄ Chap. 13).

A se
ond assumption 
on
erns 
onditional pdf f1, . . . , fK . It is also possible

to perform non-parametri
 pdf (Silverman [1986℄, M
La
hlan [1992℄ Chap. 9,

Benaglia et al. [2011℄), or even semi-parametri
 pdf (Bordes et al. [2007℄). How-

ever, it is more often assumed that fk is wholly de�ned with a �nite ve
torial

parameter αk and thus (k = 1, . . . ,K)

fk = f(·;αk). (1.12)

This assumption is quite weak sin
e parametri
 mixture models are highly

�exible. Denoting by θ = (π,α) the mixture parameter with π = (π1, . . . , πK)
and α = (α1, . . . ,αK), the mixture pdf is then given by

f = f(·; θ)

=

K∑

k=1

πkf(·;αk), (1.13)

and the 
onditional probability is also parameterized by θ: t1k = t1k(θ). Thus,
the 
ouple 
omposed by the parametri
 pdf f(·; θ) and a spa
e Θm where

evolves this parameter de�nes a so-
alled model, denoted now by Sm:

Sm = {x1 ∈ X 7→ f(x1; θ) : θ ∈ Θm}. (1.14)

Moreover, Dm = dim(Θm) will designate the number of 
ontinuous parameters

in Sm. Note that, in the following, we will sometimes use the 
onvenient

language short
ut whi
h 
onfounds the index m and the 
orresponding model

Sm.

In the following, we will assume that the mixture families of interest are

identi�able, up to a label numbering permutation. It means that two di�er-

ent mixture parameters, even with label numbering permutation, lead to two

di�erent mixture pdfs (M
La
hlan and Peel [2000℄ Se
tion 1.14).

Note that a 
omponent distribution fk may be itself de�ned by a mixture

of distributions, in parti
ular in the supervised or in the semi-supervised set-

ting. It 
orresponds thus to a so-
alled mixture of mixture (see for instan
e

Hastie and Tibshirani [1996℄ and Miller and Browning [2003℄). An illustra-

tion is displayed in Figure 1.6 with X = R2
and K = 2 main 
omponents

of same mixing proportions (π1 = π2 = 0.5), the �rst one f1 being a Gaus-

sian N((2, 0)′, I) and the se
ond one f2 being a mixture of two Gaussian sub-


omponents N((0, 0)′, diag(0.25, 4)) and N((0, 0)′, diag(4, 0.25)) with same pro-

portions. The borderline between the two main 
omponents is also given on

this �gure to illustrate its great �exibility with su
h mixtures.
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Figure 1.6: Mixture of a Gaussian 
omponent (group 1) and of a mixture of

two Gaussian 
omponents (group 2): (a) 
lassi�
ation borderline with

asso
iated isodensities and (b) 
lassi�
ation borderline with a sample.

Gaussian mixtures

The multivariate mixture model is 
ertainly the most known and used model for


ontinuous data. It has a long history of use in 
lustering (see for instan
e Wolfe

[1971℄, Bo
k [1981℄) and in supervised 
lassi�
ation (see numerous referen
es

in M
La
hlan [1992℄). In that 
ase, xi (i = 1, . . . , n) are 
ontinuous variables
Rd

and the 
onditional density of 
omponents is written (k = 1, . . . ,K)

f(xi;αk) = φ(xi;αk) =
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(xi − µk)

′Σ−1
k (xi − µk)

)
,

(1.15)

with αk = (µk,Σk), µk ∈ Rd
the 
omponent mean (or 
entre) and Σk ∈ Rd×d

its varian
e-
ovarian
e matrix. Figures 1.7 (a), (b) and (
) respe
tively display

univariate, bivariate and trivariate Gaussian mixtures.
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Figure 1.7: Gaussian mixtures in (a) univariate, (b) bivariate and (
)

trivariate situations.
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At this stage, it is quite 
ommon to impose 
onstraints on the parameter θ

through the spa
e Θ. It is motivated by two essential reasons: either a prior

information is available and is taken into a

ount in this way, or the sample

size is too small for providing a good estimation of the most general model.

Indeed, the better is estimation of θ, the better is estimation of 
onditional

probabilities and the asso
iated MAP partition. See Se
tion 1.3, 1.4 and 1.5

for detailed dis
ussions about model sele
tion. More pre
isely, it is possible to

�x not only simple 
onstraints on mixing proportions (equal or free) but also

some more spe
i�
 
onstraints on 
ovarian
e matri
es. Following the seminal

approa
h of Ban�eld and Raftery [1993℄, Celeux and Govaert [1995℄ propose a

spe
tral de
omposition of the 
ovarian
e matri
es whi
h allows a simple and

useful meaning. Ea
h 
ovarian
e matrix is de
omposed by Σk = λkDkAkD
′
k,

with λk = |Σk|1/d the so-
alled volume of the 
omponent k, Dk the orthogonal

matrix gathering the eigenve
tors of Σk and 
orresponding to so-
alled orienta-

tion of this 
omponent, and Ak the diagonal matrix of normalized eigenvalues

sorted by de
reasing order on the diagonal and of determinant one, 
orrespond-

ing to the so-
alled shape of this 
omponent. By allowing some parameters, but

not ne
essarily all, to vary or not between 
omponents, Celeux and Govaert

[1995℄ obtain fourteen di�erent models whi
h they group into three families:

the spheri
al family where the shape is equal to the identity matrix and thus

only the volume has a role, the diagonal family where the 
ovarian
e matrix

is diagonal, and �nally the general family whi
h gathers all other situations

(for instan
e the homos
edasti
 
ase where 
ovarian
e matri
es are equal or

the heteros
edasti
 
ase 
orresponding to the most general situation with no


onstraints on 
ovarian
e matri
es). Combining these 
onstraints with too

standard 
onstraints on mixing proportions (equal or free) leads then to 28

parti
ular Gaussian mixture models.

Competitor parsimonious models have also been proposed sin
e these previ-

ous seminal ones. In parti
ular, we 
an note the varian
e-
orrelation de
ompo-

sition Σk = TkRkTk of the 
ovarian
e matri
es (Bierna
ki and Lourme [2013℄)

where Tk is the 
orresponding diagonal matrix of 
onditional standard devia-

tions and Rk the asso
iated matrix of 
onditional 
orrelations. Parsimonious

models are obtained by 
ombining simple 
onstraints on matri
es Tk and/or

Rk. These new models are stable when proje
ted into the 
anoni
al planes and,

so, faithfully representable in low dimension. They are also stable by modi�-


ation of the measurement units of the data and su
h a modi�
ation does not


hange the model sele
tion based on likelihood 
riteria. We 
an mention also

Bie
ek et al. [2012℄ who permit not only inter-
omponent 
onstraints between


ovarian
e matri
es, but also parti
ular intra-
omponent 
onstraints like equal-

ity between varian
es or equality between 
ovarian
es. Both last family models

permit also some 
onstraints on the 
entres of the Gaussians.
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Latent 
lass mixtures

Using 
ategori
al data is very frequent in statisti
s also. The standard model for


lustering observations des
ribed through 
ategori
al variables is the so-
alled

latent 
lass model (see for instan
e Goodman [1974℄). This model is assuming

that the observations arose from a mixture of multivariate distributions and

that the variables are 
onditionally independent knowing the groups. It has

been proved to be su

essful in many pra
ti
al situations (see for instan
e

Aitkin et al. [1981℄).

Observations to be 
lassi�ed are des
ribed with d dis
rete variables. Ea
h

variable j has mj response levels. Data are x = (x1, . . . ,xn) where xi =

(xjh
i ; j = 1, . . . , d;h = 1, . . . ,mj) with xjh

i = 1 if i has response level h for

variable j and xjh
i = 0 otherwise. Data are supposed to arise independently

from a mixture of K multivariate multinomial distributions with pdf

f(xi; θ) =

K∑

k=1

πkf(xi;αk) (1.16)

with

f(xi;αk) =

d∏

j=1

mj∏

h=1

(αjh
k )x

jh

i , (1.17)

where θ = (π,α) is denoting the ve
tor parameter of the latent 
lass model

to be estimated, with α = (α1, . . . ,αK) and αk = (αjh
k ; j = 1, . . . , d;h =

1, . . . ,mj), α
jh
k denoting the probability that variable j has level h if obje
t i

is in 
luster k. As previously said, the latent 
lass model is assuming that the

variables are 
onditionally independent knowing the latent groups.

Analysing multivariate 
ategori
al data is di�
ult be
ause of the 
urse of

dimensionality. The standard latent 
lass model whi
h requires (K − 1) +
K
∑

j(mj − 1) parameters to be estimated is an answer to the dimensionality

problem. It is mu
h more parsimonious than the saturated log linear model

whi
h requires

∏
j mj parameters. For instan
e, with K = 5, d = 10, mj = 4

for all variables, the latent 
lass model is 
hara
terised with 154 parameters

whereas the saturated log linear model requires about 106 parameters. More-

over, the latent 
lass model 
an appear to produ
e a better �t than unsaturated

log linear models while demanding less parameters.

In the binary 
ase, some parsimonious alternatives have been also proposed

by Celeux and Govaert [1991℄ by using the following reparameterization:

f(xi;αk) =

d∏

j=1

(εkj)
|xij−δkj |(1− εkj)

1−|xij−δkj |
(1.18)

where (δkj , εkj) = (0, αkj) if αkj < 1/2 and (δkj , εkj) = (1, 1− αkj) otherwise.
Thus parameters αk are de�ned by αk = (δk, εk) with δk = (δk1, . . . , δkd)

′
a bi-

nary ve
tor of dimension d a
ting as the 
enter of the group sin
e it 
orresponds



Mixture models 11

to the modal value, and with εk = (εk1, . . . , εkd)
′
a ve
tor belonging to the set

]0, 1/2[d and a
ting as the dispersion of the 
omponent sin
e it 
orresponds to

the probability of ea
h variable to have a di�erent value from the 
enter. It

allows to retrieve the parameterization used by Ait
hinson and Aitken [1976℄

in non-parametri
 supervised 
lassi�
ation on nominal variables by the kernel

method.

From su
h a de
omposition, it is possible to draw parsimonious situations

by imposing varying 
onstraints on dispersions εk. Three parsimonious models

are thus proposed: the simplest one is independent of both the group and the

variable; another model depends only on the group; the last one depends only

on the variable. Combining with two 
onstraints on mixing proportions (equal

or free), it leads to �nally eight parti
ular mixture models for 
ategori
al data.

1.1.4 Other models

We presented previously the Gaussian and the latent 
lass model sin
e they


orrespond to the more widespread ones for 
ontinuous and 
ategori
al data,

respe
tively. However, many other 
omponent distributions are possible, de-

pending on the data and the hypotheses at hand. Kinds of data, and asso
iated

models, may be numerous (see also M
La
hlan and Peel [2000℄): ranking data

(Marden [1995℄, Ja
ques and Bierna
ki [2014℄), dire
tional data (Mardia and

Jupp [2000℄), ordinal data (Bierna
ki and Ja
ques [2015℄), high dimensional


ontinuous data (Bouveyron et al. [2007℄, M
Ni
holas and Browne [2013℄),

graphi
al data (Nowi
ki and Snijders [2001℄), fun
tional data (Ja
ques and

Preda [2014℄),. . . Some re
ent works propose also models relaxing the 
ondi-

tional independen
e assumption for 
ategori
al and for mixed data while pre-

serving identi�ability, parsimony and parameter interpretation. The reader 
an

refer for instan
e to Marba
 et al. [2013℄ and Marba
 et al. [2014℄, respe
tively,

and many referen
es therein.

1.2 Estimation

1.2.1 Overview

In density estimation, the 
entral question is to estimate the parameter θm,

the model Sm being �xed. The estimation of the model Sm, or equivalently of

its index m, will be dis
ussed later and designed as the model sele
tion problem

whi
h is the 
entral thema of this book. Consequently, we will usually omit

the index m thorough Se
tion 1.2.

In the semi-supervised and unsupervised settings, the most simple and

widespread estimation strategy is the plug-in one. It 
onsists in estimating

�rst θ, subje
t to 
onstraints of S, and then to dire
tly use its estimate θ̂

for estimating �nally related 
onditional probabilities, useful for obtaining the
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MAP rule. Then, we do not ta
kle alternative strategies whi
h would dire
tly

estimate 
onditional probabilities: in (semi-)supervised 
lassi�
ation, it 
on-


erns either the Bayesian predi
tive method of Ripley [1996℄ (p. 45�55), or

the logisti
 regression (Ripley [1996℄, p. 43�45); in 
lustering, it 
on
erns the

Bayesian unsupervised 
lustering of Binder [1978℄.

Following the plug-in prin
iple, Pearson [1894℄ initially used the method of

moments for estimating the mixture parameter for a two 
omponent univariate

Gaussian mixture model. Despite some renewed popularity of su
h an approa
h

(see for instan
e Monfrini [2003℄ or also some referen
es in M
La
hlan and Peel

[2000℄ Chap. 1), it is globally abandoned nowadays. We do not 
onsider either

in this 
hapter Bayesian te
hniques for estimating θ (see Robert [1994℄) be
ause

we fo
us on the maximum likelihood method for its popularity, its simpli
ity

and its relevant estimators properties under some quite general 
onditions,

typi
ally uni
ity and existen
e (see Lehmann [1983℄ Chap. 6).

1.2.2 Maximum likelihood and variants

De�nition

Denoting by ℓ(θ;D) = ln f(D; θ) the observed-data log-likelihood of θ (simply

denoted sometimes as the observed log-likelihood or also as the log-likelihood),

the maximum likelihood estimate (MLE) is given by

θ̂D = argmax
θ∈Θ

ℓ(θ;D). (1.19)

In the following, we will note also θ̂ = θ̂D for simpli
ity when no 
onfusion is

possible. The log-likelihood is easily expressed thanks to the data independen
e

hypothesis. It is written

ℓ(θ;D) = ℓ(θ;Dl) + ℓ(θ;Du) (1.20)

=
nl∑

i=1

K∑

k=1

zik ln (πkf(xi;αk)) +
n∑

i=nl+1

ln (f(xi; θ)) . (1.21)

The log-likelihood ℓ(θ;x, z) = ℓ(θ;D, zu) is 
alled 
omplete-data log-likelihood

(simply denoted sometimes as 
omplete the log-likelihood) sin
e it involves


omplete data x and z. It is usually more simple to maximize that the log-

likelihood ℓ(θ;D) sin
e it vanishes the initial mixture problem.

Theoreti
al properties

We give here two results whi
h generalize respe
tively Proposition 2.2 and 2.3

of Ripley [1996℄ (p. 32�34) to our parti
ular data set D whi
h depends on

the ratio of non-missing data nl/n. We assume now that nl/n → β with

β ∈ [0, 1] when n → ∞. Taking D′
an independent data 
opy of D, we will note
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also in the following θ∗
the value of θ whi
h minimizes the Kullba
k-Leibler

divergen
e between the true (unknown) distribution f(D′) and the 
andidate

mixture distribution f(D′; θ):

θ∗ = argmin
θ∈Θ

ED′ [ln f(D′)− ln f(D′; θ)]. (1.22)

Under some standard regularity 
onditions, the �rst result 
on
erns the point-

wise 
onsisten
y with θ̂
a.s.−→ θ∗

(see for instan
e White [1982℄). If the true

distribution is in
luded in the 
andidate parametri
 family, we retrieve thus

f(D′) = f(D′; θ∗). The se
ond result 
on
erns the distributional 
onsisten
y.

We express it now and give also a proof sin
e it involves new Fisher information

matri
es depending on β.

Proposition 1.1 Under standard regularities 
onditions,

√
n(θ̂ − θ∗)

d−→ N

(
0,J−1

β KβJ
−1
β

)
(1.23)

with N(0,V) the multivariate Gaussian distribution of zero mean and of 
o-

varian
e matrix V, with nl/n→β ∈ [0, 1] when n → ∞, and with Jβ =
(βJc + (1 − β)J) and Kβ = (βKc + (1− β)K) where

Jc = −E(X1,Z1)∇2 ln f(X1,Z1; θ
∗), J = −EX1∇2 ln f(X1; θ

∗), (1.24)

Kc = V(X1,Z1)∇ ln f(X1,Z1; θ
∗), K = VX1∇ ln f(X1; θ

∗). (1.25)

Expe
tation is taken relatively to the true joint distribution f(x1, z1) for the

Fisher information matri
es Jc and Kc, and relatively to the true marginal

distribution f(x1) for the other information matri
es J and K. First and

se
ond derivatives 
on
ern θ. Note that if the true distribution is in
luded

in the 
andidate parametri
 family, then we retrieve the other 
lassi
al results

sin
e Jc = Kc and J = K.

Proof The maximum likelihood estimate veri�es ∇ℓ(θ̂;D) = 0. A Taylor expansion at the

�rst order gives

0 = ∇ℓ(θ̂;D) = ∇ℓ(θ∗;D) +∇2ℓ(θ̃;D) (θ̂ − θ
∗) (1.26)

with θ̃ a ve
tor �between� θ̂ and θ
∗
, through the multidimensional meaning. Using now the


entral limit theorem and the strong law of large numbers, we obtain

√
n(θ̂ − θ

∗)

=
[

− 1

n
∇2ℓ(θ̃;Dl) −

1

n
∇2ℓ(θ̃;Du)

]−1[ 1√
n
∇ℓ(θ∗;Dl) +

1√
n
∇ℓ(θ∗;Du)

]

(1.27)

d−→
[

βJc + (1 − β)J
]−1

N

(

0,
[

βKc + (1− β)K
])

= N

(

0,J−1

β KβJ
−1

β

)

. (1.28)

The fa
t that Jc = Kc and J = K when the model is true is already a well-known property

(see for instan
e Lehmann [1983℄ p. 118). ✷
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Variants

We 
an also note that, in 
lustering, there exists a spe
i�
 estimation method,

sometimes 
alled 
lassi�
ation approa
h in 
ontrast to this one of maximum

likelihood sometimes 
alled mixture approa
h (Celeux and Govaert [1993℄). It


onsists in maximizing the 
omplete-data log-likelihood ℓ(θ;D, zu) on the 
ou-

ple (θ, zu):

(θ̂c, ẑ
u
c ) = arg max

θ∈Θ,zu∈Zu
ℓ(θ;D, zu), (1.29)

where Zu
denotes the spa
e where zu stands. The interest of this approa
h

is to take expli
itly into a

ount the 
lustering purpose without sa
ri�
ing the

simpli
ity of the plug-in prin
iple. Indeed, in the small sample 
ase, it 
an be

observed that the estimated partition is better with the 
lassi�
ation approa
h

than with the mixture approa
h (see for instan
e Bierna
ki [1997℄ p. 52). But,


omplete-data maximum likelihood θ̂c 
an be biased, even asymptoti
ally, in

parti
ular if 
omponents have quite strong overlap (Bryant and Williamson

[1978℄).

Nevertheless, another positive point of the 
lassi�
ation approa
h is the abil-

ity to retrieve some standard, and initially non-probabilisti
, 
lustering 
riteria

(Celeux and Govaert [1993℄). For instan
e in the Gaussian 
ase, Celeux and

Govaert [1992℄ exhibited that maximizing the 
omplete-data likelihood allows

to retrieve, depending on the model at hand, some distan
e-based 
lassi
al 
ri-

teria. Thus, in the equal mixing proportion 
ase, the K-means 
riterion (Ward

[1963℄) is equivalent to assume a spheri
al model with identi
al volume; this

one of Friedman and Rubin [1967℄ is equivalent to an homos
edasti
 model;

this one of S
ott and Symons [1971℄ is equivalent to the most general model.

