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Chapter 1

MIXTURE MODELS
Christophe Biernack:

1.1 Mixture models as a many-purpose tool

Finite mixture models are one of the probabilistic frameworks which reach
an especially diverse community of people, including statisticians and practi-
tioners (scientific or not). Initial reasons for being confronted with mixtures
may be different for impacted communities but lead finally to close intercon-
nections between them. Indeed, applied statisticians and practitioners usually
discover finite mixture models from the numerous application fields where they
meet numerous successes. It typically gathers {{),un,semi-} supervised clas-
sification and density estimation. The keys of these successes are both their
high meaningfulness and flexibility. However, flexibility is in return a matter of
algorithmic and mathematical questionings for methodological and theoretical
statisticians. In particular, it addresses estimation and model selection issues,
on both computational and mathematical aspects. But, solutions to be pro-
vided to these issues highly beneficiate to depend on initial related application
fields.

1.1.1 Starting from applications
Supervised classification

In supervised classification, data are composed of n individuals x = (x1,...,X,)
belonging to a space X of dimension d, and also of an associated partition in
K groups Gi,...,Gk. This partition is denoted by z = (z1,...,%,), where
z; = (2i1,...,2ix) is a vector of {0,1}% such that zy = 1 if individual x;
belongs to the kth group Gi, and z;;, = 0 otherwise (i =1,...,n,k=1,..., K).
The data set is thus composed of all pairs D = (x,2z) = ((X1,21), .-, (Xn,2n))-
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It is generally denoted as the learning data set. The aim is to estimate the
group z,41 of any new individual x,41 in X for which the group would be
unknown. This aim can be reformulated as the estimation of an allocation rule
r from D and defined as follows:

r: X — {1,...,K}

(1.1)

Xpt+1 T(Xn+1).

An illustration is given in Figure 1.1. Note that the space of individuals X

usually corresponds to R? in the continuous case or also to {0, 1}% in the binary
situations. Other examples of X will be exhibited in Section 1.1.4.
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Figure 1.1: Supervised classification purpose: illustration with a learning data
set (x,z) in R? with three groups. The new individual to be classified is
denoted by x,4; and is displayed by a “e”.

Semi-supervised classification

In semi-supervised classification, the aim is the same as in supervised classi-
fication but the data set is composed of n! individuals 0 < nl < n) xl =
(X1,...,%,) for which group memberships z' = (z1, ..., 2. ) are known, whereas
the n* = n — n! remaining individuals x* = (X141, .. .,X,) have unknown la-
bels z* = (z,i,1,...,2n). We will note D = (D;,D,,) with D; = (x!,z!) and
D, = x". The main idea is thus that the unlabelled individuals may be useful
to learn an allocation rule (see McLachlan [1992] p. 37-43). Usually, unlabelled
individuals are expected to be more numerous than the labelled ones since the
latter are clearly cheaper to obtain. An illustration of the semi-supervised
setting is given in Figure 1.2.
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Figure 1.2: Semi-supervised classification purpose: illustration with a learning
data set (x,z') in R? with three groups. The new individual to be classified is
denoted by x,+1 and is displayed by a “e”.

Unsupervised classification

In unsupervised classification, or clustering, only individuals x are known and
thus observed data are restricted to D = x. The aim is focused to estimating
the partition z related to x and not to estimate a partition of all the space X.
However, in some cases like mixtures (as we will seen later), a partition of all
the space X can be given as a simple by-product. In its more general, but also
more difficult, version, the number of groups K is unknown and thus has also
to estimated. An illustration of the clustering setting is displayed in Figure 1.3.
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Figure 1.3: Clustering purpose: illustration for data x in R? and an estimated
partition z with three groups.
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Density estimation

In density estimation, data are composed by individuals x = (x1,...,x;,) be-
longing to a space X of dimension d and the aim is to estimate the distri-
bution x € X — f(x) from which the sample arises. Then f can be used for
multi-purposes like hypothesis testing. An illustration of the density estimation
setting is given in Figure 1.4

Figure 1.4: Density estimation purpose: illustration for data x in R2.

1.1.2 The mixture model answer
{0,un,semi-} supervised classifications

The keystone to solve classification questions relies on the rigorous definition
of a group. Intuitively, a group gathers elements which resemble each other. In
a probabilistic framework, the resemblance between elements belonging to the
same group may result by the fact that they arise from the same probability
distribution function (pdf). Then, juxtaposing distributions associated to each
group leads to a so-called mixture of distributions.

Thus, the individual x; € X belongs to the group Gy if and only if this
individual is a realization of a random variable (rv) X; € X conditionally to
the fact that {Z1x = 1}, where Z; = (Z11,...,Z1x)" is a vector of {0,1}%
indicating the group membership of X;. We still use the notation Z;;, = 1
if the individual X; belongs to the kth group Gy, and Zi; = 0 otherwise
(k = 1,...,K). The distribution of X; conditionally to the group G, or
equivalently the pdf of the rv X;|Z1; = 1, is written

X |Z1 = 1 ~ fi. (1.2)
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In addition, the pdf of Z; corresponds to the multinomial distribution of order 1
Z, ~ M(m), (1.3)

with @ = (m1,...,7K) where i, (k= 1,..., K) designates the mixing propor-
tion of the component k in the mixture or equivalently the unconditional prob-
ability that an individual arises from this component, it means (Zszl e =1
and 7, > 0):

T = p(Zlk = 1) (].4)

It means also that each group Gy, ..., Gk is present with proportions 7y, ..., 7g,
respectively. The joint pdf of the couple (X1, Z1) is thus written

f(x1,%1) H (70 (1)) (1.5)

and the marginal pdf of X is straightforwardly deduced. It corresponds to the
so-called mixture pdf f:

K
Xy~ f=Y mfr (1.6)
k=1

From this model, the pdf of Z; conditional to {X; = x;}, it means of the rv
Z,|X; = x1, is given by
Zl|X1 = X1 ~~ M(tl), (17)

where t; = (t11,...,t1x) et t1x (K = 1,...,K) is a conditional probability
eagsily obtained by the Bayes theorem

p(Zir = 11Xy = x1)

 Tefr(x1)
= i) (18)

t1k

Thanks to these conditional probabilities, an allocation rule r can be pro-
posed for each individual x; of X by the so-called mazimum a posteriori method
(denoted now by MAP). It simultaneously gives a united answer to all issues
addressed by supervised classification, semi-supervised classification and clus-
tering. This simply consists of assigning an individual to the group with the
largest conditional probability:

Vx; € X ’I”(Xl) =k if t1p > t1p for h = 1,..., K. (].9)

Beyond the intuitive appearance of such an allocation rule, a more subtle notion
is hidden. Indeed, considering equal wrong assignment costs for each group (it
is often a realistic case), using the MAP rule is strictly equivalent to minimize
the classification error probability e(r) associated to every rule r and defined
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by
K K
e(r) = Z”k DG = h|Zy, =1) (1.10)
=1,h+k
= 1—E(x1,z1 [Z1rx0)]- (1.11)

This optimal rule is often designated as the Bayes rule in decision theory. It
can also be extended to the case of unbalanced costs. All details can be found in
numerous references as McLachlan [1992] (Chap. 1) or Flury [1997] (Chap. 7).

Density estimation

Mixture models design also an extremely flexible family of distributions. It is
illustrated in Figure 1.5 where a Gaussian mixture is used to approximate the
distribution of the grey scale distribution of an image.

n* frequence
Densite

100 150 o = ™ =
Niveaux de gris Niveaux de gris

Figure 1.5: Illustration of the flexibility of mixtures for the density estimation
purpose: (a) a grayscale image, (b) the grayscale histogram associated to the
character and (c) its estimation by a univariate Gaussian mixture.

1.1.3 Classical mixture models
Independence and parametric assumptions

From the mixture point of view, all classification purposes rely first on calcu-
lating conditional probabilities and then on using the optimal MAP rule. Since
the conditional probabilities are expressed in function of the mixing propor-
tions 71, ..., mx and of the conditional pdfs fi,..., fx, such quantities have to
be estimated not only from available data D but also by means of more or less
realistic assumptions, in any case often simplistic, which are available on the
mixture model.

A first assumption concerns the sampling type. Pairs individuals-labels
(X1,21)s -+, (Xn,2Zn) are assumed to i.i.d. (independently and identically dis-
tributed) arise from n pairs of rv (Xy,Z1),...,(X,, Zy,) following the same



Mixture models 7

distribution as (Xy,Z1), distribution defined by (1.5). Such an hypothesis is
performed both in clustering and in (semi-)supervised classification even if la-
bels are not observed in the former situation. Note that this independence
assumption may be relaxed like in hidden Markov models where independence
between conditional rv X1z, —1,...,Xn|z,,=1 is preserved whereas it is re-
laxed between rv Zi,...,Z, (see for instance Besag [1986], McLachlan and
Peel [2000] Chap. 13).