In the latent 
lass model for binary data, the most simple model 
orresponds to

a χ2
-type 
riterion initially established without any referen
e to a probabilisti


framework (see for instan
e Gower [1974℄).

1.2.3 Theoreti
al di�
ulties related to the likelihood

Multiple roots

Maximum likelihood, in the mixture setting or not, is often fa
ed to the exis-

ten
e of multiple roots of the log-likelihood. Roots 
orrespond to the θ values

verifying

∇ℓ(θ;D) = 0. (1.30)

Obviously, under some standard regularity 
onditions, the theory asserts exis-

ten
e of a unique 
onsistent root of this equation (see for instan
e Cramér [1946℄

or also its multivariate extension by Tarone and Gruenhage [1975℄). However,

poor guidan
e is generally given for 
hoosing this 
onsistent root in 
ase of mul-

tiple roots even if the bibliographi
al paper of Small et al. [2000℄ dis
usses of

several approa
hes (see also an anterior dis
ussion in Lehmann [1983℄ Chap. 6).
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It in
ludes for instan
e an iterated method based on 
onsistent estimates, the

use of a bootstrap method or also a te
hnique relying on the asymptoti
 prop-

erties of the roots, when these properties 
an be expli
itly expressed. Another

possibility simply 
onsists in sele
ting the root asso
iated to the maximum like-

lihood value sin
e Wald [1949℄ established 
onsisten
y of the global maximum

likelihood on some 
onditions. The Wald's properties of this MLE have been

then extended by White [1982℄ in the very realisti
 situation of a misspe
i�ed

model (see Se
tion 1.3.2 and in parti
ular Proposition 1.1). Consequently, the

strategy 
onsisting in retaining the maximum value of the maximum likelihood

fun
tion is often adopted.

Pathologi
al 
ases

It exists some situations where this global maximum is not 
onsistent as illus-

trated in Neyman and S
ott [1948℄, Ferguson [1982℄ or Stefanski and Carroll

[1987℄. In the heteros
edasti
 Gaussian 
ase (but also in some non-Gaussian


ases), it exists also a di�
ulty sin
e the global maximum is not bounding

above as noted �rst by Kiefer and Wolfowitz [1956℄ (note that this maximum

is not a root of (1.30)). It 
orresponds to so-
alled degenerated solutions. It

happens for instan
e by positioning a Dira
 distribution at a parti
ular data

point (it 
orresponds to a spe
i�
 degenerated Gaussian), while imposing the

generalized varian
e (i.e. the determinant of the 
ovarian
e matrix) to be non-

null for at least one of the other Gaussians. In addition, among other lo
al

maxima of the likelihood, some of them may 
orrespond to spurious maximiz-

ers as 
alled by M
La
hlan and Peel [2000℄ Se
tion 3.10. It 
orresponds to

non-degenerated solutions where one or many 
ovarian
e matri
es are 
lose to

degenera
y, providing potentially large �nite values of the likelihood although

they do not 
orrespond to some reality about the �true� parameter.

Pra
ti
al di�
ulty for �nding a suitable root

More details 
ould be found in Redner andWalker [1984℄ Se
tion 2.2 or M
La
h-

lan and Peel [2000℄ Se
tion 1.18 for a detailed histori
al review on methods

aiming at maximizing the likelihood in mixtures of distributions.

In the mixture 
ontext, solving the highly non-linear Equation (1.30) is

generally impossible in 
losed-form. However, the in
rease of 
omputing fa
il-

ities helped to gradually over
ome this di�
ulty. Thus, some simple mixture

situations have been su

essfully solved by iterative methods. For instan
e,

Rao [1948℄ used the s
oring method of Fisher for studying a mixture of two

univariate homos
edasti
 Gaussians, Mendenhall and Hader [1958℄ used a New-

ton method for a simpler situation with a unique s
alar parameter. Then, Day

[1969℄ for a multivariate mixture of two Gaussians, and Wolfe [1971℄ (and other

referen
es of the same author) with any number of heteros
edasti
 Gaussians,

all used at similar periods some optimizing methods already 
lose to the EM
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algorithm of Dempster et al. [1977℄. This algorithm, and its numerous variants,

is 
ertainly today the most widespread estimation method for mixtures.

Although su
h algorithms allow to provide simple and relevant solutions for

maximizing the likelihood, they are usually fa
ed to the previous theoreti
al

problems related to the likelihood: multiple roots and other stationary solu-

tions, degenera
y, spurious solutions. Sometimes, it is added some di�
ulties

related to the retained optimization method su
h some relative slow 
onver-

gen
e or initial parameter dependen
y for EM that we des
ribe now.

1.2.4 Estimation algorithms

The EM algorithm

For optimizing ℓ(θ;D) in the general setting, the EM algorithm of Dempster

et al. [1977℄ is often performed. It is a general algorithm for optimizing in-


omplete data (thus no restri
ted to mixtures) for maximizing the likelihood.

Sin
e the seminal paper of Dempster et al. [1977℄, numerous authors des
ribed

its properties and its variants (see for instan
e M
La
hlan and Krishnam [1997℄

or Redner and Walker [1984℄ for the mixture 
ontext). In the mixture frame-

work, missing data 
orrespond to unknown labels zu. Starting from an initial

parameter θ(0)
, EM pro
eeds in two sequential steps, the so-
alled E-step (Ex-

pe
tation) and the so-
alled M-step (Maximization). Noting

Q(θ; θ(q)) = Eθ(q) [ℓ(θ;D,Zu)|D] (1.31)

the expe
tation of the 
omplete-data log-likelihood ℓ(θ;D,Zu) with respe
t to

the 
onditional distribution f(zu|D; θ(q)), these two steps are expressed by:

E-step Cal
ulate Q(θ; θ(q));

M-step Choose θ(q+1) ∈ Θ su
h that θ(q+1) = argmaxθ∈Θ Q(θ; θ(q)).

If it exists several possible values θ(q+1)
at the M-step, we retain simply one

of them. Finally, the algorithm stops as soon as the log-likelihood rea
hes

stationarity:

|ℓ(θ(q+1);D)− ℓ(θ(q);D)| ≤ ε, (1.32)

with ε a �xed small non-negative value. It is also possible to stop EM after a

prede�ned iteration number.

EM properties

A �rst important property of EM is that the log-likelihood monotoni
ally in-


reases along the run: ℓ(θ(q+1);D) ≥ ℓ(θ(q);D) pour q ≥ 0. Proving this point
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(see for instan
e M
La
hlan and Krishnam [1997℄ Chap. 3) relies on the fol-

lowing de
omposition of the log-likelihood into a term of 
omplete-data-like

log-likelihood and an entropy-like term:

ℓ(θ;D) = ℓ(θ;D, zu) + ξ(θ; zu), (1.33)

where the 
omplete-data-like log-likelihood is

ℓ(θ;D, zu)

= ℓ(θ;Dl) + ℓ(θ;Du, z
u) (1.34)

=

nl∑

i=1

K∑

k=1

zik ln (πkf(xi;αk)) +

n∑

i=nl+1

K∑

k=1

zik ln (πkf(xi;αk)) (1.35)

and the entropy-like term is

ξ(θ; zu) = −
n∑

i=nl+1

K∑

k=1

zik ln(tik(θ)) ≥ 0. (1.36)

This last term varies between 0 and nu ln(K).

Taking expe
tation of both members of this equation subje
t to f(zu|D; θ(q)),
we obtain

ℓ(θ;D) = Eθ(q) [ℓ(θ;D,Zu)|D] + Eθ(q) [ξ(θ;Zu)|D] (1.37)

= Q(θ; θ(q)) + ξ(θ; tu(θ(q))), (1.38)

where tu(θ) = (tnl+1(θ), . . . , tn(θ)). The transformation of the entropy term

is a 
onsequen
e of tik(θ
(q)) = p(Zik = 1|Xi = xi; θ

(q)) = Eθ(q) [Zik|Xi = xi]
(i = nl + 1, . . . , n, k = 1, . . . ,K). We thus dedu
e that

ℓ(θ(q+1);D)− ℓ(θ(q);D) = {ξ(θ(q+1); tu(θ(q)))− ξ(θ(q); tu(θ(q)))}
+{Q(θ(q+1); θ(q))−Q(θ(q); θ(q))}. (1.39)

The �rst term of the se
ond member of this equation is non-negative as de�ned

in the M-step. We then 
on
lude by noting that the se
ond term is also non-

negative sin
e

ξ(θ(q+1); tu(θ(q)))− ξ(θ(q); tu(θ(q))) =
n∑

i=nl+1

{
K∑

k=1

tik(θ
(q)) ln

(
tik(θ

(q))

tik(θ(q+1))

)}
≥ 0. (1.40)

Indeed, we re
ognize, for ea
h i = nl+1, . . . , n, the Kullba
k-Leibler divergen
e
between distributions ti(θ

(q)) and ti(θ
(q+1)).

A se
ond EM property is its speed of 
onvergen
e towards a stationary value

of the likelihood. This 
onvergen
e rate is usually 
onsidered as low sin
e it is
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linear around a stationary parameter θ∗
of the likelihood (see M
La
hlan and

Krishnam [1997℄ Chap. 3.9), 
ontrary to Newton-like methods whi
h bene�t

from a lo
al quadrati
 
onvergen
e. Ea
h EM iteration is a mapping g of Θ
into Θ su
h that θ(q+1) = g(θ(q)). If θ(q)


onverges towards a parameter θ∗

and that g is a 
ontinuous mapping also, then θ∗ = g(θ∗). A Taylor expansion

of g(θ(q)) around θ∗
allows to write

θ(q+1) − θ∗ ≈ H(θ∗)(θ(q) − θ∗), (1.41)

with H(θ∗) the Ja
obian matrix D×D of g(θ), D being the number of 
ontin-

uous parameters in Θ. Thus, an EM iteration is nearly linear around 
onver-

gen
e with 
onvergen
e matrix equal to H(θ∗). In addition, sin
e the global


onvergen
e rate is given by

γ = lim
q→∞

‖θ(q+1) − θ∗‖
‖θ(q) − θ∗‖ (1.42)

for any norm ‖ · ‖ of RD
, it also 
orresponds to the largest eigenvalue of H(θ∗).

The speed of 
onvergen
e of EM then depends on the value of γ, a large value

leading to a slow 
onvergen
e rate.

Beyond its theoreti
al properties, EM is widely appre
iated for its ease

of implementation, its generally 
omputationally light iterations (no Hessian

matrix to 
ompute), the low memory requirement to make it work (it requires

little storage) and �nally it quite appealing prin
iple. All these previous points


an be easily guessed when having a pre
ise look at its two steps. The E-

step �nally 
onsists, for the mixture 
ase, to 
ompute 
onditional probabilities

tik(θ
(q)) (i = nl+1, . . . , n, k = 1, . . . ,K) sin
e the 
omplete-data log-likelihood

ℓ(θ;D, zu) is linear with respe
t to missing data zu. In other words, we have the

identity Q(θ; θ(q)) = ℓ(θ;D, tu(θ(q))). The M-step allows to �nd the parameter

θ(q+1)
in 
losed form for many standard mixture models. Indeed, it is often

easy to obtain the maximum likelihood estimate with 
omplete data and the M-

step �nally 
onsists of maximizing the 
omplete-data likelihood where missing

data have been repla
ed by their expe
tation, thus the previous 
onditional

probabilities. Mixing proportions are given by

π
(q+1)
k =

n
(q)
k

n
, (1.43)

where n
(q)
k =

∑nl

i=1 zik +
∑n

i=nl+1 tik(θ
(q)) 
orresponds to the �fuzzy� popula-

tion of the 
omponent k. Other parameter estimates depend on the parametri


model at hand. For instan
e, in the general heteros
edasti
 Gaussian 
ase,

we retrieve familiar expressions for 
entres and 
ovarian
e matri
es estimates

(k = 1, . . . ,K):

µ
(q+1)
k =

1

n
(q)
k




nl∑

i=1

zikxi +

n∑

i=nl+1

tik(θ
(q))xi




(1.44)
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Σ
(q+1)
k =

1

n
(q)
k

(
nl∑

i=1

zik(xi − µ
(q+1)
k )(xi − µ

(q+1)
k )′

+

n∑

i=nl+1

tik(θ
(q))(xi − µ

(q+1)
k )(xi − µ

(q+1)
k )′

)
. (1.45)

In the more restri
ted homos
edasti
 
ase we have

Σ(q+1) =
1

n

K∑

k=1

n
(q)
k Σ

(q+1)
k . (1.46)

Celeux and Govaert [1995℄ des
ribed the M-step for ea
h of the fourteen Gaus-

sian models already des
ribed in Se
tion 1.1.3. For the 
lassi
al latent 
lass

model 
onsidered in Se
tion 1.1.3, Celeux and Govaert [1991℄ produ
ed also


orresponding E-steps.

Variants of EM

Sin
e EM may be quite slow in some 
ases, numerous authors proposed modi-

�ed versions of EM aiming at a

elerating its 
onvergen
e while preserving its

simpli
ity. In this 
ontext, Liu and Sun [1997℄ 
onsider, in the mixture 
on-

text, the ECME algorithm (Expe
tation Conditional Maximization of Either)

of Liu and Rubin [1994℄. In ECME, the E-step of EM is un
hanged but its

M-step is repla
ed by the CM-step (Conditional Maximization) whi
h maxi-

mizes, a 
hoi
e based on parameters, either the expe
tation of 
omplete-data

log-likelihood as in the initial EM, either dire
tly the log-likelihood. Alterna-

tively, modifying the E-step, Ueda and Nakano [1998℄ propose a deterministi


version of EM involving simulated annealing. It 
orresponds to the so-
alled

DAEM algorithm (Deterministi
 Annealing EM) and it aims to over
ome the

problem of lo
al maxima. More pre
isely, at the E-step, the 
onditional prob-

abilities of the groups are raised to a given power, similar to a temperature,

whi
h tends towards unity when the number of iterations in
reases. Pilla and

Lindsay [2001℄ suggested a new de�nition of the missing data in order to redu
e

their number. In that 
ase, the 
onvergen
e rate is improved in some paramet-

ri
 dire
tions whi
h 
an depend on the iteration number of EM. Another way

for exploring in depth the parameter spa
e in various dire
tions, Celeux et al.

[2001℄ proposed also an EM algorithm with sequential update of parameters

for ea
h 
omponent.

Other alternatives propose sto
hasti
 versions of EM. Their fundamental

motivation is to avoid lo
al maxima of the likelihood. In this way, the SEM

algorithm (Sto
hasti
 EM) of Celeux and Diebolt [1985℄ in
orporates an ad-

ditional random S-step (Sto
hasti
) between the E-step and the M-step. This

new step 
onsists of drawing the group memberships from a multinomial dis-

tribution of order one with the group 
onditional probabilities as parameters,
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instead of taken their expe
tation as initially in EM. starting from θ(0)
, SEM

is expressed by

E-step As the E-step of EM;

S-step For ea
h i = nl + 1, . . . , n, draw zi(θ
(q))) ∼ M(ti(θ

(q)));

M-step Choose θ(q+1) ∈ Θ su
h that θ(q+1) = argmaxθ∈Θ ℓ(θ;D, zu(θ(q))).

Sin
e the parameter sequen
e (θ(q)) generated by SEM does not pun
tually


onverges, due to the S-step de�nition, the algorithm generally stops after a

prede�ned number of iterations. This sequen
e 
onverges in distribution to-

wards the unique stationary distribution. Asymptoti
ally, the average of this

distribution provides a sensible lo
al estimate of the likelihood. Thus, SEM

allows to be less dependent on the initial value θ(0)
if a �su�
ient� iteration

number is performed. Noting also that there exists a simulated annealing ver-

sion of SEM, SAEM (Simulated Algorithm EM) of Celeux and Diebolt [1990℄,

whi
h allows to start with SEM and whi
h allows to �nish with EM while 
on-

trolling a given temperature. SAEM has the advantage to pun
tually 
onverge

and simultaneously to be less dependent on the starting position.

Optimizing the 
omplete-data log-likelihood 
an be performed with the

CEM (Classi�
ation EM) algorithm whi
h is a 
lustering version of EM pro-

posed by Celeux and Govaert [1992℄. CEM 
onsists of adding a C-step (Clas-

si�
ation) between the E-step and the M-step of EM. It simply 
orresponds

to a MAP of the group 
onditional probabilities previously 
al
ulated at the

E-step. The detail of CEM is the following:

E-step As the E-step of EM;

C-step De�ned z(θ(q)) as the MAP of t(θ(q));

Step- M Choose θ(q+1) ∈ Θ su
h that θ(q+1) = argmaxθ∈Θ ℓ(θ;D, zu(θ(q))).

Remind that CEM does not optimize the observed-data log-likelihood ℓ(θ;D)
but the 
omplete-data log-likelihood ℓ(θ;D, zu) on the 
ouple (θ, zu).

Initializing EM

Instead of introdu
ing randomness in the iterations of the EM algorithm itself

(like SEM), it is possible to introdu
e randomness through the starting value

θ(0)
. The underlying idea is that a sensible starting value θ(0)


ould be able to

solve at the same time the problem of slow 
onvergen
e rate and also the prob-

lem of lo
al maxima. In pra
ti
e, it is re
ommended to run EM from several

initial parameters and then to retain the best run. However, the question to


hoose su
h initial parameters has to be addressed. In this aim, Coleman and

Woodru� [2000℄ used a 
lustering method starting from a random partition of
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a subsample. M
La
hlan and Peel [2000℄ proposed, in the Gaussian 
ase, to

start with equal mixing proportions, with K 
entres drawn from a multivariate

Gaussian with empiri
al mean and empiri
al 
ovarian
e matrix of the whole

data set, with homos
edasti
 
ovarian
es matri
es equal to the empiri
al 
o-

varian
e matrix of the whole data set. Markatou et al. [1998℄ used a bootstrap

method to presele
t a sensible parameter subspa
e. Alternatively, Bierna
ki

et al. [2003℄ formalized the following three step strategy:

Sear
h-step It provides several starting values for EM;

Iteration-step EM is run from ea
h previous starting values;

Sele
tion-step Retain the previous run providing the highest likelihood.

Originality relies on the Sear
h-step whi
h 
an involved CEM, SEM or small

preliminary runs of EM itself. Nevertheless, as rightly underlined by Meila

and He
kerman [2001℄, 
hoosing a starting parameter is essentially a trade-o�

between its relevan
e and its 
omputational 
ost.

Impa
t of estimation on model sele
tion

The EM solution 
an highly depend on its starting position espe
ially in a

multivariate 
ontext. This jeopardizes statisti
al analysis of mixture for two

reasons. Firstly, as we have just dis
ussed above, ML estimation is expe
ted

to provide sensible estimates of the mixture parameters. Se
ondly, the highest

maximized likelihood enters the de�nition of numerous 
riteria (see Se
tion 1.3

and the next se
tions) aiming to sele
t a good mixture model and espe
ially

to 
hoose a relevant number of mixture 
omponents. Thus, it is important to

get the highest 
riterion value when estimating the parameters of a mixture

through maximum likelihood.