A second assumption concerns conditional pdf fi,..., fx. It is also possible
to perform non-parametric pdf (Silverman [1986], McLachlan [1992] Chap. 9,
Benaglia et al. [2011]), or even semi-parametric pdf (Bordes et al. [2007]). How-
ever, it is more often assumed that fj is wholly defined with a finite vectorial
parameter o, and thus (k=1,...,K)

fk = f(-;ak). (1.12)
This assumption is quite weak since parametric mixture models are highly
flexible. Denoting by 6 = (7, &) the mixture parameter with « = (71,...,7K)
and & = (ay, ..., k), the mixture pdf is then given by
fo= 16

K
> mf (5 an), (1.13)
k=1

and the conditional probability is also parameterized by 0: t1; = t15(0). Thus,
the couple composed by the parametric pdf f(-;0) and a space O, where
evolves this parameter defines a so-called model, denoted now by Sp,:

Sm={x1€X— f(x1;0):0 € O, }. (1.14)

Moreover, Dy, = dim(Oy,) will designate the number of continuous parameters
in Sy. Note that, in the following, we will sometimes use the convenient
language shortcut which confounds the index m and the corresponding model
Sm-

In the following, we will assume that the mixture families of interest are
identifiable, up to a label numbering permutation. It means that two differ-

ent mixture parameters, even with label numbering permutation, lead to two
different mixture pdfs (McLachlan and Peel [2000] Section 1.14).

Note that a component distribution f; may be itself defined by a mixture
of distributions, in particular in the supervised or in the semi-supervised set-
ting. It corresponds thus to a so-called mizture of mizture (see for instance
Hastie and Tibshirani [1996] and Miller and Browning [2003]). An illustra-
tion is displayed in Figure 1.6 with X = R? and K = 2 main components
of same mixing proportions (71 = w3 = 0.5), the first one f; being a Gaus-
sian N((2,0)’,I) and the second one f2 being a mixture of two Gaussian sub-
components N((0,0)’, diag(0.25,4)) and N((0,0)’, diag(4,0.25)) with same pro-
portions. The borderline between the two main components is also given on
this figure to illustrate its great flexibility with such mixtures.
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Figure 1.6: Mixture of a Gaussian component (group 1) and of a mixture of
two Gaussian components (group 2): (a) classification borderline with
associated isodensities and (b) classification borderline with a sample.

Gaussian mixtures

The multivariate mixture model is certainly the most known and used model for
continuous data. It has a long history of use in clustering (see for instance Wolfe
[1971], Bock [1981]) and in supervised classification (see numerous references

in McLachlan [1992]). In that case, x; (i = 1,...,n) are continuous variables
R? and the conditional density of components is written (k =1,..., K)
1

1 _
s ) = 00 ) = (50— S 0 )
(1.15)
with o, = (g, 1), pr € R? the component mean (or centre) and X, € R4x4
its variance-covariance matrix. Figures 1.7 (a), (b) and (c) respectively display

univariate, bivariate and trivariate Gaussian mixtures.