Let us illustrate this fa
t with a simple example. We 
onsider a sam-

ple of size n = 50 from a two-
omponent univariate Gaussian mixture with

proportions π1 = π2 = 0.5, means µ1 = −0.8, µ2 = 0.8 and varian
es

σ2
1 = 1, σ2

2 = 1.5. All the parameters are supposed to be known, ex
ept the

means µ1 and µ2. The likelihood has two lo
al maxima as shown in Fig-

ure 1.8. If the lowest likelihood maximum is sele
ted, it 
an have 
onsequen
e

for 
hoosing the number of 
omponents K. For instan
e, Table 1.1 gives the

AIC 
riterion values (Akaike [1974℄ and Se
tion 1.3 below) for K = 1 and for

the two di�erent ML solutions for K = 2. Thus, despite its marked tenden
y

to favour too 
omplex models (see below again), AIC 
on
ludes wrongly for

a single Gaussian distribution when the lowest lo
al maximum likelihood is

sele
ted.
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Figure 1.8: A two-mode likelihood surfa
e.

K = 1 K = 2 (highest ML) K = 2 (lowest ML)

AIC -85.29 -84.88 -85.95

Table 1.1: AIC 
riterion values for di�erent MLE values.

1.3 Model sele
tion in density estimation

1.3.1 Need to sele
t a model

The bias/varian
e trade-o�

Pre�xing a parametri
 model Sm = {x1 ∈ Rd 7→ f(x1; θ) : θ ∈ Θm} as a


andidate for the true, but unknown, distribution f allowed to stand in a sim-

pli�ed framework, where powerful parametri
 inferen
e tools are available (see

the previous se
tion). However, this parametri
 hypothesis is binding sin
e

this true distribution 
an highly di�er from the 
andidate one. For instan
e,

the true 
omponent densities are not Gaussians or the true number of 
ompo-

nents is larger than this one involved in the model at hand. As a 
onsequen
e,

the estimated distribution is a biased estimate of f . There exists also a more

subtle notion of �wrong� model through the idea of over-parameterized model.

For instan
e, using a general heteros
edasti
 Gaussian model whereas the true


omponents are spheri
al Gaussians would lead, for small sample sizes at least,

to poor estimates in 
omparison to the use of a 
andidate model with spher-

i
al Gaussians. The same harmful behaviour would appear by involving for

instan
e a number of 
omponents in the model whi
h is larger than in the true

distribution. Su
h situations are a 
onsequen
e of too large varian
e estimates.

In order to formalize this bias/varian
e trade-o� we 
onsider now a family of

model index 
olle
tion M = {m} 
orresponding to a family of model 
olle
tion
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{Sm : m ∈ M}. We denote by

KL(f, fθm
) = ED′ [ln f(D′)− ln f(D′; θm)] (1.47)

the Kullba
k-Leibler divergen
e between the true distribution f and any pro-

posed distribution fθm
= f(·; θm) 
orresponding to a model (index) m in

M, where D′
is a sample independent of D but with the same distribution.

Sometimes, we refer also to 2KL(f, fθm
) as the devian
e of Sm. The following

reasoning 
ould be applied to any other 
ontrast than the Kullba
k-Leibler

divergen
e; this remark will be useful in Se
tion 1.4 and 1.5. We note also

θ̂m the MLE of θm and θ∗
m the best parameter θm with the Kullba
k-Leibler

divergen
e

θ∗
m = arg inf

θ∈Θm

KL(f, fθm
). (1.48)

Then, we have the following straightforward but fundamental de
omposition

of KL(f, f
θ̂m

), where we have noted θ̂m = θ̂D,m:

KL(f, f
θ̂m

)

=
{
KL(f, fθ∗

m

)− KL(f, f)
}
+
{
KL(f, f

θ̂m

)− KL(f, fθ∗
m

)
}

(1.49)

=
{
biasm

}
+
{
varian
em

}
. (1.50)

The bias 
orresponds to the so-
alled error of approximation and the varian
e

to the so-
alled error of estimation.

In order to illustrate the varian
e e�e
t on the a

ura
y estimate of the

mixture parameter, we generate 30 samples of size 40 and 200 from the following

bivariate mixture with two 
omponents: π1 = π2 = 0.5, µ1 = (0, 0)′, µ2 =
(2, 2)′, Σ1 = Σ2 = I. The parameter θ is then estimated by an EM algorithm

with both a simple spheri
al and a more 
omplex general Gaussian mixture

of two 
omponents. Table 1.2 illustrates that the Kullba
k-Leibler divergen
e

in
reases with the more 
omplex model, revealing the e�e
t of the varian
e.

We note also that the varian
e de
reases with the sample size.

n m ÊDKL(fθ, fθ̂m

)

40 spheri
al 0.0760

general 0.1929

200 spheri
al 0.0116

general 0.0245

Table 1.2: E�e
t of the varian
e of θ̂m on the density estimation quality.

What about hypothesis testing?

Tests of hypothesis, like the famous Likelihood Ratio Test (LRT), are often

not really suitable in a model sele
tion purpose for several important reasons.
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Firstly, they indu
e a dissymmetry in the models 
omparisons through the null

hypothesis and the alternative hypothesis. Se
ondly, sele
ting between more

than two models leads to sequential testing whi
h generates a la
k of 
ontrol on

the global type I error rate. Thirdly, general tests like the LRT are able only

to test nested models, what is quite restri
ted. A last reason, spe
i�
 to the

mixture 
ase, is that the asymptoti
 distribution of the LRT is not ne
essarily

a χ2
distribution with the usual number of freedom (see for instan
e Aitkin

and Rubin [1985℄ or Everitt [1981℄) sin
e the so-
alled standard regularity 
on-

ditions do not hold. Indeed, in the 
ase of the number of groups sele
tion,

two of these regularity 
onditions 
ollapse: the model is not identi�able and

also the borderline of the parameter spa
e is rea
hed for mixing proportions

(one 
omponent situation 
orresponds to a two 
omponent situation with one

empty 
omponent). However, some proposals exist for over
oming this prob-

lem like heuristi
 asymptoti
 distributions in Wolfe [1971℄, like marginalization

over mixing parameters in Aitkin and Rubin [1985℄ or like a bootstrap non

asymptoti
 estimation of the LRT distribution in M
la
hlan [1987℄.

Model sele
tion 
riteria that we present now will over
ome most previous

di�
ulties en
ountered by hypothesis testing, even if a parti
ular attention

should be paid to the number of 
omponents sele
tion. They are also generally

expressed as a penalization of the maximum log-likelihood by a measure of the

model 
omplexity. The list of des
ribed 
riteria is not exhaustive sin
e the aim

is to provide only the probably most important families of them.

1.3.2 Frequentist approa
h and devian
e

The frequentist point of view 
onsists of sele
ting the model m ∈ M by using

the devian
e 2KL(f, f
θ̂m

) or alternatively the expe
ted devian
e 2EDKL(f, fθ̂m

).
Approa
hes 
an be asymptoti
 or not.

In the following, we will remove the indi
es m and/or D when no ambiguity

is possible. For instan
e, θ̂ = θ̂D,m denotes the MLE of θ with the data set D
and model Sm. Similarly, we use θ∗ = θ∗

m for the best theoreti
al parameter,

D = Dm for the number of parameters, S = Sm for the model, et
.

Expe
ted devian
e and related AIC-like 
riteria

The ideal model Sm∗
to be retained is this one minimizing the expe
ted de-

vian
e

Dm = 2EDKL(f, fθ̂m

), (1.51)

thus

m∗ ∈ arg min
m∈M

Dm. (1.52)

The main task is to estimating Dm �rst, to then estimating m∗
. Its asymptoti


approximation essentially relies on the following proposition.
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Proposition 1.2 Noting D∗ = tr[KβJ
−1
β ], D 
an be expressed by

D = 2{ln f(D)− ℓ(θ̂;D)}+ 2D∗ +Op(
√
n). (1.53)

Moreover, if the true distribution is in
luded in the parametri
 distribution

family des
ribed by S, then D∗ = D, where D is the number of parameters in

Θ.

Proof We start with a Taylor expansion of order two around θ∗
of twi
e the log-likelihood

2ℓ(θ̂;D′):

2ℓ(θ̂;D′)

≈ 2ℓ(θ∗;D′) + 2(θ̂ − θ
∗)′∇ℓ(θ∗;D′) + (θ̂ − θ

∗)′∇2ℓ(θ∗;D′)(θ̂ − θ
∗) (1.54)

= 2ℓ(θ∗;D′) + 2(θ̂ − θ
∗)′∇ℓ(θ∗;D′) + tr[∇2ℓ(θ∗;D′)(θ̂ − θ

∗)(θ̂ − θ
∗)′]. (1.55)

This result, asso
iated to the fa
t that ED′∇ℓ(θ∗;D′) = 0 and also to independen
e between

D and D′
, allows to write

D ≈ 2ED′ [ln f(D′) − ℓ(θ∗;D′)]− 2ED(θ̂ − θ
∗)′ED′∇ℓ(θ∗;D′)

−tr[ED′∇2ℓ(θ∗;D′)ED(θ̂ − θ
∗)(θ̂ − θ

∗)′] (1.56)

≈ 2ED′ [ln f(D′) − ℓ(θ∗;D′)]

−tr[{ED′
l
∇2ℓ(θ∗;D′

l) + ED′
u
∇2ℓ(θ∗;D′

u)}VD θ̂] (1.57)

= 2ED′ [ln f(D′) − ℓ(θ∗;D′)]− tr[(−nJβ)(J
−1

β KβJ
−1

β /n)] (1.58)

= 2ED′ [ln f(D′) − ℓ(θ∗;D′)] + tr[KβJ
−1

β ]. (1.59)

The error in this expression is of order O(1/
√
n). It remains to estimate the �rst term from

the observed sample D to 
on
lude:

2ED′ [ln f(D′)− ℓ(θ∗;D′)]

≈ 2{ln f(D) − ℓ(θ∗;D)} (1.60)

≈ 2{ln f(D) − ℓ(θ̂;D)} − 2(θ̂ − θ
∗)′∇ℓ(θ̂;D)− tr[∇2ℓ(θ̂;D)(θ̂ − θ

∗)(θ̂ − θ
∗)′](1.61)

= 2{ln f(D) − ℓ(θ̂;D)} − tr[{∇2ℓ(θ̂;Dl) +∇2ℓ(θ̂;Du)}(θ̂ − θ
∗)(θ̂ − θ

∗)′] (1.62)

≈ 2{ln f(D) − ℓ(θ̂;D)} − tr[{−nJβ}VD θ̂] = 2{ln f(D) − ℓ(θ̂;D)}+D∗. (1.63)

Error in this last approximation is of order Op(
√
n), and thus be
omes the new global order

of approximation for DS . Noti
ing that Iis the identity matrix of dimension D × D, we

dedu
e then that if the true distribution belongs to the parametri
 family des
ribed by the

model 
andidate S, thus D∗ = tr[KβK
−1

β ] = tr[ID ] = D, where ID designates the identity

matrix of dimension D. ✷

Thus, the theoreti
al expe
ted devian
e D 
an be expressed in fun
tion of

the observed devian
e 2{ln f(D)−ℓ(θ̂;D)} penalized by a measure of the model


omplexity, D∗
. We obtain the so-
alled NIC 
riterion (Network Information

Criterion) of Murata et al. [1991, 1993, 1994℄:

NIC = ℓ(θ̂;D) −D∗, (1.64)

and we retain the model S leading to the largest NIC value. When the true

distribution is in
luded in the parametri
 family des
ribed by S, we retrieve
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also the so-
alled AIC 
riterion (An Information Criterion) of Akaike [1973,

1974℄:

AIC = ℓ(θ̂;D) −D. (1.65)

Pra
ti
al implementation of NIC is quite restri
ted sin
e it is di�
ult to

estimate (pseudo) Fisher matri
es Jβ and Kβ . Alternatively, we 
an prefer

using its simpler variant AIC but with the 
rude assumption that the true

distribution is in
luded in the model S at hand. Stri
tly speaking, it would

also impose to 
ompare only nested models S, for the same reason.

Alternatively, it is also possible to obtain non-asymptoti
 approximation of

D by dividing the whole sample into two disjoint parts, so-
alled learning set

and test set. Independen
e of both data sets assures that the related estimate

is unbiased. The unbiased property is preserved while the varian
e is redu
ed if

we make the average of estimates providing from di�erent 
uttings learning/test

of the whole sample. In this light, Stone [1977℄ has obtained (a non-asymptoti


version of) the NIC 
riterion before Murata et al. [1994℄ be
ause establishing

a asymptoti
 link between NIC and the following Cross Validation 
riterion

(denoted by CV) de�ned by

CV =

nl∑

i=1

ln f(xi; θ̂{i}) +

n∑

i=nl+1

ln f(xi, zi; θ̂{i}), (1.66)

where θ̂{i} is the MLE of θ obtained from the whole data set D ex
epted the

ith individual. Indeed, su
h a 
riterion asymptoti
ally 
onverges towards NIC.

Note that Smyth [2000℄ suggests rather a 
oarse 
ross validation pro
ess by

involving test samples with more than a unique individual. See also re
ent

results about 
ross-validation in Arlot and Celisse [2010℄.

Properties of AIC-like 
riteria

It is proved that NIC is an in
onsistent model sele
tion 
riterion sin
e it retains

too 
omplex models with non-null probability, even asymptoti
ally. Let for

instan
e two nested models S1 and S2 with ∆D = D2 − D1 > 0 and let the

additional hypothesis that the more parsimonious model S1 is the true one. We

note also∆ℓ = ℓ(θ̂2;D)−ℓ(θ̂1;D). Then, the following development establishes

that it is possible to wrongly retain the more 
omplex model for large sample

sizes:

2(AIC2 −AIC1) + 2∆D = 2∆ℓ
d−→ χ2

∆D, (1.67)

sin
e p(χ2
∆D > 2∆D) > 0. In fa
t, when models in 
ompetition 
onsist of


hoosing the number of 
omponents in a mixture, the asymptoti
 distribution of

the ratio of the maximum likelihoods is not well-established, as explained in the

beginning of the 
urrent se
tion. Consequently, non-
onsisten
y of AIC is not

really well-established in that 
ase, even if it attested by numeri
al experiments
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(see illustration below). In addition, the expression of AIC/NIC itself is not

totally valid sin
e it relies on Taylor expansions not really justi�ed again for

the number of 
omponent situation. This is the reason why Bozdogan [1981,

1983℄, using the 
onje
ture of Wolfe [1971℄, proposes a slight over-penalization

of AIC:

AIC3 = ℓ(θ̂;D) − 1.5D. (1.68)

However, this new 
riterion does not solve the non-
onsisten
y problem of AIC,

even if it will sele
t more parsimonious models than AIC be
ause of its over-

penalization.

We numeri
ally illustrate that AIC and AIC3 
riteria tend to sele
t too


omplex models, even in the very simple situation of well-separated 
omponents

with the very parsimonious spheri
al Gaussian model. We 
onsider 30 samples

of size n = 200 generated from a bivariate Gaussian mixture of two well-

separated 
omponents with mixing proportions π1 = π2 = 0.5, with 
entres

µ1 = (0, 0)′ and µ2 = (3.3.0)′, and with 
ovarian
e matri
es Σ1 = Σ2 = I. A

sample is displayed on Figure 1.9. A spheri
al model with equal proportions

is estimated by an EM algorithm for di�erent numbers of 
omponents K ∈
{1, . . . , 5} and the frequen
y of 
hoosing K by the AIC and AIC3 
riteria is

displayed in Table 1.3.

−2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

x1

x2

Figure 1.9: A sample of two well-separated bivariate Gaussian 
omponents

with asso
iated isodensities.

K 1 2 3 4 5

AIC . 87 7 3 3

AIC3 . 97 3 . .

Table 1.3: Frequen
y of the sele
ted number of 
omponents with AIC and

AIC3 for two well-separated bivariate 
omponents.
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Devian
e and related slope heuristi
s 
riteria

The ideal model Sm̂∗
to be retained now is the one minimizing the devian
e

(no longer the expe
ted one)

m̂∗ ∈ arg min
m∈M

2KL(f, f
θ̂m

). (1.69)

The main task is thus to estimating the devian
e 2KL(f, f
θ̂m

). A non-asymptoti


approa
h is now presented. This presentation is inspired by the work of Baudry

et al. [2012b℄.

We �rst derive the following straightforward but meaningful devian
e de-


omposition:

KL(f, f
θ̂m

) = −ℓ(θ̂m;D) + ln f(D)

+
{
KL(f, f

θ̂m

)− KL(f, fθ∗
m

)
}
+
{
ℓ(θ̂m;D)− ℓ(θm;D)

}

+
{
KL(f, fθ∗

m

)− KL(f, f)
}
−
{
ln f(D)− ℓ(θm;D)

}
(1.70)

= −ℓ(θ̂m;D) + 
onstant

+
{
varian
em

}
+
{

̂
varian
em

}

+
{
biasm

}
−
{
b̂iasm

}
, (1.71)

where �
onstant� is independent of m, where �varian
em� and �

̂
varian
em�

respe
tively denote a varian
e-like term and its empiri
al version, and where

�biasm� and �b̂iasm� respe
tively denote a bias-like term and its empiri
al ver-

sion. The se
ond and the third lines of Equation (1.71) 
an be seen as an

ideal penalty of the maximum log-likelihood. In order to estimate this penalty,

the slope heuristi
s prin
iple (Birgé and Massart [2007℄) establishes some links

between su
h quantities though the following two assumptions. The �rst as-

sumption is to expe
t that both the theoreti
al and the empiri
al version of

the varian
e are similar, thus �varian
em ≈ ̂
varian
em�. The se
ond assump-

tion is to expe
t that the theoreti
al and the empiri
al bias are similar, thus

�biasm− b̂iasm ≈ 0�. It then produ
es the following SH 
riterion (Slope Heuris-

ti
s) penalizing the maximum log-likelihood

SHm = ℓ(θ̂m;D)− 2 ̂
varian
em. (1.72)

The model with the highest SH value has to be retained. The question is now

to estimate this new penalty.

The key relies on the fa
t that most optimal penalties shapes 
an be seen as

linear fun
tions of the 
omplexity number, so the number of parameters Dm in

our parametri
 
ase (see for instan
e Maugis and Mi
hel [2012℄ for the Gaussian

mixture 
ase). Thus, the optimal penalty is now known up to a multipli
ative


onstant κ:
2 ̂
varian
em = κDm. (1.73)



Mixture models 29

The value of κ 
an be then estimated either by the so-
alled dimension jump

prin
iple, or by the so-
alled slope estimation prin
iple. The slope estimation

prin
iple relies �rstly on the following de
omposition of 2 ̂
varian
em:

2 ̂
varian
em = 2

{
ℓ(θ̂m;D)− f(D)

}
+ 2
{
f(D)− ℓ(θm;D)

}
. (1.74)

For the most 
omplex models, we expe
t se
ondly the bias-like term f(D) −
ℓ(θm;D) to be
ome nearly 
onstant. Thus, the proportionality κDm 
an only

be expressed through the log-likelihood term ℓ(θ̂m;D). In other words, it means

that for 
omplex enough models, ℓ(θ̂m;D) behaves linearly with Dm and the


orresponding slope is κ/2. Then κ/2 
an be estimated by a linear regression

of ℓ(θ̂m;D) on κ
2Dm. Thus, the involved penalty is here data-driven, 
ontrary

to this one used in AIC for instan
e. Note also that this method requires the

estimation of a quite large number of �too� 
omplex models to be involved. We


an noti
e that this method formalizes some 
lassi
al rules of thumb strategies

aiming to dete
t an elbow dire
tly in the maximum log-likelihood 
urve, like

the so-
alled EL 
riterion (Elbow Likelihood) of Cutler and Windham [1993℄.

An illustration of the bias-varian
e trade-o� on the log-likelihood fun
tion

is given in Figure 1.10. It is apparent through an elbow in the 
urve of the

maximum log-likelihood. We guess also the linearly part of the maximum log-

likelihood beyond three 
omponents.

−2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

x1

x2

1 2 3 4 5
−720

−700

−680

−660

−640

−620

−600

−580

−560

−540

−520

Number of components

M
ax

im
um

 lo
g−

lik
el

ih
oo

d

︸ ︷︷ ︸
bias part

︸ ︷︷ ︸
varian
e part

(a) (b)

Figure 1.10: Illustration of the bias and the varian
e parts with the maximum

log-likelihood 
ontrast: (a) sample from a mixture with three bivariate

Gaussian 
omponents and (b) maximum log-likelihood for di�erent numbers

of 
omponents 
andidates.

In pra
ti
e, the graphi
al user interfa
e 
apushe

1

(CAlibrated Penalty Us-

ing Slope HEuristi
s), implements in r both the dimension jump and the slope

estimation methods.

1

http://
ran.r-proje
t.org/web/pa
kages/
apushe/
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1.3.3 Bayesian approa
h and integrated likelihood

Integrated likelihood

In a Bayesian 
ontext, the key point is to retain the model Sm̂∗
asso
iated to

the largest posterior probability

2

. This probability is expressed by

f(m|D) ∝ f(D|m)f(m). (1.75)

Thus, m̂∗ ∈ argmaxm∈M f(m|D). In the 
ase where all models have the same

prior probabilities, this is equivalent to sele
t the model maximizing f(D|m).
This quantity, usually 
alled integrated likelihood or also marginal likelihood, is

expressed by

f(D|m) =

∫

Θm

f(D|θ,m)f(θ|m)dθ, (1.76)

where f(D|θ,m) = f(D; θ). Evaluating this probability relies on the de�nition

of a prior distribution f(θ) on θ (we note also for simpli
ity f(θ) = f(θ|m)) and
also on the 
omputation of the integral. The integral 
omputation is possible

only in some restri
ted situations (typi
ally with 
onjugate priors). Otherwise,

several very di�erent methods to approximate it are available (see for instan
e

Kass and Raftery [1995℄): numeri
al methods (but their are unstable in high

dimension), Monte Carlo methods like the Gibbs or the Metropolis-Hastings

samplers, the asymptoti
 Lapla
e-Metropolis approximation obtained from a

Taylor expansion at the se
ond order of the integral. We des
ribe �rst the

BIC 
riterion whi
h is derived from the Lapla
e-Metropolis approximation.

We then present a Monte Carlo evaluation in the latent model 
ase, where


onjugate non-informative priors are available.

Asymptoti
 approximation

The Lapla
e-Metropolis approximation allows in parti
ular to express the inte-

grated log-likelihood as the maximum log-likelihood penalized by the number

of parameters D and also the sample size n. It thus provides a simple ex-

pression whi
h allows also to avoid de�ning the prior distribution on θ. The

following proposition details this important property (see for instan
e Kass and

Wasserman [1995℄, Raftery [1995℄ p. 130�133 or also Ripley [1996℄ p. 62-65).

We prove it in the general setting where the model at hand does not ne
essary

in
lude the true distribution.

Proposition 1.3 Under standard regularity 
onditions, we have

3

ln f(D) = ℓ(θ̂;D)− D

2
ln(n) +Op(1). (1.78)

2

There exists also another approa
h 
ombining the frequentist devian
e and the Bayesian

posterior distributions. It leads to the so-
alled DIC 
riterion (Devian
e Information Crite-

rion), proposed by Spiegelhalter et al. [2002℄.

3

Su
h an approximation is quite 
rude sin
e of high order. Raftery [1995℄ (p. 130�133)

proposed to retain the parti
ular prior distribution f(θ) = N(θ̂, Ĵ−1

β K̂βĴ
−1

β ), whi
h provides,
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Proof The posterior distribution f(θ|D) of θ is assumed to be approximatively a Gaussian

N(θ̃,V). In that 
ase, its mean 
orresponds also to its mode, thus θ̃ = argmaxθ∈Θ f(θ|D),
and the 
ovarian
e matrix 
orresponds to the inverse of the Hessian of − ln f(θ̃|D), thus V =
[−∇2 ln f(θ̃|D)]−1

(some simple algebra are used). When the sample size is large enough,

the distribution f(θ|D) is 
on
entrated around its mode, so g(θ) = −ℓ(θ;D)− ln f(θ) is also

on
entrated around θ̃ sin
e f(θ|D) ∝ exp{−g(θ)}. Consequently, the Taylor expansion at

the se
ond order of g(θ) around θ̃ is valid for large sample sizes, what allows to write, after

noti
ing that ∇g(θ̃) = 0,

f(D) =

∫

Θ

f(D;θ)f(θ)dθ =

∫

Θ

exp{−g(θ)}dθ (1.79)

≈ exp{−g(θ̃)}
∫

Θ

exp

{

−1

2
(θ − θ̃)′V−1(θ − θ̃)

}

dθ (1.80)

= exp{−g(θ̃)}(2π)D/2|V|1/2. (1.81)

The last equation is due to the fa
t that the integral is equal to the normalize 
onstant of

a Gaussian distribution N(θ̃,V). The asso
iated error being of order Op(1/n) (see Tierney

and Kadane [1986℄), we obtain

ln f(D) = ℓ(θ̃;D) + ln f(θ̃) +
D

2
ln(2π) +

1

2
ln |V|+ Op(1/n). (1.82)

For large sample sets, we make the following two approximations θ̃ ≈ θ̂ et V ≈ 1

n
Ĵ
−1

β K̂βĴ
−1

β

where Ĵβ et K̂β are respe
tively Jβ et Kβ where is repla
ed θ∗
by θ̂ inside expe
tations

(see Proposition 1.1), and thus |V| ≈ n−D |Ĵ−1

β K̂βĴ
−1

β |. An error of order Op(1/
√
n) being

indu
ed by these last approximations, we obtain

ln f(D) = ℓ(θ̂;D) + ln f(θ̂) +
D

2
ln(2π)− D

2
ln(n) +

1

2
ln |Ĵ−1

β K̂βĴ
−1

β |+Op(1/
√
n). (1.83)

In this equation, the �rst term is of order Op(n), the fourth one of order Op(ln(n)) and all

other ones of order equal or less than à Op(1). Removing all terms of order less or equal to

Op(1), it gives than:

ln f(D) = ℓ(θ̂;D)− D

2
ln(n) +Op(1). (1.84)

✷

Su
h an approximation leads to maximize the so-
alled BIC 
riterion (Bayesian

Information Criterion) of S
hwarz [1978℄:

BIC = ℓ(θ̂;D) − D

2
ln(n). (1.85)

Unlike the NIC 
riterion, the BIC penalty is simply expressed by a fun
tion of

the number of parameters, the 
andidate S 
orresponding or not to the true

model. Thus, the di�
ulty to estimating D∗
in NIC is no more present. We 
an

noti
e that the BIC 
riterion has been also proposed in the 
oding theory setting

by Rissanen [1989℄ with the name MDL for Minimum Des
ription Length. The

in average, the same information quantity as a unique observation. Thus,

ln f(θ̂) = −D

2
ln(2π) − 1

2
ln |Ĵ−1

β K̂βĴ
−1

β | (1.77)

and then, 
ombining with Equation (1.83), some terms vanish and the greatest order be
omes

now Op(1/
√
n).



32 Chapter 1

BIC penalty being heavier than this one of AIC as soon as ln(n) > 2 (so n > 8),
BIC is expe
ted to sele
t more parsimonious models than AIC. In fa
t, it 
an

be proven even that BIC is 
onsistent. For instan
e, for two nested models S1

and S2, S1 being the true one, we have, in a similar way as Equation (1.67),

2(BIC2 − BIC1) + ∆D ln(n) = 2∆ℓ
d−→ χ2

∆D, (1.86)

where ∆D = D2 − D1, ∆ℓ = ℓ(θ̂2;D) − ℓ(θ̂1;D). Noting µ = ∆D and σ2 =
2∆D respe
tively the mean and the varian
e of the rv χ2

∆D and using also the

Chebys
hev inequality, we 
an write

p(χ2
∆D > ∆D ln(n)) ≤ p(|χ2

∆D−µ| > ∆D ln(n)−µ) ≤ σ2

(∆D ln(n)− µ)2
n→∞−→ 0.

(1.87)

It means that, asymptoti
ally, BIC will sele
t the simplest model S1, whi
h


orresponds to the true one. We 
ould show also that BIC do not underestimate

the order of the model. Thus, if the true model was S2, BIC will retain it with

probability one. The proof still relies on the distribution of the ratio of the

maximum likelihood, whi
h is a non-
entral χ2
(see Bierna
ki [1997℄ p. 74�75).

However, sin
e all these 
onsisten
y proofs rely on the fa
t that the model

parameter is not on the borderline of the parameters spa
e Θ, validity of su
h

results 
an be hazardous in the mixture 
ontext for sele
ting a number of 
om-

ponents. Some spe
i�
 works on this problem exist. Leroux [1992℄ proved

that BIC does not asymptoti
ally underestimate the true number of 
ompo-

nents. Roeder and Wasserman [1997℄ proved, in the Gaussian mixture 
ontext

to estimate a density in a non-parametri
 manner, that using BIC to sele
t the

number of 
omponents leads to 
onsistent density estimate. Keribin [2000℄ gen-

eralizes these results by proving, under some 
onditions and by using a lo
ally


anoni
al reparameterization in order to obtain valid Taylor expansions, that

BIC does not either overestimate the number of 
omponents, asymptoti
ally.

Moreover, when the true model is not present in the family at hand, BIC

will asymptoti
ally sele
t the model in the model family being the 
losest to

the true one (see Lebarbier and Mary-Huard [2004℄). It 
orresponds then to

the 
ase f 6= fθ∗
m

∗
where m∗

is the best model m in the set M

m∗ = arg inf
m∈M

KL(f, fθ∗
m

). (1.88)

Non-asymptoti
 approximation for the latent 
lass model

In the Gaussian mixture 
ontext, the BIC 
riterion appears to give a reasonable

answer to the important problem of 
hoosing the number of mixture 
ompo-

nents (see for instan
e Fraley and Raftery [2002℄). However, some previous

works dealing with the latent 
lass model (see for instan
e Nadif and Govaert

[1998℄) for the binary 
ase suggest that BIC needs parti
ular large sample size
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to rea
h its expe
ted asymptoti
 behaviour in pra
ti
al situations. In this se
-

tion, we take pro�t from the possibility to avoid asymptoti
 approximation of

the observed integrated likelihood to propose an alternative non-asymptoti



riterion

4

.

A
tually, a 
onjugate Je�reys non informative prior distribution is available

for the latent 
lass model parameters (
ontrary to what happens for Gaus-

sian mixture models; see for instan
e Marin et al. [2005℄) and integrating the


omplete-data likelihood leads to a 
losed form formula. De�ned in a Bayesian

perspe
tive, the integrated 
omplete-data likelihood of a mixture is de�ned by

f(x, z) =

∫

Θ

f(x, z; θ)f(θ)dθ. (1.90)

Classi
al Je�reys non informative Diri
hlet prior distributions for the mixing

proportions and the latent 
lass parameters (respe
tively of order K and mj)

are given by

f(π) = D(12 , . . . ,
1
2 ) and f(αj

k) = D(12 , . . . ,
1
2 ). (1.91)

Assuming independen
e between prior distributions of the mixing proportions

π and the latent 
lass parameters α
j
k (k = 1, . . . , g; j = 1, . . . , d), we get, sin
e

the Diri
hlet prior distribution is 
onjugate for the multinomial model (see for

instan
e Robert [2001℄ Se
tion 3.3.3), that

f(x, z) =
Γ(K2 )

Γ(12 )
K

∏K
k=1 Γ(nk +

1
2 )

Γ(n+ K
2 )

K∏

k=1

d∏

j=1

Γ(
mj

2 )

Γ(12 )
mj

∏mj

h=1 Γ
(
njh
k + 1

2

)

Γ(nk +
mj

2 )
, (1.92)

where nk = #{i : zik = 1} and njh
k = #{i : zik = 1, xjh

i = 1}.
Denoting now by Zu

all possible 
ombinations of labels zu, Equation (1.76)


an be written (see Frühwirth-S
hnatter [2006℄ p. 140)

f(D) =
∑

zu∈Zu

f(x, z), (1.93)

and thus the integrated likelihood f(D) is expli
it sin
e the integrated 
omplete-

data likelihood f(x, z) 
an be exa
tly 
al
ulated for the latent 
lass model as

just seen before.

Unfortunately, the sum over Zu
in
ludes generally two many terms to be

exa
tly 
omputed. Following Casella et al. [2000℄, an importan
e sampling pro-


edure 
an solve this problem. The importan
e sampling fun
tion, denoted by

4

Noti
e that general non asymptoti
 approximation of f(D) is possible (see Chib [1995℄)

by using the identity, for any θ value,

f(D) =
f(D; θ)f(θ)

f(θ|D)
. (1.89)

The denominator has then to be estimated from a MCMC (Monte Carlo Markov Chain)

sampler for instan
e. However, this general method su�ers from instabilities.
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ID(z
u), is a pdf on zu (

∑
zu∈Zu ID(z

u) = 1 and ID(z
u) ≥ 0) whi
h 
an depend

on D, its support ne
essarily in
luding the support of f(x, z). Denoting by

zu(1), . . . , zu(S)
an i.i.d. sample of size S from ID(z

u), f(D) 
an be 
onsistently

estimated by the following Monte Carlo approximation

f̂(D) =
1

S

S∑

s=1

f(D, zu(s))

ID(zu(s))
. (1.94)

This estimate is unbiased and its variation 
oe�
ient is given by


v[f̂(D)] =

√
Var[f̂(D)]

E[f̂(D)]
=

√√√√ 1

S

( ∑

zu∈Zu

f2(zu|D)

ID(zu)
− 1

)
. (1.95)

In order to approximate the ideal importan
e fun
tion I∗D(z
u), i.e. this one

minimizing the varian
e and de�ned by

I∗D(z
u) = f(zu|D) =

∫

Θ

f(zu|D; θ)f(θ|D)dθ, (1.96)

Bierna
ki et al. [2011℄ propose to make use of the following �Bayesian� instru-

mental distribution

ID(z
u) =

1

R#P(zl)

R∑

r=1

∑

ρ∈P(zl)

f(zu|D; ρ(θ(r))), (1.97)

where the set P(zl) denotes all label permutations of θ on the set {1, . . . ,K}\{k :
zik = zlik} of label permutations not already �xed

5

by zl and where {θ(r)} are


hosen to be independent realisations of f(θ|D). The sum over all label permu-

tations P(zl) provides an importan
e density whi
h is labelling invariant, like

the ideal one

6

. Moreover, independen
e of {θ(r)}, although not ne
essary for

ensuring the validity of the unbiasedness of the estimator (1.94) and the vari-

ation 
oe�
ient (1.95), is re
ommended for a good estimation of (1.96) from

the strong law of large numbers. In pra
ti
e, a Gibbs sampler 
an be used

7

and the derived 
riterion will be 
alled ILbayes (IL for Integrated Likelihood).

Note that ILbayes is depending on both S and R. Note also that, in pra
ti
e,

5

If no label permutation if known (nl = 0), then P(zl) 
ontains all K! label permutations

on {1,. . . ,K}. It 
an be huge for moderate to large values of K and thus (1.97) 
an be

intra
table.

6

Be
ause the prior distribution is symmetri
 in the 
omponents of the mixture, the pos-

terior distribution is invariant under a permutation of the 
omponent labels (see for instan
e

M
La
hlan and Peel [2000℄, Chap. 4). This la
k of identi�ability of θ 
orresponds to the

so-
alled label swit
hing problem.

7

An iteration of a possible Gibbs sampler for the latent 
lass model is the following (see

for instan
e Bierna
ki et al. [2011℄) with priors de�ned in (1.91): π|z ∼ D( 1
2
+ n1, . . . ,

1

2
+

nK), α
j
k|x, z ∼ D( 1

2
+ nj1

k , . . . , 1

2
+ n

jmj

k ) and, for i = nl + 1, . . . , n, by z
u
i |xi, z

l
i;θ ∼

M(ti1(θ), . . . , tiK(θ)).
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al
ulating ILbayes for values of K > 6 
an be unrea
hable be
ause of the

fa
torial term involved in (1.97).

In order to illustrate the BIC and the ILbayes behaviour, we 
onsider ob-

servations des
ribed by six variables (d = 6) with numbers of levels m1 = . . . =
m4 = 3 and m5 = m6 = 4 and a four 
omponent mixture (K = 4) with equal

mixing proportions, π = (0.25, 0.25, 0.25, 0.25). The parameter α is 
hosen to

get a low 
luster overlapping, about 11% of error rate, whi
h 
orresponds to

15% of the worst error rate equal to 0.75. Detail of parameter value is given

in Bierna
ki et al. [2011℄. Figure 1.11 displays a data sample on the �rst two

axes of a 
orresponden
e analysis. 20 samples are generated for three di�erent

sample sizes n ∈ {320, 1 600, 3 200}. For ea
h sample, the EM algorithm has

been run 10 times with random initial parameters (uniform distribution on the

parameter spa
e) for a sequen
e of 1 000 iterations and the best run is retained

as being the maximum likelihood estimate. The mean of the retained number

of mixture 
omponents with BIC and ILbayes 
riteria is displayed on Table 1.4.

We noti
e that ILbayes performs better than BIC.
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Figure 1.11: A sample (n = 1 600) arising from K = 4 mixture situation for

low overlapping. It is displayed on the �rst plane of a 
orresponden
e analysis

and an i.i.d. uniform noise on [0, 0.01] has been added on both axes for ea
h

point in order to 
larify the visualisation.

n 320 1 600 3 200

BIC 3.0 3.5 4.0

ILbayes 3.4 4.0 4.0

Table 1.4: Mean of the 
hosen number of groups for BIC and ILbayes 
riteria

when K = 4 for the latent 
lass model. ILbayes is performed with R = 50 and

S = 100.
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1.4 Model sele
tion in (semi-)supervised 
lassi-

�
ation

1.4.1 Need to sele
t a model

In the (semi-)supervised setting, usually the number of 
omponents is known

and model sele
tion essentially addresses model stru
ture 
omplexity and also

variable sele
tion. Model stru
ture 
omplexity 
orresponds for instan
e to par-

ti
ular 
onstraints on the Gaussian matri
es in the Gaussian mixture 
ase.

However, noti
e that variable subsets were not 
onsidered as possible models

in the previous density estimation 
ontext (Se
tion 1.3).