(2m)a2 |5, 172 exp

\\ I'
\“\ll’lll " “
”” “:“‘%‘:""'II "”0\\

':'m‘&“

Figure 1.7: Gaussian mixtures in (a) univariate, (b) bivariate and (c)
trivariate situations.
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At this stage, it is quite common to impose constraints on the parameter 0
through the space ©. It is motivated by two essential reasons: either a prior
information is available and is taken into account in this way, or the sample
size is too small for providing a good estimation of the most general model.
Indeed, the better is estimation of @, the better is estimation of conditional
probabilities and the associated MAP partition. See Section 1.3, 1.4 and 1.5
for detailed discussions about model selection. More precisely, it is possible to
fix not only simple constraints on mixing proportions (equal or free) but also
some more specific constraints on covariance matrices. Following the seminal
approach of Banfield and Raftery [1993], Celeux and Govaert [1995] propose a
spectral decomposition of the covariance matrices which allows a simple and
useful meaning. Each covariance matrix is decomposed by X = )\kaAkD;C,
with A\ = |E;€|1/d the so-called volume of the component k, Dy, the orthogonal
matrix gathering the eigenvectors of 3 and corresponding to so-called orienta-
tion of this component, and A the diagonal matrix of normalized eigenvalues
sorted by decreasing order on the diagonal and of determinant one, correspond-
ing to the so-called shape of this component. By allowing some parameters, but
not necessarily all, to vary or not between components, Celeux and Govaert
[1995] obtain fourteen different models which they group into three families:
the spherical family where the shape is equal to the identity matrix and thus
only the volume has a role, the diagonal family where the covariance matrix
is diagonal, and finally the general family which gathers all other situations
(for instance the homoscedastic case where covariance matrices are equal or
the heteroscedastic case corresponding to the most general situation with no
constraints on covariance matrices). Combining these constraints with too
standard constraints on mixing proportions (equal or free) leads then to 28
particular Gaussian mixture models.

Competitor parsimonious models have also been proposed since these previ-
ous seminal ones. In particular, we can note the variance-correlation decompo-
sition 3y, = TR T}, of the covariance matrices (Biernacki and Lourme [2013])
where T, is the corresponding diagonal matrix of conditional standard devia-
tions and Ry the associated matrix of conditional correlations. Parsimonious
models are obtained by combining simple constraints on matrices Ty and/or
R. These new models are stable when projected into the canonical planes and,
so, faithfully representable in low dimension. They are also stable by modifi-
cation of the measurement units of the data and such a modification does not
change the model selection based on likelihood criteria. We can mention also
Biecek et al. [2012] who permit not only inter-component constraints between
covariance matrices, but also particular intra-component constraints like equal-
ity between variances or equality between covariances. Both last family models
permit also some constraints on the centres of the Gaussians.
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Latent class mixtures

Using categorical data is very frequent in statistics also. The standard model for
clustering observations described through categorical variables is the so-called
latent class model (see for instance Goodman [1974]). This model is assuming
that the observations arose from a mixture of multivariate distributions and
that the variables are conditionally independent knowing the groups. It has
been proved to be successful in many practical situations (see for instance
Aitkin et al. [1981]).

Observations to be classified are described with d discrete variables. Each
variable j has m; response levels. Data are x = (x1,...,%,) where x; =
(x{h;j =1,....,dih = 1,...,m;) with xfh = 1 if 4 has response level h for
variable j and x{h = 0 otherwise. Data are supposed to arise independently
from a mixture of K multivariate multinomial distributions with pdf

K
Fxi30) = mif(xi; ) (1.16)
k=1
with .
Fxizen) = [T [T (1.17)
j=1h=1

where 8 = (m, @) is denoting the vector parameter of the latent class model
to be estimated, with a = (a1,...,ak) and oy = (afﬂh;j =1,...,d;h =
1,...,my ), afﬂh denoting the probability that variable j has level & if object ¢
is in cluster k. As previously said, the latent class model is assuming that the
variables are conditionally independent knowing the latent groups.

Analysing multivariate categorical data is difficult because of the curse of
dimensionality. The standard latent class model which requires (K — 1) 4+
K Zj (mj — 1) parameters to be estimated is an answer to the dimensionality
problem. It is much more parsimonious than the saturated log linear model
which requires Hj m; parameters. For instance, with K =5, d =10, m; =4
for all variables, the latent class model is characterised with 154 parameters
whereas the saturated log linear model requires about 10° parameters. More-
over, the latent class model can appear to produce a better fit than unsaturated
log linear models while demanding less parameters.

In the binary case, some parsimonious alternatives have been also proposed
by Celeux and Govaert [1991] by using the following reparameterization:

d
fxiz ) = [ (o)l =11 — eyt (1.18)
j=1
where (0kj,er;) = (0, ;) if an; < 1/2 and (dk;,€x5) = (1,1 — ag;) otherwise.
Thus parameters oy, are defined by o, = (g, €x) with 8y = (dk1, ..., 0ka) a bi-
nary vector of dimension d acting as the center of the group since it corresponds
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to the modal value, and with e, = (41, ...,€krq)" a vector belonging to the set
]0,1/2[? and acting as the dispersion of the component since it corresponds to
the probability of each variable to have a different value from the center. It
allows to retrieve the parameterization used by Aitchinson and Aitken [1976]
in non-parametric supervised classification on nominal variables by the kernel
method.