The reason for 
hoosing a model in the (semi-)supervised 
lassi�
ation set-

ting is again the universal bias/varian
e trade-o�. Nevertheless, this trade-o�

has primarily to be obtained on the dis
riminant rule rθ, rule given by the

MAP of t(θ), instead of the density value fθ. We re
all also the notation of

the theoreti
al error rate e(rθ) asso
iated to the rule rθ. Denoting by r the

optimal MAP rule obtained from the true (unknown) distribution f , we de�ne
also

θ∗
m = arg min

θ∈Θm

e(rθ)− e(r) (1.98)

the best parameter asso
iated to the model Sm with regards to the best dis
rim-

inant rule r. We then have the simple but important following de
omposition,

θ̂m denoting as before the MLE:

e(r
θ̂m

)− e(r) =
{
e(rθ∗

m

)− e(r)
}
+
{
e(r

θ̂m

)− e(rθ∗
m

)
}

(1.99)

=
{
biasm

}
+
{
varian
em

}
. (1.100)

We noti
e thus that this bias/varian
e trade-o� di�ers from this one produ
ed

in the density estimation 
ontext (see Equation (1.50)). Consequently, the

best models in the density setting 
ould be di�erent from the best ones in the

semi-supervised setting. Ripley [1996℄ (p. 27) illustrates for instan
e a situation

where well-separated 
omponents has de�nitively not the same e�e
t for density

estimation and for dis
rimination. The question whi
h is then addressed in this

se
tion is to propose spe
i�
 model 
hoi
e 
riteria taking fully into a

ount the

dis
riminant purpose. Su
h 
riteria will involve naturally error e(rθ) and also


onditional probabilities t(θ).

Figure 1.12 illustrates in�uen
e of the model and of the sample size on the

estimated dis
riminant rule (obtained by the plug-in method) in a supervised

setting. We observe that the less is the sample size, the furthest the 
omplex

quadrati
 borderline is from the true simple linear borderline. In addition,

when the sample size is too low (n = 5), the quadrati
 borderline is no more

available sin
e the estimate is singular. It 
orresponds to the limit 
ase of

an in�nite varian
e situation. We see also that the simple linear estimate
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borderline has less varian
e than the quadrati
 one around the true borderline.

This dependen
e on the model stru
ture would be similarly illustrated in the

semi-supervised setting.

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x1

x2

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x1

x2

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x1

x2

n = 100 n = 10 n = 5

true

linear

. . . quadrati


Figure 1.12: Illustration of the varian
e of estimates in the supervised


lassi�
ation setting: in�uen
e of the sample size on both the estimated

spheri
al linear and general quadrati
 borderlines when the true borderline is

spheri
al linear.

In a semi-supervised setting now, we illustrate the importan
e of sele
ting

a subset of variables. We 
onsider data simulated a

ording to a design where

all variables 
ontribute to dis
rimination but with less and less information.

This matter of fa
t 
auses an in
rease in the 
lassi�
ation error rate. The

experimental setting 
orresponds to K = 2 groups of same proportions (π1 =
π2 = 0.5) and the 
lass-
onditional distributions are Gaussian distributions in

dimension d = 50 with X1|z11 = 1 ∼ N(0, I) and X1|z12 = 1 ∼ N(µ, I) with
µj = 1

j ∀j ∈ {1, . . . , 50}. Thus, variables provide less and less dis
riminant

information. The order in whi
h variables are sele
ted from 1 to 50 is assumed

to be known. With the true model all the variables will be sele
ted, but the

less informative variables will dramati
ally in
rease the 
lassi�er varian
e. We


onsider 100 data sets with nl = 100 label data and nu = 1 000 unlabelled

data. The optimal and the a
tual error rates, asso
iated respe
tively to rules

r
θ̂
and rθ, are evaluated through a test sample of size 50 000. The apparent

error rate of r
θ̂
is evaluated on the learning set. See more details on error

rates in the next se
tion. All error rates are shown Figure 1.13 and we 
an see

that the optimal and apparent error rates de
rease as the number of sele
ted

variables in
reases, while the a
tual error rate on the test sample de
reases and

then in
reases.

1.4.2 Error rates-based 
riteria

The aim of (semi-)supervised is to provide a dis
riminant rule with the min-

imum error rate. Ideally, it 
orresponds thus to retain the model where the

asso
iated rule r̂ = r
θ̂
obtained from D leads to the less error in average. It
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Figure 1.13: Variable sele
tion for simulated data in the semi-supervised


ontext: error rates a

ording to the number of sele
ted variables.


orresponds to the 
riterion e expressed by:

e = ED[e(r̂)] = 1− ED(X′
1,Z

′
1)
[Z ′

1r̂(X′
1)
], (1.101)

(X′
1,Z

′
1) being a rv independent of (X1,Z1) but with identi
al pdf. Several


lassi
al estimates of e exist. The most simple of them if the apparent error

rate êa de�ned by

êa = 1− 1

nl

nl∑

i=1

Zir̂(Xi). (1.102)

It is a 
onsistent estimate of e but it is well-known to have an optimisti
 bias,

it means an underestimation of the error rate in average with ED[ê
a] ≤ e, sin
e

the same sample is used to learn and also to test the rule.

The so-
alled partition error rate êp{1} estimate is more relevant be
ause it

divides the whole data set into two di�erent subsamples. The �rst one (the

training or the learning sample), denoted by D{1} = (D{1}
l ,D{1}

u ), is 
omposed

by a labelled subset D{1}
l and an unlabelled subset D{1}

u . It is used for learning

the dis
riminant rule, denoted by r̂{1}. Then, the se
ond subsample (the testing

or test sample) is 
omposed by all the remaining labelled data D̄{1}
l = Dl\D{1}

l

and is used for testing the rule r̂{1} (note that the unlabelled data of Du\D{1}
u

are thus dis
arded). Evaluating error r̂{1} is �nally given by

êp{1} = 1− 1

#D̄{1}
l

∑

xi∈D̄l

Zir̂{1}(Xi). (1.103)

Note that a proper use of this partition estimate in a semi-supervised setting is

to remove the same proportion of labelled and unlabelled data from the training

sample. It produ
es an unbiased estimate of ED{1} [e(r̂{1})] sin
e we 
an easily

verify that

ED[ê
p

{1}] = 1− ED{1}(X′
1,Z

′
1)
[Z ′

1r̂{1}(X′
1)
] = ED{1} [e(r̂{1})]. (1.104)
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We immediately noti
e that ED{1} [e(r̂{1})] ≃ e only if the learning set D{1}
is

large enough. Thus, it make sense to sele
t quite small testing sets for in
reasing

the sample size of the learning set. The limit is of 
ourse a unique individual,

so #D{1}
l = 1. However, restri
ted ex
essively the size of the learning set 
ould

provide an estimate ê{1} with too large varian
e.

The prin
iple of V -fold 
ross-validation 
an then be applied for restri
ted

this varian
e while preserving a small testing data set. It 
onsists in splitting at

random Du and Dl in V blo
ks of (approximately) equal sizes {D{1}
ℓ , . . . ,D{V }

ℓ }
and {D{1}

u , . . . ,D{V }
u }, respe
tively, and then to 
ompute the following error

estimate

ê
v =
1

V

V∑

v=1

êp{v}. (1.105)

Random variables êp{1}, . . . , ê
p

{V } having the same distribution but being non-

independent, we 
an verify that it remains an unbiased estimate of ED{1} [e(r̂{1})]
sin
e

ED[ê

v] = ED[ê

p

{1}] = ED{1} [e(r̂{1})], (1.106)

while its varian
e is less than this one of êp{1} sin
e

VD[ê

v] =

1

V 2
VD

[
V∑

v=1

êp{v}

]
< VD{1} [êp{1}]. (1.107)

This last inequality is the 
onsequen
e that two rv Y1 and Y2 of same distribu-

tion verify V[Y1+Y2] = 2V[Y1]+2Cov[Y1, Y2] and that also Cov[Y1, Y2] < V[Y1]
if no fun
tional relationship exists between both rv.

The main 
ompetitors to ê
v are the Ja
knife estimate Tukey [1958℄ and

also the bootstrap estimate Efron [1983℄. However, the V -fold 
ross-validation


riterion leads to good results with a low 
ost of implementation.

Nevertheless, resampling methods like the V -fold 
ross-validation 
riterion

has two important drawba
ks. Firstly, the 
hoi
e of V may a�e
t the model

sele
tion. Se
ondly, 
omputing V dis
riminant rules 
an be time 
onsuming,

espe
ially in the semi-supervised setting where unlabelled data require to use an

algorithm like EM ea
h time. In the supervised 
ontext, this problem vanishes

sometimes, as in the Gaussian 
ase where a 
losed-form updated formula for

the dis
riminant rule is available (Bierna
ki and Govaert [1999℄ Appendix A).

1.4.3 A predi
tive devian
e 
riterion

BEC: A Bayesian entropi
 
riterion

A good approximation of the 
onditional distribution f(zl|x) is expe
ted to

produ
e a good 
lassi�er (see Equation (1.9)). Consequently, it makes sense
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to 
hoose a generative 
lassi�
ation model Sm that gives the largest 
ondi-

tional integrated likelihood f(zl|x,m). In this Bayesian perspe
tive, the BEC


riterion to be maximized is a BIC-like approximation of ln f(zl|x,m):

BEC = ln f(D; θ̂D)− ln f(x; θ̂x), (1.108)

where θ̂x is the MLE of θ̂ derived from x with the model S. The 
omputational


ost of the BEC 
riterion is approximately twi
e as large as the 
omputational


ost of AIC or BIC, sin
e both θ̂D and θ̂x have to be estimated through an

EM algorithm, but it nevertheless remains signi�
antly 
heaper than 
ross-

validation.

From a theoreti
al point of view, if the sampling distribution belongs to a

single model of the model 
olle
tion, this model will be asymptoti
ally sele
ted

by BEC (Bou
hard and Celeux [2006℄). However, when there are several nested

true models, BEC 
an sele
t arbitrarily 
omplex models among them.

From a pra
ti
al point of view, BEC has been proved to behave better

than AIC and BIC for many 
lassi�
ation problems, though it often sele
ts

more 
omplex generative 
lassi�ers than the 
ross-validated error rate 
riterion

(Bou
hard and Celeux [2006℄).

AIC
ond: A predi
tive devian
e 
riterion

A spe
i�
 
riterion for sele
ting a 
lassi�er in the semi-supervised setting has

been proposed by Vandewalle et al. [2013℄. This 
riterion is designed to se-

le
t a generative model that has good 
lassi�
ation performan
es and a low


omputational 
ost. It 
an be seen as a penalized BEC 
riterion and also as a

predi
tive version of the AIC 
riterion.

In the frequentist perspe
tive view, when seeking to sele
t a generative 
las-

si�er with good predi
tion performan
es, one parti
ularly interesting quantity

is the predi
tive devian
e of the 
lassi�
ation model, whi
h is related to the


onditional likelihood of the model knowing the predi
tors. Similarly to the

AIC 
riterion genesis, the aim is to �nd the model that minimizes an expe
ted

Kullba
k-Leibler divergen
e. In our 
ase both distributions involved in this

divergen
e are the estimated 
onditional distribution of Zl|x and the true 
on-

ditional distribution:

2EDD′[ln f(zl
′|x′)− ln f(zl

′|x′; θ̂D)], (1.109)

with D and D′
two independent samples. Sin
e the �rst term does not depend

on the model, it is equivalent to �nding the model that maximizes:

Econd = 2EDD′ ln f(zl
′|x′; θ̂D). (1.110)

Proposition 1 in Vandewalle et al. [2013℄ provides the following estimate of

Econd under the hypothesis that there is a true model S, that nl
is a realization
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Figure 1.14: Value of the penalty a

ording to the 
lass separation.

of the rv N l ∼ B(n, β), the binomial distribution of parameters n and β ∈ [0, 1]

(thus N l/n
a.s.→ β when n → ∞), and also that standard regularity 
onditions

hold [Jennri
h, 1969; Amemiya, 1973; White, 1981℄:

Econd = 2[ln f(D; θ̂D)− ln f(x; θ̂x)]− [D − trace(JJ−1
β )] +Op(

√
n), (1.111)

J and Jβ are respe
tively the Fisher information matri
es for unlabelled and

partially-labelled data evaluated at the true parameter value θ∗
and already

de�ned in 1.24.

Equation (1.111) exhibits a spe
i�
 penalty [D − trace(JJ−1
β )], whi
h de-

pends on the 
lass overlap and 
an be related to the number of so-
alled pre-

di
tive parameters present in the generative model. Indeed, when groups are

well-separated, J ≈ Jc and 
onsequently J ≈ Jβ so that D − trace(JJ−1
β ) ≈ 0.

Moreover, the more the groups overlap, the larger the value of D−trace(JJ−1
β ).

This 
laim 
an be made pre
ise in parti
ular Gaussian situations (see Vande-

walle [2009℄) and we illustrate it in the following example.

Suppose that data are generated a

ording to the homos
edasti
 distribution

X1|Z11 = 1 ∼ N(0, 1), X1|Z12 = 2 ∼ N(∆, 1) and π1 = π2 = 0.5. In this 
ase

it is possible to 
ompute the penalty. Figure 1.14 displays the value of the

penalty a

ording to ∆ for a heteros
edasti
 Gaussian model in the supervised

setting (β = 1). The penalty is largest when the 
lasses are not separated. It

is important to note that when ∆ = 0 the penalty is equal to the number of

parameters involved in the quadrati
 logisti
 regression, whi
h 
orresponds to

the predi
tive expression of the previous Gaussian model.

However, the penalty D − trace(JJ−1
β ) is di�
ult to derive, be
ause in a

mixture framework the information matri
es will need to be 
omputed. For

this reason, Vandewalle et al. [2013℄ provide a simple means of approximating

it, under the same previous hypotheses:

[D − trace(JJ−1
β )] = 2(ln f(x; θ̂x)− ln f(x; θ̂D)) +Op(

√
n). (1.112)
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This gives the following expression for Econd:

Econd = 2 ln f(zl|x; θ̂D)− 4[ln f(x; θ̂x)− ln f(x; θ̂D)] +Op(
√
n), (1.113)

whi
h �nally leads to the 
riterion, to be maximized,

AICcond = ln f(zl|x; θ̂D)− 2 ln
f(x; θ̂x)

f(x; θ̂D)
. (1.114)

The approximation error 
entred at zero involved in AICcond is relatively high

(of order Op(
√
n)) as for AIC. However, note that AICcond is di�erent from the

usual AIC 
riterion in the predi
tive setting, even in the absen
e of additional

unlabelled data. In addition, AICcond 
an be viewed as an overpenalized BEC


riterion, sin
e it 
an be written

AICcond = BEC− ln
f(x; θ̂x)

f(x; θ̂D)
. (1.115)

The additional penalty is expe
ted to prevent the appearan
e of a plateau when


onsidering true nested models, sin
e Vandewalle et al. [2013℄ proved that in


ase of two nested models S1 and S2, with S1 ⊂ S2, then

ED[AICcond1 ]− ED[AICcond2] > 0, (1.116)

if the number of data points is large enough and AICcondk
denoting the value

of the AICcond 
riterion obtained with the model Sk. Thus, AICcond tends to

prefer the less 
omplex model among two nested true models. Moreover, like

BEC, AICcond sele
ts the right model when there is only one as proved also in

Vandewalle et al. [2013℄.

To illustrate the AICcond behaviour, we retrieve the variable sele
tion ex-

ample des
ribed at the end of Se
tion 1.4.1 but with more values of nu
and

nl
. For this experiment, the performan
es of the 
ross-validation 
riterion ê
v

for V ∈ {1, 3} (denoted by ê
vV ), of BEC and of AICcond 
riteria are 
ompared.

The results are summarized in tables 1.5 and 1.6, where NbVar

∗
denotes the

optimal number of variables derived from the a
tual error rate fun
tion and

Err

∗
the 
orresponding error rate. Those tables show that AICcond performs

the best, sin
e it sele
ts on average the number of variables 
losest to the opti-

mal number of variables (Table 1.5) and produ
es a low 
lassi�
ation error rate

(Table 1.6). Moreover, it has the lowest standard deviations. Cross-validation

also produ
es good results in both settings, while BEC behaves poorly be
ause

it sele
ts too many variables. This experiment shows that for nested reliable

models, AICcond leads to the sele
tion of a parsimonious model with good

predi
tion performan
es, in 
ontrast to BEC.
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(nl, nu) BEC AICcond ê
v3 ê
v10 NbVar

∗

(100, 1 000) 17.5 (12.6) 9.2 (7.8) 10.7 (10.3) 10.0 (9.5) 6 (3.6)

(1 000, 10 000) 33.8 (30.6) 22.0 (17.8) 21.1 (18.5) 21.4 (25.5) 23 (6.2)

Table 1.5: Variable sele
tion for simulated data: Average number of sele
ted

variables for ea
h 
riterion (best 
riterion in bold and standard deviations in

bra
kets).

(nl, nu) BEC AICcond ê
v3 ê
v10 Err

∗

(100, 1 000) 30.42 (2.21) 29.75 (1.10) 29.70 (1.23) 29.82 (1.00) 28.55 (0.54)

(1 000, 10 000) 27.18 (0.34) 27.17 (0.21) 27.17 (0.29) 27.21 (0.27) 27.03 (0.12)

Table 1.6: Variable sele
tion for simulated data: Error rate (%) for the

di�erent 
riteria (best 
riterion in bold and standard deviations in bra
kets).

1.5 Model sele
tion in 
lustering

1.5.1 Need to sele
t a model

In the model-based 
lustering 
ontext, the model set involved is potentially very

large be
ause it in
ludes the model stru
ture (Gaussian 
ovarian
e matri
es for

instan
e), the number of groups and also the set of dis
riminant variables

8

. In

addition, it is the situation where the data set is the smallest be
ause sin
e it

is only 
omposed of data positions x. Finally, in 
omparison to the density es-

timation 
ontext and to the (semi-)supervised 
ontext, the 
lustering setting is

the most di�
ult for two reasons: variety of models and poor data information.

In the model-based 
lustering setting, the bias/varian
e trade-o� 
an be

expressed in the following manner. We note err(z1, z2) ≥ 0 a distan
e-like

measure between two partitions z1 and z2. When the number of groups in

ea
h partition is identi
al, it 
an be the 
lassi
al empiri
al error rate. When

the number of groups di�ers, it 
an be for instan
e the Rand 
riterion de�ned

in Rand [1971℄. We also de�ne, with z(θ) the MAP derived from θ,

θ∗
m = arg min

θ∈Θm

err(z, z(θ)) (1.117)

the best parameter asso
iated to the model Sm with regards to the true par-

tition z. We then have the simple but important following de
omposition,

8

In Maugis et al. [2009℄, variable sele
tion in the Gaussian model-based setting is expressed

as a model sele
tion problem. They model di�erently three kinds of variables: variables in-

teresting for the 
lustering, variables redundant for the 
lustering and variables uninteresting

for the 
lustering. Then model/variable sele
tion relies on a BIC 
riterion for instan
e (see

Chap. ??, Se
tion ??).
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θ̂m = θ̂x,m denoting as before the MLE:

err(z, z(θ̂m))

=
{
err(z, z(θ∗

m))− err(z, z)
}
+
{
err(z, z(θ̂m))− err(z, z(θ∗

m))
}
(1.118)

=
{
biasm

}
+
{
varian
em

}
. (1.119)

We noti
e again that this bias/varian
e trade-o� di�ers from the one produ
ed

in the density estimation 
ontext (see Equation (1.50)). Consequently, the

best models in the density setting 
ould be di�erent from the best ones in

the 
lustering setting. In parti
ular, it 
an be mu
h more dramati
 to make a

mistake on the number of groups in 
lustering than in density estimation. Thus,

similarly to the (semi-)supervised situation, the question to be addressed in this

se
tion is to propose spe
i�
 model 
hoi
e 
riteria taking fully into a

ount

the partitioning purpose. Su
h 
riteria will involve naturally entropy terms

ξ(θ, t(θ)) and also 
onditional probabilities t(θ).

In order to illustrate the varian
e e�e
t on the a

ura
y estimate of the

partition, we retrieve the example given in Se
tion 1.3.1 but we display now

in Table 1.7 the empiri
al error estimate err of the partition instead of the

Kullba
k-Leibler divergen
e. Again, we see that the partition a

ura
y de-


reases with the model 
omplexity, revealing the e�e
t of the varian
e. We

note also that the varian
e de
reases with the sample size.

n m err(z, ẑm)
40 spheri
al 0.0967

general 0.1100

200 spheri
al 0.0840

general 0.0872

Table 1.7: E�e
t of the varian
e of ẑm on the partition estimation quality. ẑm
denotes the partition obtained from the MAP of the estimated parameter θ̂m.

1.5.2 Partition-based 
riteria

Criteria not using the likelihood term

Some 
riteria propose to retain the model leading to the best group separability.

It is the 
ase of the so-
alled PC 
riterion (Partition Coe�
ient) of Bezde
k

[1981℄ whi
h sums the square of all 
onditional probabilities t(θ̂). There is also
the so-
alled MIR 
riterion (Minimum Information Ratio) of Windham and

Cutler [1992℄, and its variants, involving a ratio of the 
omplete-data Fisher

information matrix Jc(θ̂) and of the observed-data Fisher information matrix
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J(θ̂). This ratio gives a measure of the ability of the data set to be partitioned

with the model. Generally, these 
riteria have poor theoreti
al justi�
ation

and are also di�
ulty to apply for distinguishing K = 1 (no stru
ture) from

K > 1. To over
ome this drawba
k, there is a need to aggregate a measure of

the model adequa
y to the measure of partitioning ability. The log-likelihood

value 
an rea
h this task as we now show.

Criteria using the likehood term

The entropy term ξ(θ; t(θ)) measures the groups overlap: a small value indi-


ates poor overlap between groups whereas a large value 
orresponds to strong

overlap. The following fundamental relationship between the log-likelihood and

the entropy is given by Hathaway [1986℄:

ℓ(θ;x) = ℓ(θ;x, t(θ)) + ξ(θ; t(θ)). (1.120)

The NEC 
riterion (Normalized Entropy Criterion) of Celeux and Soromenho

[1996℄ and Bierna
ki et al. [1999℄ is established from this link. It is expressed

as a normalization of the entropy by two log-likelihood terms:

NECK =





ξK
ℓK − ℓ1

if K > 1

1 if K = 1
(1.121)

with ℓk = ℓ(θ̂k;D) and ξk = ξ(θ̂k; t̂k) where θ̂k is the MLE for k groups and

t̂k = t(θ̂k). It has to be noti
ed that θ̂K and θ̂1 must be obtained with the same


onstraints on the parameters (for instan
e, in the Gaussian 
ase, a spheri
al

model for both numbers of groups). We retain then the model Sm with the

lowest NECm value. The NEC value itself appears to be meaningful sin
e the

partitioning eviden
e is asso
iated to NEC values less than 1.

Another approa
h has been proposed to merge the log-likelihood and an

entropi
 term. The retained 
riterion in Bierna
ki and Govaert [1997℄ is simply

the 
omplete-data log-likelihood ℓ(θ̂;x, ẑ), ẑ being the MAP of θ̂. It 
orre-

sponds to the so-
alled CL 
riterion (Completed Likelihood):

CL = ℓ(θ̂;x, ẑ) = ℓ(θ̂;x)− ξ(θ̂; ẑ). (1.122)

The retained model is this one leading to the largest CL value. This 
riterion


an be seen as the maximum log-likelihood value 
ombined with an entropi


penalty term indi
ating the group overlapping. It is thus quite di�erent from

the AIC or the BIC 
riteria for whi
h the penalty term is related to the model


omplexity. This entropi
 term 
orresponds also to minus the logarithm of

the 
onditional probability of the partition ẑ, sin
e we 
an write f(ẑ|x; θ̂) =∏n
i=1

∏K
k=1 t̂

ẑik
ik . Thus, the quantity ξ(θ; z) measures a dissimilarity between

the 
onditional probabilities t and the partition z whi
h is the 
losest from a


ertain point of view.
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We have to note that both NEC and CL show a 
ertain ability to sele
t

K but fail to sele
t other kinds of models like the Gaussian stru
ture on the


ovarian
e matri
es. It seems to la
k a penalty term involving the model 
om-

plexity.

1.5.3 The Integrated Completed Likelihood 
riterion

Integrated 
ompleted likelihood for model sele
tion

We remember that in the 
lustering 
ontext, observed data are restri
ted toD =
x. In a Bayesian 
ontext, model sele
tion was thus relying on the 
al
ulus of the

observed-data integrated likelihood f(x|m) given in (1.76) in Se
tion 1.3.3. If


omplete data (x, z) were known, model sele
tion would be similarly performed

by retaining the model Sm maximizing the 
omplete-data integrated likelihood

f(x, z|m) expressed in (1.90). The following straightforward relationship exists

between the integrated 
omplete-data and observed-data likelihoods:

ln f(x, z|m) = ln f(x|m) + ln f(z|x,m). (1.123)

Thus, as already noti
ed in Bierna
ki et al. [2011℄, the 
omplete-data integrated

likelihood 
an be interpreted as the 
lassi
al integrated likelihood penalized by

a measure of the 
luster overlap expressed through f(z|x,m). It means that

it tends to realize a 
ompromise between the adequa
y of the model to the

data measured by ln f(x|m) and the eviden
e of data partitioning measured

by ln f(z|x,m). For instan
e, highly overlapping mixture 
omponents typi
ally

lead to a low value of f(z|x,m) and 
onsequently dos not favour a high value of

f(x, z|m). However, the partition z being hidden in 
lustering, Bierna
ki et al.

[2011℄ propose to repla
e it by its MAP estimate ẑm asso
iated to the MLE

θ̂m = θ̂x,m. Then, it gives the so-
alled ICL (Integrated Completed Likelihood)


riterion whi
h retains the model Sm asso
iated to its maximum value

9

:

ICLm = ln f(x, ẑm|m). (1.125)

The question we now address is how to pra
ti
ally 
al
ulate ICL and also to

identify its properties.

Asymptoti
 approximation

Bierna
ki et al. [2000℄ propose to pro
eed in two steps for approximating

the previous ICL 
riterion. First, they use a BIC-like approximation of the


omplete-data integrated likelihood:

ln f(x, z|m) = ln f(x, z; θ̂x,z,m|m)− Dm

2
lnn+Op(1), (1.126)

9

Another de�nition of ICL is also used sometimes, with t̂ = t(θ̂):

ICLm = ln f(x, t̂m|m). (1.124)
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where θ̂x,z,m denotes the MLE asso
iated to 
omplete data (x, z) with model

Sm. But, in 
ase of the right model Sm, we have both θ̂x,z
a.s.→ θ∗

and θ̂
a.s.→ θ∗

,

θ̂ still denoting the MLE asso
iated to x and also index m being omitted.

Thus, for n large enough, we 
an make the approximation θ̂x,z ≈ θ̂. Then, we

repla
e the missing 
luster indi
ators z by their MAP values ẑ asso
iated to

the MLE θ̂. It �nally leads to the so-
alled ICLbi
 
riterion

10

ICLbi
 = ln f(x, ẑ; θ̂)− D

2
lnn. (1.128)

Remark that the so-
alled AWE 
riterion (Approximate Weight of Eviden
e)

also proposed in a Bayesian 
ontext by Ban�eld and Raftery [1993℄ is very

similar to ICLbi
. However, it uses the 
omplete-data estimate θ̂c de�ned

in (1.29) and it penalizes more strongly the number of parameters.

By some simple algebra, The ICLbi
 
riterion 
an also be viewed either as

a partition 
omplexity (measured by an entropy-like term) penalized version

of the BIC 
riterion or as a model 
omplexity penalized version of the CL


riterion:

ICLbi
 = BIC− ξ(θ̂; ẑ) (1.129)

= CL− D

2
lnn. (1.130)

Robustness of ICL to model misspe
i�
ation

This trade-o� between the model adequa
y (log-likelihood), the model 
omplex-

ity (number of parameters) and the partitioning eviden
e (entropy) provides

robustness properties for the ICL/ICLbi
 
riterion as we now illustrate. We


onsider experiments from a bivariate mixture of a uniform and a Gaussian


luster. One of the 50 simulated data sets of size n = 200 is displayed in

Figure 1.15 and the mixture 
hara
teristi
s are as follows:

• non-Gaussian 
omponent: π1 = 0.5, f1(x1) = 0.25 1[−1,1](x
1) 1[−1,1](x

2)
where 1[−1,1] denotes the indi
ator fun
tion in the interval [−1, 1];

• Gaussian 
omponent: π2 = 0.5, µ2 = (3.3, 0)′, Σ2 = I.

When running the EM algorithm, only the most simple spheri
al model is


onsidered and K is varying from one to �ve. Per
entage of times K is 
hosen

is displayed in Table 1.8. In this 
ase BIC has a disappointing behaviour.

This example highlights a well-known tenden
y of this 
riterion: when the

10

The following other de�nition is also widely used:

ICLbi
 = ln f(x, t̂; θ̂)− D

2
lnn. (1.127)
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Figure 1.15: A uniform and a Gaussian 
omponent.


lustering model at hand (here a Gaussian mixture model) does not �t well the

data, BIC tends to overestimate the number of 
omponents. On the 
ontrary,

ICLbi
 in
ludes an entropi
 term ξ(θ̂; ẑ) whi
h penalizes overlapping groups

and whi
h balan
es the la
k of �t of the data in the model at hand . Thus, ICL

is expe
ted to be more robust to violations of the model spe
i�
ations than

BIC, as it appears in this experiment.

K 1 2 3 4 5

BIC . 60 . 32 8

ICLbi
 . 100 . . .

Table 1.8: Non-Gaussian 
omponent samples: per
entage of times K is


hosen with the spheri
al Gaussian model.

Question on the 
onsisten
y of ICL

A 
ounterpart of this robustness of ICL/ICLbi
 is that it is not 
onsistent

for the number of 
omponents if their overlap is two high. Indeed, ICLbi


tends to underestimate the true number of 
omponents in this situation, even

asymptoti
ally. We illustrate this fa
t from both a theoreti
al and a pra
ti
al

point of view in the simple situation where two 
omponents are really present.

We note δn = n(θ∗
2 − θ

∗p
2 )′J(θ∗

2)(θ
∗
2 − θ

∗p
2 ) with J(θ∗

2) the Fisher matrix

for a data unit 
al
ulated with the true parameter θ∗
2 (see Equation (1.24))

and θ
∗p
2 its proje
ted value on the parameter subspa
e asso
iated to the one


omponent 
ase. Moreover, denoting by χ2
a(b) a rv with the non-
entral χ2

distribution with a degrees of freedom and non-
entrality parameter b, we de�ne
µn = E[χ2

∆D(δn)] = ∆D+δn, σ
2
n = V[χ2

∆D(δn)] = 2(∆D+δn), ∆D = D2−D1,

∆ξ = ξ(θ̂2; ẑ(θ̂2))− ξ(θ̂1; ẑ(θ̂1)) with ẑ(θ̂K) the MAP partition obtained from
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t(θ̂K) and �nally ∆ℓ = ℓ(θ̂2;D) − ℓ(θ̂1;D). The probability of 
hoosing the

wrong model (one group instead two groups) by ICLbi
 is given by

p(ICLbi
2 < ICLbi
1) = p(2∆ℓ < ∆D lnn+2∆ξ) ≤ p(2∆ℓ < ∆D lnn+2n ln 2),
(1.131)

the last inequality being implied by∆ξ < n ln 2 (the entropy of two 
omponents

is higher than that for one 
omponent). Noting now that 2∆ℓ and χ2
∆D(δn)

have asymptoti
ally the same distribution, then the probability of 
hoosing the

wrong model by ICLbi
 is asymptoti
ally less than

p(χ2
∆D(δn) < ∆D lnn+2n ln 2) ≤ p(|µn −χ2

∆D(δn)| > µn −∆D lnn− 2n ln 2).
(1.132)

Finally, the Chebishev inequality gives

p(χ2
∆D(δn) < ∆D lnn+ 2n ln 2) ≤ σ2

n

(µn −∆D lnn− 2n ln 2)2
n→∞−→ 0, (1.133)

provided that µn − ∆D lnn − 2n ln 2 > 0, thus provided that the two 
om-

ponents are su�
iently separated sin
e µn is a measure of the overlapping.

In addition, noting that µn and −2n ln 2 are of same order with n, then the

IClbi
 
onsisten
y is not guaranteed for a quite large degree of overlapping,

even asymptoti
ally.

We now numeri
ally illustrate the fa
t that ICLbi
 
an be in
onsistent, even

asymptoti
ally, if 
omponents are not well-separated. We draw 100 samples of

sizes n = 100, 400, 700, 1 000 from a univariate Gaussian mixture with same

proportions, with unit varian
es and with a distan
e between the two 
entres

su

essively equal to ∆µ = 2.9, 3.0, 3.1, 3.2, 3.3. The EM algorithm is then run

with a model with one and two 
omponents on all 100 samples and for all values

of n and ∆µ. Table 1.9 displays the per
entage of times the right number

of 
omponents (two) is 
hosen by ICLbi
 and by BIC. We 
learly identify

a threshold around ∆µ = 3.0 where ICLbi
 swit
hes from non 
onsisten
y

towards 
onsisten
y.

∆µ 2.9 3.0 3.1 3.2 3.3

n BIC ICL BIC ICL BIC ICL BIC ICL BIC ICL

100 94 23 96 31 97 44 95 45 97 60

400 100 9 100 21 100 48 100 70 100 85

700 100 8 100 15 100 39 100 72 100 96

1 000 100 6 100 16 100 56 100 75 100 91

Table 1.9: Per
entage of times two 
omponents is 
hosen as a fun
tion of

their overlapping .
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ICL with a new 
ontrast point of view

Alternatively, Baudry [2012℄ 
onsiders that ICLbi
 is a 
riterion relying on the

(fuzzy) 
omplete-data log-likelihood ℓ(θ;x, t(θ)), instead of the log-likelihood

ℓ(θ;x). From Equation (1.120), it 
an be rewritten as the following penalized

log-likelihood:

ℓ(θ;x, t(θ)) = ℓ(θ;x)− ξ(θ; t(θ)). (1.134)

This author proposes the following new ICLbi
-like 
riterion

˜
ICLbi
 = ℓ(θ̃;x, t(θ̃))− D

2
lnn, (1.135)

where

θ̃ = argmax
θ∈Θ

ℓ(θ;x, t(θ)). (1.136)

Thus

˜
ICLbi
 is here a penalized 
ontrast with a BIC-like penalty. It no longer

involves any entropi
 penalty be
ause here entropy is a part of the 
ontrast

itself. This 
riterion is then proved to be 
onsistent (only) from this new


ontrast point of view. It appears that the ICLbi
 and

˜
ICLbi
 
riteria are very


lose both by their expressions and by their numeri
al behaviour. In addition,

sin
e θ̃ is more di�
ult to obtain that the MLE θ̂, ICLbi
 
ould be preferred.

Note that Baudry [2012℄ also proposes to use the slope heuristi
s to obtain

a data-driven penalty asso
iated to the 
ontrast ℓ(θ;x, t(θ)).

Combining ICL and BIC

Baudry et al. [2010℄ proposed to 
ombine BIC and ICL in the following manner

for obtaining the model �exibility given by BIC while preserving the 
lustering

eviden
e given by ICL. Firstly, they 
hoose the number of 
omponents by BIC.

Se
ondly, they merge the more overlapped 
omponents in order to obtain the

number of groups initially proposed by ICL. Finally, a mixture of mixture is

obtained: a group may be 
omposed by several 
omponents. Other strategies

of 
ombinations are possible by looking dire
tly at the entropy value.

Combining ICL and an external partition

Baudry et al. [2012a℄ assumed that an external partition y with J groups is

known and proposed to use it to reveal an (unknown) internal partition z with

K groups. Noting njk = #{i : yij = 1 and zik = 1} the elements of the 
on-

tingen
y table 
ross-tabulating y and z, and noting also n.k =
∑J

j=1 njk, they

derived the so-
alled SICL 
riterion (Supervised Integrated Completed Likeli-

hood) expressed by

SICL = ICL+
J∑

j=1

K∑

k=1

njk ln
njk

n.k
. (1.137)
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The last additional term quanti�es the strength of the link between both par-

titions, making a subtle trade-o� between model adequa
y, eviden
e of parti-

tioning z and also a

ordan
e between partitions y and z.

Exa
t ICL 
riterion for the latent 
lass model

We have seen in Se
tion 1.3.3 that 
onjugate Je�reys non informative prior

distributions are available for all the parameters of the latent 
lass model.

Thus, using the asso
iated 
losed-form of the integrated 
omplete-data likeli-

hood given in (1.92) and then repla
ing the missing labels z by ẑ in ln f(x, z),
we obtain the following non-asymptoti
 expression for the ICL 
riterion:

ICL = ln f(x, ẑ) =
K∑

k=1

d∑

j=1

{mj∑

h=1

ln Γ
(
n̂jh
k + 1

2

)
− ln Γ(n̂k +

mj

2 )

}
− ln Γ(n+ K

2 ) + ln Γ(K2 )

+K

d∑

j=1

{
ln Γ(

mj

2 )−mj ln Γ(
1
2 )
}
+

K∑

k=1

ln Γ(n̂k + 1
2 )−K ln Γ(12 ), (1.138)

where n̂k = #{i : ẑik = 1} and n̂jh
k = #{i : ẑik = 1, xjh

i = 1}.

In order to illustrate the ICL and the ICLbi
 behaviour, we 
onsider obser-

vations des
ribed by six variables (d = 6) with numbers of levels m1 = . . . =
m4 = 3 and m5 = m6 = 4 and a two 
omponent mixture (K = 2) with un-

balan
ed mixing proportions π = (0.3, 0.7). The parameter α is 
hosen to get

su

essively a low 
luster overlapping (about 5% of error rate), a middle over-

lapping (about 10% of error rate) and a high overlapping (about 20% of error

rate), to be 
ompared to the worst error rate equal to 30%. Detail of parameter

values is given in Bierna
ki et al. [2011℄. Figure 1.16 displays a data sample

on the �rst two axes of a 
orresponden
e analysis. 20 samples are generated

for three di�erent sample sizes n ∈ {320, 1 600, 3 200}. For ea
h sample, the

EM algorithm has been run 10 times with random initial parameters (uniform

distribution on the parameter spa
e) for a sequen
e of 1 000 iterations. The

mean of the retained number of mixture 
omponents with ICL and ICLbi



riteria is displayed on Table 1.10. We noti
e that ICL has ability to dete
t

stru
tures with lower sample sizes than ICLbi
. In addition, we noti
e again

that ICL/ICLbi
 are not 
onsistent when the overlapping is too high.

1.6 Experiments on real data sets

In this se
tion, we illustrate the behaviour of numerous 
riteria des
ribed in the

previous three se
tions on various real data sets. It gathers the three settings of

density estimation, semi-supervised 
lassi�
ation and 
lustering. At the same
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Figure 1.16: A sample (n = 1 600) arising from a K = 2 mixture situation for

medium overlapping. It is displayed on the �rst plane of a 
orresponden
e

analysis and an i.i.d. uniform noise on [0, 0.01] has been added on both axes

for ea
h point in order to 
larify the visualisation.

n 320 1 600 3 200

Overlap (%) 5 10 20 5 10 20 5 10 20

ICLbi
 2.0 1.5 1.0 2.0 2.0 1.0 2.0 2.0 1.0

ICL 2.0 1.9 1.0 2.0 2.0 1.0 2.0 2.0 1.0

Table 1.10: Mean of the 
hosen number of groups for ICL and ICLbi
 
riteria

when K = 2 for the latent 
lass model.

time, it is the opportunity to dis
over their use with mixture models dedi
ated

to parti
ular kinds of data: interval data, rank data, mixed data. . .