From such a decomposition, it is possible to draw parsimonious situations
by imposing varying constraints on dispersions ;. Three parsimonious models
are thus proposed: the simplest one is independent of both the group and the
variable; another model depends only on the group; the last one depends only
on the variable. Combining with two constraints on mixing proportions (equal
or free), it leads to finally eight particular mixture models for categorical data.

1.1.4 Other models

We presented previously the Gaussian and the latent class model since they
correspond to the more widespread ones for continuous and categorical data,
respectively. However, many other component distributions are possible, de-
pending on the data and the hypotheses at hand. Kinds of data, and associated
models, may be numerous (see also McLachlan and Peel [2000]): ranking data
(Marden [1995], Jacques and Biernacki [2014]), directional data (Mardia and
Jupp [2000]), ordinal data (Biernacki and Jacques [2015]), high dimensional
continuous data (Bouveyron et al. [2007], McNicholas and Browne [2013]),
graphical data (Nowicki and Snijders [2001]), functional data (Jacques and
Preda [2014]),...Some recent works propose also models relaxing the condi-
tional independence assumption for categorical and for mixed data while pre-
serving identifiability, parsimony and parameter interpretation. The reader can
refer for instance to Marbac et al. [2013] and Marbac et al. [2014], respectively,
and many references therein.

1.2 Estimation

1.2.1 Overview

In density estimation, the central question is to estimate the parameter 0,
the model Sy, being fixed. The estimation of the model Sy, or equivalently of
its index m, will be discussed later and designed as the model selection problem
which is the central thema of this book. Consequently, we will usually omit
the index m thorough Section 1.2.

In the semi-supervised and unsupervised settings, the most simple and
widespread estimation strategy is the plug-in one. It consists in estimating
first 6, subject to constraints of S, and then to directly use its estimate 0
for estimating finally related conditional probabilities, useful for obtaining the
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MAP rule. Then, we do not tackle alternative strategies which would directly
estimate conditional probabilities: in (semi-)supervised classification, it con-
cerns either the Bayesian predictive method of Ripley [1996] (p. 45-55), or
the logistic regression (Ripley [1996], p. 43-45); in clustering, it concerns the
Bayesian unsupervised clustering of Binder [1978].

Following the plug-in principle, Pearson [1894] initially used the method of
moments for estimating the mixture parameter for a two component univariate
Gaussian mixture model. Despite some renewed popularity of such an approach
(see for instance Monfrini [2003] or also some references in McLachlan and Peel
[2000] Chap. 1), it is globally abandoned nowadays. We do not consider either
in this chapter Bayesian techniques for estimating 6 (see Robert [1994]) because
we focus on the maximum likelihood method for its popularity, its simplicity
and its relevant estimators properties under some quite general conditions,
typically unicity and existence (see Lehmann [1983] Chap. 6).

1.2.2 Maximum likelihood and variants

Definition

Denoting by £(6; D) = In f(D; 0) the observed-data log-likelihood of 6 (simply
denoted sometimes as the observed log-likelihood or also as the log-likelihood),
the maximum likelihood estimate (MLE) is given by

Op = argmax ((0; D). (1.19)
0co
In the following, we will note also 0 = 6p for simplicity when no confusion is

possible. The log-likelihood is easily expressed thanks to the data independence
hypothesis. It is written

(6;D) = £(6;D)+0(6;D,) (1.20)
n' K n
= > > zaln(mf(xiar)+ Y, In(f(xi;0)). (1.21)
i=1 k=1 i=nl+1

The log-likelihood 4(0;x,2) = £(0; D, z") is called complete-data log-likelihood
(simply denoted sometimes as complete the log-likelihood) since it involves
complete data x and z. It is usually more simple to maximize that the log-
likelihood £(0; D) since it vanishes the initial mixture problem.