1.6.1 BIC: extra-solar planets

In numerous �elds, the 
olle
ted data are available only in grouped form, i.e.

their exa
t position inside a given subset, or bin, is unknown. Grouped data

may o

ur systemati
ally when a measurement instrument has �nite resolution

but it may also o

ur intentionally when real-valued variables are quantized to

simplify data 
olle
tion. In the 
ontext of Gaussian mixtures, some features has

already been studied for su
h data. In parti
ular, M
La
hlan and Jones [1988℄

and Cadez et al. [2002℄ adapted the EM algorithm in order to rea
h the MLE

for both univariate and multivariate normal mixtures. Sin
e the bin dimension

is a 
ru
ial feature for grouped data, Cadez et al. [2002℄ performed also some

simulation experiments to observe the e�e
t of the bin dimension on the MLE

of the mixture parameter in the 
ase of a two-
omponent bivariate Gaussian

mixture. They note that in
reasing the bin dimension obviously de
reases
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the quality of the MLE although substantial di�eren
es between both MLE of

grouped and individual data are obtained only with quite wide bins. But, as

far as we know, the e�e
t of the bin dimension on model sele
tion problems has

not yet been studied. Thus, the aim of this experiment is to study the in�uen
e

of data pre
ision on the BIC behaviour for sele
ting a model, in parti
ular here

the number of 
omponents in a Gaussian mixture.

We 
onsider extra-solar planets from single planetary systems for whi
h

both mass and e

entri
ity are not exa
tly known at the date of June 25 2004.

Data are obtained from the Paris Observatory

11

. Mass (measured in Jupiters,

one Jupiter mass 
orresponding to 318 Earths), e

entri
ity and the asso
iated

un
ertainty for both variables are given for the 10 
on
erned planets in Ta-

ble 1.11. Figure 1.17(a) displays this data set and it shows that un
ertainty is

often very high.

Name of the planetary system Jupiter Mass E

entri
ity

HD 76700 0.197 ± 0.017 0.00 ± 0.04

HD 217107 1.28 ± 0.4 0.14 ± 0.09

HD 195019 3.43 ± 0.4 0.05 ± 0.04

HD 52265 1.13 ± 0.06 0.29 ± 0.04

HD 73526 3.0 ± 0.3 0.34 ± 0.08

HR 810 1.94 ± 0.18 0.24 ± 0.07

HD 210277 1.24 ± 0.03 0.450 ± 0.015

HD 2039 4.85 ± 1.7 0.68 ± 0.15

Gl 614 4.74 ± 0.06 0.338 ± 0.011

HD 30177 9.17 ± 1.5 0.30 ± 0.17

Table 1.11: Extra-solar planets from single planetary systems for whi
h both

mass and e

entri
ity are not exa
tly known at the date of June 25 2004

(sour
e: Extra-solar Planets Catalog of the Paris Observatory at

http://www.obspm.fr/en
y
l/
at1.html).

Retaining the homos
edasti
 diagonal model with free mixing proportions,

the EM algorithm is laun
hed on the extra-solar data set for one and two


omponents. In this situation, the BIC 
riterion sele
ts only one 
omponent.

However, in the future, we 
an reasonably expe
t a redu
tion of un
ertainty

by the evolution of the measurement instruments. Thus, we propose to study

the in�uen
e of de
reasing un
ertainty on the number of 
omponents (between

1 and 2) sele
ted by the BIC 
riterion. To this end, we arti�
ially de
rease

the bin dimensions of both mass and e

entri
ity by multiplying ea
h side of

all re
tangles of un
ertainty su

essively by fa
tors 0.5u where u = 1, . . . , 7.
Obviously, we do not know where to pla
e the narrower re
tangles inside the

re
tangles of the initial data set. Consequently, for ea
h u = 1, . . . , 7, 1 000

11

http://www.obspm.fr/en
y
l/
at1.html
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Figure 1.17: Extra-solar planets: (a) initial data, (b) frequen
y to sele
t two


omponents by BIC for ea
h un
ertainty de
reasing fa
tor 0.5u (u = 0, . . . , 7).

data sets are generated in the following manner: for ea
h of the 10 planets,

the asso
iated un
ertainty re
tangle is uniformly drawn inside the initial un-


ertainty re
tangle. Then, the EM algorithm is run again for the 1 000 × 7
arti�
ial data sets. Figure 1.17(b) displays the relative frequen
y of 
hoosing

two 
omponents by BIC among 1 000 repli
ations for ea
h 0.5u value of the

de
reasing fa
tor (u = 1, . . . , 7). Note that the sele
ted number of 
omponents

for the initial data set is also available in this �gure: it 
orresponds to a fa
tor

0.50 = 1.

We remark that, when un
ertainty de
reases, the frequen
y of 
hoosing two


omponents regularly in
reases. It be
omes stable at about 0.24 from a fa
tor

equal to 0.56. From an astronomi
 point of view, the probability of having two


omponents will in
rease when the a

ura
y will be
ome better. For instan
e,

dividing un
ertainty by 4 (it means multiplying by a fa
tor 0.52 = 0.25 on the

�gure) may lead to a new data set with probability of around 0.1 (i.e. 10%)

that BIC dis
overs two 
omponents. If un
ertainty 
ompletely disappears in

the future (so all data are exa
tly known), then the probability of having an

individual data set with two 
omponents by the BIC 
riterion is about 0.24 (i.e.

approximately a quarter), the frequen
y value obtained with the very small bin

dimensions 0.56 and 0.57.

1.6.2 AICcond/BIC/AIC/BEC/ê

v

: ben
hmark data sets

We 
ompare now the behaviour of the previous semi-supervised 
lassi�
ation

spe
i�
 
riteria (BEC, AICcond, ê

v

) to general density estimation 
riteria (AIC,

BIC) on some real data sets. Results are extra
ted from Vandewalle et al.

[2013℄. In ea
h 
ase, the rmixmod

12

software has been used. We 
onsider

12

http://www.mixmod.org/ and http://
ran.r-proje
t.org/web/pa
kages/Rmixmod/
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ben
hmark data sets from the UCI database repository

13

and Pattern Re
og-

nition data sets

14

. Performan
es of 
riteria for sele
ting a Gaussian model

are 
ompared among the six following 
onstraints on homos
edasti
 
ovarian
e

matri
es: spheri
al (with equal or free volume), diagonal (idem) and general

(idem). Features of the data sets are summarized in Table 1.12. If a test set

is provided, its predi
tors are used to learn the parameters of the 
lassi�
ation

models in the semi-supervised setting and its labels are used to 
ompute the

error rate. Otherwise, 100 random splits of nu
unlabelled data and nl

labelled

data are generated. Table 1.13 shows that AICcond, BEC and 
ross-validation

have a similar behaviour and outperform BIC and AIC, as is the 
ase for the

Parkinson and Pima data sets.

Dataset n d K Test set nu nl

Crab 200 5 4 no 150 50

Iris 150 4 3 no 100 50

Parkinson 195 22 2 no 95 100

Pima 532 7 2 yes 332 200

Wine 178 13 3 no 89 89

Table 1.12: Variable parameter sele
tion for ben
hmark data sets:

Experimental setting.

BIC AIC BEC AICcond ê
v3 ê
v10
Crab 6.63 6.75 6.80 6.77 7.81 7.78

Iris 2.98 2.98 2.91 2.91 3.25 3.21

Parkinson 26.45 30.68 15.43 15.16 18.20 16.38

Pima 25.00 25.00 19.58 19.58 22.53 19.58

Wine 3.24 1.17 1.45 1.47 1.73 1.70

Table 1.13: Variable parameter sele
tion for ben
hmark data sets: error rate

of ea
h 
riterion on UCI data sets (the 
riterion produ
ing the lowest error

rate is shown in bold).

1.6.3 AICcond/ê

v

V : textile data set

We now 
onsider a three-
lass problem extra
ted from Vandewalle et al. [2013℄.

The rmixmod software has been used. The data are the near infra red (NIR)

spe
tra of di�erent manufa
tured textile materials. The three-
lass NIR data

set 
ontains 223 NIR spe
tra of manufa
tured textiles of various 
ompositions.

The 
lassi�
ation problem is to re
over the physi
al 
hara
terisation of the tex-

tiles, whi
h 
an take three values Devos et al. [2009℄. The data were naturally

separated into a learning sample (132 textiles) and a test sample (91 textiles)

13

http://ar
hive.i
s.u
i.edu/ml/

14

http://www.stats.ox.a
.uk/pib/PRNN/
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with the labels of the test sample initially unknown. The NIR spe
tra were

measured on an XDS rapid 
ontent analyzer instrument in re�e
tan
e mode in

the range 1100−2500 nm at 0.5 nm apparent resolution (2 800 data points per
spe
trum). Standard Gaussian models are too 
omplex for this data set, sin
e

the number of variables is too large. Parsimonious high-dimensional Gaussian

models 
an be used Ja
ques et al. [2010℄, although the large number of tuning

parameters make these unattra
tive in the semi-supervised setting.

A variable pre-sele
tion step is performed, based on the analysis of varian
e

(ANOVA) Toher et al. [2005℄. For ea
h variable an ANOVA is performed with

respe
t to the 
lass membership of the data, and the F statisti
 is plotted a
-


ording to the variable number in Figure 1.18. This prepro
essing step sear
hes

for the most dis
riminant variables, taking into a

ount its ordered nature. As

remarked in Toher et al. [2005℄, this method is 
ompetitive with wavelets for

NIR data. It 
an be seen that the F statisti
 presents 20 peaks, ea
h variable


orresponding to a peak yielding more information than its neighbours. These

20 variables are 
hosen and sorted in de
reasing order of F statisti
. The model

sele
tion problem is then equivalent to 
hoosing the right number of variables

among those 20 ordered variables. In this setting, a general quadrati
 Gaussian

model is used. Error rates with respe
t to the number of sele
ted variables are

presented in Table 1.14. As expe
ted, this error rate 
omputed on the test sam-

ple de
reases and then in
reases a

ording to the number of sele
ted variables.

The optimal number of variables is 13 and 14, whi
h produ
es an error rate of

7.69%, whi
h is in a

ordan
e with the error rates produ
ed by other methods

on these data (8.8% with SVM Devos et al. [2009℄). The sele
tion 
riteria ê
v3 ,
ê
v10, BEC and AICcond are 
ompared in a semi-supervised setting, where the

test sample is used as an unlabelled sample to improve the 
lassi�
ation fun
-

tion. Table 1.15 shows that the three 
riteria produ
e good results, AICcond

and BEC performing the best.

Figure 1.18: F statisti
 a

ording to the variable number.
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Nb of variables 1 2 3 4 5 6 7 8 9 10
Error rate (%) 64.84 59.34 26.37 27.47 28.57 19.78 24.18 20.88 18.68 18.68

Nb of variables 11 12 13 14 15 16 17 18 19 20
Error rate (%) 18.68 12.09 7.69 7.69 9.89 7.69 10.99 10.99 18.68 20.88

Table 1.14: Error rate a

ording to the number of sele
ted variables.

Criterion Number of variables Error rate (%)

AICcond 14 7.69
BEC 13 7.69
ê
v10 15 9.89
ê
v3 10 18.68

Table 1.15: Number of sele
ted variables and resulting error rate a

ording to

the 
riterion.

1.6.4 BIC: so
ial 
omparison theory

The following data set has been provided by Dr Hans Kuyper who is a re-

sear
her at the Fa
ulty of Behavioural and So
ial S
ien
es at the University of

Groningen (The Netherlands). His resear
h domain is �so
ial 
omparison the-

ory�. It is known that most persons 
ompare themselves with others, in order

to evaluate themselves, to get positive feelings, or to improve themselves. More

spe
i�
ally, his interest goes to the question of knowing along whi
h dimensions

persons prefer to 
ompare themselves, given a free 
hoi
e situation. It is origi-

nal sin
e in most resear
h there is no free 
hoi
e, as the 
omparison dimension

is part of the experimental design. The subje
t of the present resear
h topi
,

therefore, is �preferen
e for 
omparison dimensions�.

All his resear
h is in se
ondary edu
ation. The present data were 
olle
ted

in third 
lasses (US grade 9), when most students were 15 years. The data

were 
olle
ted with a questionnaire, during regular s
hool time. The so
ial


omparison items were one part of the questionnaire. The tasks in the ques-

tionnaire had to be suitable for students of all ability levels. The Dut
h system

of se
ondary edu
ation is highly tra
ked (one of the most tra
ked systems in

the world). In the so
ial 
omparison part of the questionnaire were several sub-

topi
s. This part started with a few remarks about 
omparing with others, for

instan
e that it is quite normal to do su
h thing. The se
ond so
ial 
omparison

question was as follows: �Whi
h things do you prefer to 
ompare with other


hildren of your age? Put a 1 in front of what you prefer to 
ompare most, a 2

in front of what you prefer next, and so on. More than 3 is not ne
essary, but is

allowed�. We o�ered 13 �obje
ts� Oj (j = 1, . . . , 13), i.e. aspe
ts or dimensions

from whi
h the students 
ould 
hoose: O1) �your popularity�, O2) �how well you

do in sports�, O3) �your appearan
e�, O4) �how mu
h money you 
an spend�,

O5) �how you are feeling�, O6) �your parents�, O7) �your 
lothes�, O8) �your
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grades at s
hool�, O9) �how well you 
an express your opinions�, O10) �your

hobby?s�, O11) �how "
ourageous" you are�, O12) �how smart you are�, O13)

�the kind of friends you have�. These topi
s were assumed (and partly known)

to be important dimensions for this age group. As the questionnaire had to be

suitable for students of all ability levels, ex
ept the lowest levels, it has been

de
ided to ask only partial rank orders, i.e. the highest three ranks. Finally,

the �nal data set if 
omposed by n = 1 567 students with only one ranking

variable (d = 1) for whi
h the spa
e X 
orresponds to the permutation spa
e

of size 13! (�!� stands for fa
torial). In addition, 85% of students provided only

partial ranks, for instan
e only the �rst three obje
ts they preferred. Among

the 15% of full ranking data, note also that 20% of them 
ontain tie situations.

Finally, this data set is thus very partial.

We use the model proposed for partial ranking data in Bierna
ki and Ja
ques

[2013℄ and Ja
ques and Bierna
ki [2014℄. It 
orresponds to a mixture of a

spe
i�
 distribution for rank data parameterized by αk = (µk, λk), µk being

the rank modal value of this distribution and λk ∈ [0.5, 1] being its so-
alled

pre
ision parameter. When λk = 0.5, it gives the uniform distribution; when

λk = 1, it gives the Dira
 distribution on µk. This model is implemented in the

rank
luster

15

r pa
kage of Ja
ques et al. [2014℄ with a spe
i�
 SEM-Gibbs.

The 
ommand line for running this pa
kage on this data set for K = 1, . . . , 5
is the following:

R> res=rank
lust(x,13,1:5).

It provides the BIC values given in Figure 1.19. Note that 
on�den
e intervals

for BIC are given sin
e the log-likelihood is intra
table for this model and so

has been estimated (see Ja
ques and Bierna
ki [2014℄ for more details). We

note that a 
lear hesitation between one and two groups appear, 
ertainly due

to the high degree of missing data (partial rankings and ties).

Figure 1.19: BIC value, and its asso
iated 
on�den
e interval, for di�erent

number of groups on the so
ial 
omparison theory data set.

15

http://
ran.r-proje
t.org/web/pa
kages/Rank
luster/index.html
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The estimated parameter of the dispersion for the one-group 
ase is λ̂1 ≈
0.65. It indi
ates that the 
omponent distribution is quite uniform, thus de-

noting no parti
ular preferen
e between obje
ts in the data set.

For the two-groups 
ase, a large group (π̂1 ≈ 0.93) and a small group

(π̂1 ≈ 0.07) are present. The �rst one 
orresponds again to a very �at dis-

tribution λ̂1 ≈ 0.65, thus similar to the �rst group obtained in the previous one

group 
ase. The se
ond group is more interesting sin
e it exhibits a more tight

distribution (λ̂2 ≈ 0.8) whi
h was probably masked by the previous one-group


ase. This group is potentially interesting for the resear
her in so
ial s
ien
es

and it 
an be des
ribed in depth by its meaningful parameter of preferen
es µ̂2

for further studies.

1.6.5 NEC: marketing data

We 
onsider the marketing data set des
ribed in Hastie et al. [2001℄ 
on
erning

the d = 13 demographi
 attributes (nominal and ordinal variables) of n =
6 876 shopping mall 
ustomers in the San Fran
is
o Bay (it 
orresponds to the


omplete data observations among 8 993 observations). Here are examples of

attributes with the 
orresponding levels between bra
kets: SEX (1. Male, 2.

Female), MARITAL STATUS (1. Married, 2. Living together, not married,

3. Divor
ed or separated, 4. Widowed, 5. Single, never married), AGE (1. 14

thru 17, 2. 18 thru 24, 3. 25 thru 34, 4. 35 thru 44, 5. 45 thru 54, 6. 55 thru

64, 7. 65 and Over), et
. Data are displayed Figure 1.20(a) on the �rst two

multiple 
orresponden
e analysis axes.
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Figure 1.20: Marketing data set: (a) data on the �rst two multiple


orresponden
e analysis axes, (b) the NEC values for several numbers of

groups.

We use the rmixmod pa
kage to sear
h for a hidden stru
ture in this

data set. The following 
ommand line in r runs an EM algorithm with K ∈
{1, . . . , 10} and the NEC 
riterion for sele
ting the number of groups:
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R> out = mixmodCluster(x, nb
luster = 1:10, 
riterion = "NEC").

The NEC 
riterion values are given in Figure 1.20(b) and it appears that K =
3 
omponents are sele
ted. There exists a possible true partitioning of this

data set whi
h 
orresponds to the following three groups of annual in
ome

of households (personal in
ome if single), as displayed in Figure 1.21(a): less

that 19 999$ (group of �low in
ome�), between 20 000$ and 39 999$ (group

of �average in
ome�), more than 40 000$ (group of �high in
ome�). We see in

Figure 1.21(b) that the three group estimated partition is highly 
orrelated to

this true partitioning.
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Figure 1.21: Marketing data set: (a) true underlying partition, (b) estimated

partition.