Theoretical properties

We give here two results which generalize respectively Proposition 2.2 and 2.3
of Ripley [1996] (p. 32-34) to our particular data set D which depends on
the ratio of non-missing data n'/n. We assume now that n!/n — B with
B € [0,1] when n — oo. Taking D’ an independent data copy of D, we will note
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also in the following 6* the value of @ which minimizes the Kullback-Leibler
divergence between the true (unknown) distribution f(D’) and the candidate
mixture distribution f(D’;8):

0* = arg gleigED/ [ln f(D') —In f(D'; 6)]. (1.22)

Under some standard regularity conditions, the first result concerns the point-
wise consistency with 8 <> 0* (see for instance White [1982]). If the true
distribution is included in the candidate parametric family, we retrieve thus
f(D') = f(D’;0%). The second result concerns the distributional consistency.
We express it now and give also a proof since it involves new Fisher information
matrices depending on .

Proposition 1.1 Under standard regularities conditions,
A w d _ _
NCIC I N(O,JﬂlKgJﬂl) (1.23)

with N(0,V) the multivariate Gaussian distribution of zero mean and of co-
variance matriz 'V, with n'/n—B8 € [0,1] when n — oo, and with Jg =
BI.+ (1 —=75)T) and Kg = (BK. + (1 — B)K) where

Je=-Ex, z)V’Inf(X1,Z1;0%), J=-Ex,V’Inf(Xy;6%),(1.24)
K.=Vx,z)Vinf(X1,Z1;0*), K=Vx, Vinf(Xy;6%). (1.25)

Ezpectation is taken relatively to the true joint distribution f(x1,z1) for the
Fisher information matrices J. and K., and relatively to the true marginal
distribution f(x1) for the other information matrices J and K. First and
second derivatives concern 6. Note that if the true distribution is included
in the candidate parametric family, then we retrieve the other classical results
since J. = K. and J = K.

Proof The maximum likelihood estimate verifies V£(; D) = 0. A Taylor expansion at the
first order gives A -
0 = V4(0; D) = VL(0*; D) + V2¢(6;D) (6 — 6%) (1.26)

with 6 a vector “between” 8 and 6*, through the multidimensional meaning. Using now the
central limit theorem and the strong law of large numbers, we obtain

V(0 — 6%)
= [~ %v%(é;pl) — %v%(é;pu)] -1 [%W(e*;vl) + %W(o*;pu)] (1.27)

<5 [BIe+(1-pB)3]'N (0, [5Kc+(1—ﬁ)K])=N(0,J51K5J51). (1.28)

The fact that J. = K. and J = K when the model is true is already a well-known property
(see for instance Lehmann [1983] p. 118). O



14 Chapter 1

Variants

We can also note that, in clustering, there exists a specific estimation method,
sometimes called classification approach in contrast to this one of maximum
likelihood sometimes called mizture approach (Celeux and Govaert [1993]). It
consists in maximizing the complete-data log-likelihood ¢(8; D, z*) on the cou-
ple (0,z"):

(Oc,2y) = arg ) mnax £(0;D,z"), (1.29)
where Z" denotes the space where z" stands. The interest of this approach
is to take explicitly into account the clustering purpose without sacrificing the
simplicity of the plug-in principle. Indeed, in the small sample case, it can be
observed that the estimated partition is better with the classification approach
than with the mixture approach (see for instance Biernacki [1997] p. 52). But,
complete-data maximum likelihood 6. can be biased, even asymptotically, in
particular if components have quite strong overlap (Bryant and Williamson
[1978]).

Nevertheless, another positive point of the classification approach is the abil-
ity to retrieve some standard, and initially non-probabilistic, clustering criteria
(Celeux and Govaert [1993]). For instance in the Gaussian case, Celeux and
Govaert [1992] exhibited that maximizing the complete-data likelihood allows
to retrieve, depending on the model at hand, some distance-based classical cri-
teria. Thus, in the equal mixing proportion case, the K-means criterion (Ward
[1963]) is equivalent to assume a spherical model with identical volume; this
one of Friedman and Rubin [1967] is equivalent to an homoscedastic model;
this one of Scott and Symons [1971] is equivalent to the most general model.
In the latent class model for binary data, the most simple model corresponds to
a x2-type criterion initially established without any reference to a probabilistic
framework (see for instance Gower [1974]).