1.6.6 ICL: prostate 
an
er data

Hunt and Jorgensen [1999℄ (see also M
La
hlan and Peel [2000℄ p. 139�142) 
on-

sidered the 
lustering of patients on the basis of petrial variates alone for the

prostate 
an
er 
lini
al trial data of Byar and Green [1980℄ whi
h is reprodu
ed

in Andrews and Herzberg [1985℄ p. 261�274. This data set was obtained from a

randomized 
lini
al trial 
omparing four treatments for n = 506 patients with

prostati
 
an
er grouped on 
lini
al 
riteria into two Stages 3 and 4 of the dis-

ease. As reported by Byar and Green [1980℄, Stage 3 represents lo
al extension

of the disease without eviden
e of distan
e metastasis, while Stage 4 represents

distant metastasis as eviden
ed by elevated a
id phosphatase, X-ray eviden
e,

or both. Twelve pre-trial variates were measured on ea
h patient, 
omposed by

eight 
ontinuous variables (age, weight, systoli
 blood pressure, diastoli
 blood

pressure, serum haemoglobin, size of primary tumour, index of tumour stage

and histoli
 grade, serum prostati
 a
id phosphatase) and four 
ategori
al vari-

ables with various numbers of levels (performan
e rating, 
ardiovas
ular disease

history, ele
tro
ardiogram 
ode, bone metastases). The skewed variables �size
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of primary tumour� and �serum prostati
 a
id phosphatase� were transformed

by using a square root and a logarithm transformation, respe
tively. Obser-

vations that had missing values in any of the twelve pretreatment 
ovariates

were omitted from further analysis, leaving n = 475 out of the original 506

observations available. Figure 1.22(a) and (b) displays 
ontinuous and 
ate-

gori
al data, respe
tively, on the �rst two fa
torial axes. It seems di�
ult to

distinguish groups on these axes.
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Figure 1.22: Prostate 
an
er data: (a) 
ontinuous data on the �rst two

prin
ipal 
omponent analysis axes, (b) 
ategori
al data on the �rst two

multiple 
orresponden
e analysis axes.

We propose to perform three di�erent 
lustering pro
edures: a �rst one on

only 
ontinuous variables with the diagonal Gaussian model, a se
ond one on

only 
ategori
al variables with the multivariate multinomial latent 
lass model

and a last one with all variables (mixed 
ase) with the so-
alled Gaussian-

multinomial model. This model assumes that 
ontinuous and 
ategori
al vari-

ables are mutually independent 
onditionally to the group membership while

the 
onditional 
ontinuous variable distribution is diagonal Gaussian and while

the 
ontinuous 
ategori
al variable distribution is multivariate multinomial

with independen
e. Thus, the 
orresponding 
omponent pdf 
an be written

f(x1;αk) = f(x1;α
cont
k ) · f(x1;α

cat
k ) (1.139)

where αk = (αcont
k ,αcat

k ), αcont
k = (µk,Σk) is the Gaussian parameter with

Σk diagonal and where αcat
k is the multivariate multinomial parameter. This

parti
ular model is implemented in the rmixmod software and the 
ommand

line to laun
h it for K ∈ {1, . . . , 6}, sele
ted through the ICLbi
 
riterion, is

the following:

R> out = mixmodCluster(x, nbCluster = 1:6,

+ dataType = "
omposite", 
riterion = "ICL").
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The rmixmod software is also run for the pure 
ontinuous and the pure 
ate-

gori
al 
ases with the same number of 
omponents and with the same 
riterion.

Results of the 
orresponding ICL values are displayed in Figure 1.23(a)(b)(
),

ea
h sub �gure 
orresponding to a parti
ular data situation. We note that only

the 
ontinuous and the mixed 
ases allow to 
hoose a two-group stru
ture by

ICLbi
.

(a) (b) (
)

Figure 1.23: Prostate 
an
er data: ICLbi
 values with (a) 
ontinuous data

only, (b) 
ategori
al data only, (
) mixed 
ontinuous and 
ategori
al.

The two group estimated partition for the 
ontinuous, 
ategori
al and mixed


ases is also given in Table 1.16 in 
omparison to the true partition in Stage 3

and Stage 4. It appears that 
ategori
al data alone are not able to provide a

relevant partitioning of data. However, asso
iated with 
ontinuous data (mixed


ase) they allow to improve slightly the partition estimated by the 
ontinuous

variables alone. It indi
ates thus that 
ategori
al variables 
ontain some par-

titioning information also. Figure 1.24(a) and (b) displays this mixed 
ase

estimated partition for 
ontinuous and 
ategori
al data, respe
tively, on the

�rst two fa
torial axes.

Variables Continuous Categori
al Mixed

Error (%) 9.46 47.16 8.63

True \ estimated group 1 2 1 2 1 2

Stage 3 247 26 142 131 252 21

Stage 4 19 183 120 82 20 182

Table 1.16: Prostate 
an
er data: 
lassi�
ation error rate and

miss
lassi�
ation table for the three kinds of variables.

1.6.7 BIC: density estimation in the steel industry

The work of Thery et al. [2014℄ takes pla
e in the steel industry 
ontext, with

a quality oriented obje
tive. The purpose is to understand and to prevent
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Figure 1.24: Prostate 
an
er data with the too group partition estimated in

the mixed 
ase: (a) 
ontinuous data on the �rst two prin
ipal 
omponent

analysis axes, (b) 
ategori
al data on the �rst two multiple 
orresponden
e

analysis axes.

quality problems on �nished produ
ts, knowing the whole pro
ess. The 
orre-

lations between involved features 
an be strong be
ause many parameters of

the whole pro
ess are highly 
orrelated (physi
al laws, pro
ess rules, et
.). A

quality parameter (
on�dential) is 
onsidered as a response variable y and 205
variables from the whole pro
ess are measured to explain it. It is then a re-

gression problem with the goal to explain y from these 205 variables. However,

some of these industrial variables are naturally highly 
orrelated. For instan
e,

denoting by ρ the linear 
orrelation 
oe�
ient between two variables, the width

and the weight of a steel slab (see an illustration of a slab in Figure 1.25(a))

gives |ρ| = 0.905, the temperature before and after some tool gives |ρ| = 0.983,
the roughness of both fa
es of the produ
t gives |ρ| = 0.919, et
. Consequently,
performing dire
tly a regression on y with su
h 
ovariates would lead to very

unstable estimates. For this reason, Thery et al. [2014℄ developed a spe
i�


method whi
h identi�es intra linear regressions whi
h are present between the

205 variables in order to obtain an un
orrelated variable subset. This pro
e-

dure relies on a whole generative pro
ess, thus it is needed to have a density

estimation of all potentially un
orrelated variables. To this end, the density

of ea
h variable is estimated by a univariate Gaussian mixture, ea
h related

number of 
omponents being sele
ted by a BIC 
riterion. The rmixmod pa
k-

ages is used to perform these estimations. Thus, ea
h variable being repli
ated

3 000 times, we have 205 univariate data sets x of identi
al size n = 3 000.
An example of one of this variable (temperature) is displayed by its histogram

in Figure 1.25(b). Figure 1.25(
) gives also the distribution of the number of


omponents estimated for all the 205 data sets. We note that the �exibility

of Gaussian mixtures allows to obtain quite parsimonious densities sin
e the

estimated value of K remains quite moderate.
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(a) (b) (
)

Figure 1.25: Steel industry: (a) a steel slab, (b) Example of a non-Gaussian

real variable easily modeled by a Gaussian mixture, (
) distribution of the

number of 
omponents found for ea
h 
ovariate.

1.6.8 BIC: partitioning 
ommunes of Wallonia

This illustration is extra
ted from Thomas et al. [2008℄. The purpose is to


lassify the n = 262 
ommunes of Wallonia (made up of urban, suburban,

periurban and rural areas) in terms of so-
alled d = 2 fra
tals at a lo
al level.

By de�nition, a fra
tal is a rough or fragmented geometri
 shape that 
an be

subdivided into parts, ea
h of whi
h is (at least approximately) a smaller 
opy

of the whole. Fra
tals are generally self-similar and independent of s
ale. The

use of fra
tals in urban analysis was mainly developed in the 1990s. The �rst

fra
tal variable is asso
iated to built-up surfa
es and the se
ond one to their

perimeters.

In many situations, pra
titioners de
ide to perform a 
lustering pro
edure

on a one to one transformation g(x) = (g(xj
i ), i = 1, . . . , n j = 1, . . . , d) of the

initial data set instead of on the initial data set x itself. The reasons are gener-

ally either that the new data set g(x) �seems to have a better spe
i�
 mixture

shape� than x, or that its unit has a parti
ular meaning for the pra
titioner.

Typi
ally, standard transformations are g(xj
i ) = xj

i (identity), g(x
j
i ) = exp(xj

i )

or g(xj
i ) = ln(xj

i ). The se
ond transformation expresses data in the same units

as fra
tals indi
es, whi
h is a traditional quantity for many geographers. This

may be a su�
ient reason to 
onsider su
h a transformation. However, to avoid

the di�
ult task of proposing and justifying a parti
ular transformation, the

pra
titioner may use the statisti
al framework to 
hoose one of the suggested

transformations automati
ally. We des
ribe this interesting and innovative fea-

ture below.

If the new sample g(x) arises from a mixture model f(·; θ) then the initial

sample x arises from another distribution fg(·; θ) whi
h is a transformation

of f(x; θ). Consequently, it is possible to interpret any transformation g as

another kind of model S and to employ the BIC 
riterion to sele
t this trans-

formation. Denoting by Hg the Ja
obian of the transformation g, and by θ̂g

the MLE obtained with g(x), we retain the transformation g leading to the
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largest of the following BIC expressions:

BICg = ℓ(θ̂g;g(x))−
D

2
lnn+ ln |Hg|. (1.140)

The 262 
ommunes 
an now be 
lassi�ed with a K = 6 
omponent Gaus-

sian mixture (the number of 
omponents is here imposed by the geographer),

with the three previous standard transformations g (identity, exponential, loga-

rithm) and with all 28 Gaussian of Celeux and Govaert [1995℄. A model is thus


omposed by the 
ouple transformation and 
onstraints on 
ovarian
e matri-


es/mixing proportions, leading so to 3× 28 = 84 models in 
ompetition. The

BIC 
riterion retains the simplest model (spheri
al with equal mixing propor-

tions) and also the exponential transformation. As said before, su
h a transfor-

mation was expe
ted by geographers. The partitioning result is illustrated in

Figure 1.26(a). The map reveals strong e�e
ts of 
ontiguity: 
ommunes 
lose

to ea
h other look alike in terms of fra
tal dimensions. Groups are, however,

spread out all over the region. The six groups lead to the following geographi
al

interpretation, with in bra
kets the three 
ommunes whi
h are 
losest to the


entre of ea
h group (Mahalanobis distan
e):

• Group 1 Peri-urban I and small 
ities (Brugelette, Heron, Nandrin);

• Group 2Rural I: 
ompa
t isolated hamlets (Lierneux, Havelange, Merbes-

le-C);

• Group 3 Peri-urban II and eastern (Hainaut) part (Pepinster, Saint-

Georges, Blegny);

• Group 4 Rural II: hamlets with a linear stru
ture (Erquelinnes, Baelen,

Rendeux);

• Group 5 Urban, thus homogeneous, fully urbanised 
ommunes (Ottig-

nies, Châtelet, Chaudfontaine);

• Group 6 Rural III: rural 
ommunes with hamlets and one (small) 
ity


entre (Gesves, Jalhay, Ciney).

Figure 1.26(b) and (
) respe
tively display the map of a 
ommune of Group 1

and a 
ommune of Group 5, revealing high di�eren
es between both stru
tures.

In addition, we show that fra
tal indi
es partition the region into sub-areas

that do not 
orrespond to �natural lands
apes� but result from the history of

urbanisation. Urban sprawl seems to a�e
t most 
ommunes, even the remotest

villages: traditional (
ompa
t, ribbon, et
.) villages are transformed into more


omplex and heterogeneous shapes.
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(a) (b) (
)

Figure 1.26: Communes of Wallonia: (a) the estimated six 
omponent

partitioning, (b) Héron 
ommune map as an example of Group 1, (
)

Chaudfontaine 
ommune map as an example of Group 5.

1.6.9 ICLbi
/BIC: a
ousti
 emission 
ontrol

This example is extra
ted from Bierna
ki et al. [2000℄. It is 
on
erned with

�aws dete
tion on a pressurized vessel by a
ousti
 emission. During a pressur-

ization 
ontrol, the vessel sounds (the events) are lo
ated on its surfa
e. The

�rst step of the �aw dete
tion pro
edure 
onsists of grouping those events in

homogeneous groups. Data at hand are n = 2 061 event lo
ations in a re
tangle

of R2
representing the vessel (so, d = 2).

In this setting, a Gaussian mixture model with equal proportions, diagonal

varian
e matri
es with di�erent volumes appears to be relevant. Moreover, the

uniform ba
kground noise is taken into a

ount with a uniform distribution on

the re
tangle where the sounds are lo
ated. It is worth noting that adding su
h

a uniform distribution in the mixture is straightforward and simply leads to


onsider the proportion of the uniform 
omponent as an additional parameter

(see for instan
e Ban�eld and Raftery [1993℄).
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Figure 1.27: A
ousti
 emission 
ontrol: (a) ICLbi
 values, (b) BIC values, (
)

the ten-
luster partition retained by ICL.
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For this industrial example, the problem is to �nd a relevant number of

mixture 
omponents leading to a 
lear grouping of the sound lo
ations. Figure

1.27(a) and (b) displays the values of ICLbi
 and BIC, respe
tively, when K is

varying from 2 to 20. BIC in
reases almost monotoni
ally with K and does not

provide eviden
e for anyK value. On the 
ontrary, ICLbi
 gives a preferen
e for

the ten-
luster partition whi
h is depi
ted in Figure 1.27(
) by the iso-density

of ea
h of the ten 
omponents. In parti
ular, it seems that the ten-
luster

partition sele
ted ICLbi
 
aptures the high density regions appearing in this

data set.

1.6.10 ICLbi
/ICL/BIC/ILbayes: a seabird data set

This example is extra
ted from Bierna
ki et al. [2011℄. Pu�ns are pelagi


seabirds from the family Pro
ellaridae. A data set of n = 153 pu�ns divided

into three subspe
ies di
hrous (84 birds), lherminieri (34 birds) and subalaris

(35 birds) is 
onsidered [Bretagnolle, 2007℄. These birds are des
ribed by the

�ve plumage and external morphologi
al 
hara
ters displayed in Table 1.17.

Figure 1.28 (a) displays the birds on the �rst 
orresponden
e analysis plan.

levels

variables 1 2 3 4 5

gender male female

eyebrows

a
none . . . . . . . . . . . . . . . . . . . . . . . very pronoun
ed


ollar

a
none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
ontinuous

sub-
audal white bla
k bla
k & white bla
k & WHITE BLACK & white

border

a
none . . . . . . many

a
using a paper pattern

Table 1.17: Details of plumage and external morphologi
al 
hara
ters for the

seabird data set.

For a number of groups varying from K = 1 to 6, asymptoti
 
riteria BIC

and ICLbi
 and non-asymptoti
 
riteria ILbayes and ICL are 
omputed. Ta-

ble 1.18 displays values of all of them for ea
h number of 
omponents. It ap-

pears that only non-asymptoti
 
riteria ICL and ICLbayes sele
t three groups,

whereas asymptoti
 
riteria sele
t less groups: one for ICLbi
 and two for BIC.

The estimated three-group partition, where labels are 
hosen to ensure the

minimum error rate with the true partition, is given in Figure 1.28 (b). It has

to be 
ompared with the true partition given in Figure 1.28 (a). It leads to

55 mis
lassi�ed birds (35.95% of birds), a rand 
riterion value of 0.6121 and a


orre
ted rand 
riterion value of 0.1896 (Rand [1971℄).

However, it has to be noti
ed that the ICL values for one, two and three

groups are quite similar. It seems to point out that there are little di�eren
es

between the birds, and that it 
ould be hazardous to dis
riminate the sub-

spe
ies with the available variables. Moreover, it appears that ICLbi
 and
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Figure 1.28: Seabird data set on the �rst two 
orresponden
e analysis axes:

(a) with the true partition and (b) with the EM estimated partition. An i.i.d.

uniform noise on [0, 0.1] has be added on both axes for ea
h individual in

order to improve visualisation.

K̂

riteria 1 2 3 4 5 6

ICLbi
 -714.03 -727.33 -741.37 -774.01 -802.47 -830.83

ICL -712.08 -712.57 -711.81 -727.44 -737.46 -741.79

BIC -714.03 -711.14 -729.97 -754.58 -784.49 -814.61

ILbayes -712.08 -693.41 -692.88 -694.01 -695.21 -696.00

Table 1.18: Value of ICL, ICLbi
, BIC and ILbayes (with R = 50 and

S = 1 000) 
riteria for di�erent number of groups on the seabird data set.

Boldfa
e indi
ates maximum value for ea
h 
riterion. Itali
 indi
ates an

upper bound value for ILbayes (see detail in Bierna
ki et al. [2011℄).

ICL do not behave the same sin
e ICLbi
 has a marked preferen
e for the

one 
omponent solution (no 
lustering). BIC favours the two-group solution,

but the no-
luster solution 
annot be 
ompletely dis
arded. On the 
ontrary,

ILbayes 
learly reje
ts the no 
lustering solution and favours three groups,

emphasizing again the potentially high di�eren
e between the two types of


riteria of ICL-type and of BIC-type for revealing stru
tures in data sets.

1.7 Future methodologi
al 
hallenges

We identify two main 
hallenges for model sele
tion in mixtures: the in
reasing

number of proposed models and the in
reasing volume of data (individuals

and/or variables). In addition, both problems are not totally unrelated.
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The in
reasing number of models

The number of models is expe
ted to have a linear-like in
rease be
ause new

ones are regularly proposed for dealing with parti
ular situations. In addition,

some models 
an be 
ombined, like the Gaussian stru
ture and the number of


omponents, implying this time a multiplying-like in
rease of models. But an

exponential-like in
rease of models is also possible as soon as dis
rete parame-

ters are involved in models. It is the 
ase for instan
e in variable sele
tion or

also in the 
ategori
al 
ase in Marba
 et al. [2013℄.

Having a huge model setM than implies two important 
onsequen
es. First,

from a 
omputational point of view, the whole model set 
annot be exhaustively

browsed. Thus, some spe
i�
 strategies have to be performed for obtaining

e�
ient traje
tories inside M. For instan
e, sto
hasti
 
hains on M 
an be a


andidate strategy, as the seminal work on the reversible jump of Green [1995℄.

See also a parti
ular Gibbs strategy in Marba
 et al. [2013℄ and Thery et al.

[2014℄ where the 
hain is guided by the BIC value.

The se
ond 
onsequen
e of having a very largeM is about the 
riteria valid-

ity. Indeed, asymptoti
 
riteria like AIC, BIC or ICLbi
 are de�ned relatively

to a given error order whi
h, when the number of models highly in
reases, may

be too 
rude for making a

urate distin
tion between some of them. Note that

when the number of models grows, the set of �
lose� models, hen
e poorly indis-

tinguishable models, is expe
ted to grow also. A solution for dealing with this

phenomenon in the Bayesian 
ontext is either to implement non-asymptoti



riteria, or to de�ne a non-uniform prior f(m) on M. For instan
e, in Thery

et al. [2014℄, a hierar
hi
al uniform distribution has been put on a parti
ular

de
omposition of Sm, resulting in a higher penalty for more 
omplex models

while preserving a non-informative approa
h. In the frequentist setting, the

heuristi
s slope has also to be adapted for large M. For instan
e, Meynet

and Maugis-Rabusseau [2012℄ give some proposal for variable sele
tion in the

model-based 
lustering framework.

The in
reasing volume of data

The �Big Data� era implies an in
reasing number of individuals and/or vari-

ables. From the model sele
tion point of view, it may in
rease a lot the 
ompu-

tation time, in parti
ular in mixtures where EM-like algorithms are quite slow.

Simultaneously, a larger volume of data en
ourage to try a larger model set

M, as testing a mu
h larger upper bound for the number of groups. Indeed,

we expe
t to dis
over �ner stru
tures when the data set grows!

Possible solutions are sampling strategies. However, the risk of them is

to miss some �ne stru
tures in data. Thus, some spe
i�
 resear
hs 
ould be

needed to over
ome this di�
ulty.
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