1.2.3 Theoretical difficulties related to the likelihood
Multiple roots

Maximum likelihood, in the mixture setting or not, is often faced to the exis-
tence of multiple roots of the log-likelihood. Roots correspond to the 8 values
verifying

V/((6;D) = 0. (1.30)

Obviously, under some standard regularity conditions, the theory asserts exis-
tence of a unique consistent root of this equation (see for instance Cramér [1946]
or also its multivariate extension by Tarone and Gruenhage [1975]). However,
poor guidance is generally given for choosing this consistent root in case of mul-
tiple roots even if the bibliographical paper of Small et al. [2000] discusses of
several approaches (see also an anterior discussion in Lehmann [1983] Chap. 6).
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It includes for instance an iterated method based on consistent estimates, the
use of a bootstrap method or also a technique relying on the asymptotic prop-
erties of the roots, when these properties can be explicitly expressed. Another
possibility simply consists in selecting the root associated to the maximum like-
lihood value since Wald [1949] established consistency of the global maximum
likelihood on some conditions. The Wald’s properties of this MLE have been
then extended by White [1982] in the very realistic situation of a misspecified
model (see Section 1.3.2 and in particular Proposition 1.1). Consequently, the
strategy consisting in retaining the maximum value of the maximum likelihood
function is often adopted.

Pathological cases

It exists some situations where this global maximum is not consistent as illus-
trated in Neyman and Scott [1948], Ferguson [1982] or Stefanski and Carroll
[1987]. In the heteroscedastic Gaussian case (but also in some non-Gaussian
cases), it exists also a difficulty since the global maximum is not bounding
above as noted first by Kiefer and Wolfowitz [1956] (note that this maximum
is not a root of (1.30)). It corresponds to so-called degenerated solutions. It
happens for instance by positioning a Dirac distribution at a particular data
point (it corresponds to a specific degenerated Gaussian), while imposing the
generalized variance (i.e. the determinant of the covariance matrix) to be non-
null for at least one of the other Gaussians. In addition, among other local
maxima of the likelihood, some of them may correspond to spurious mazimiz-
ers as called by McLachlan and Peel [2000] Section 3.10. It corresponds to
non-degenerated solutions where one or many covariance matrices are close to
degeneracy, providing potentially large finite values of the likelihood although
they do not correspond to some reality about the “true” parameter.

Practical difficulty for finding a suitable root

More details could be found in Redner and Walker [1984] Section 2.2 or McLach-
lan and Peel [2000] Section 1.18 for a detailed historical review on methods
aiming at maximizing the likelihood in mixtures of distributions.

In the mixture context, solving the highly non-linear Equation (1.30) is
generally impossible in closed-form. However, the increase of computing facil-
ities helped to gradually overcome this difficulty. Thus, some simple mixture
situations have been successfully solved by iterative methods. For instance,
Rao [1948] used the scoring method of Fisher for studying a mixture of two
univariate homoscedastic Gaussians, Mendenhall and Hader [1958] used a New-
ton method for a simpler situation with a unique scalar parameter. Then, Day
[1969] for a multivariate mixture of two Gaussians, and Wolfe [1971] (and other
references of the same author) with any number of heteroscedastic Gaussians,
all used at similar periods some optimizing methods already close to the EM



16 Chapter 1

algorithm of Dempster et al. [1977]. This algorithm, and its numerous variants,
is certainly today the most widespread estimation method for mixtures.

Although such algorithms allow to provide simple and relevant solutions for
maximizing the likelihood, they are usually faced to the previous theoretical
problems related to the likelihood: multiple roots and other stationary solu-
tions, degeneracy, spurious solutions. Sometimes, it is added some difficulties
related to the retained optimization method such some relative slow conver-
gence or initial parameter dependency for EM that we describe now.

1.2.4 Estimation algorithms
The EM algorithm

For optimizing ¢(0; D) in the general setting, the EM algorithm of Dempster
et al. [1977] is often performed. It is a general algorithm for optimizing in-
complete data (thus no restricted to mixtures) for maximizing the likelihood.
Since the seminal paper of Dempster et al. [1977], numerous authors described
its properties and its variants (see for instance McLachlan and Krishnam [1997]
or Redner and Walker [1984] for the mixture context). In the mixture frame-
work, missing data correspond to unknown labels z*. Starting from an initial
parameter 8(°), EM proceeds in two sequential steps, the so-called E-step (Bz-
pectation) and the so-called M-step (Mazimization). Noting

Q(6;0'7) = Eg() [¢(6; D, Z")| D] (1.31)

the expectation of the complete-data log-likelihood ¢(6; D, Z*) with respect to
the conditional distribution f(z*|D;0?), these two steps are expressed by:

E-step Calculate Q(6;0);

M-step Choose 8(4t1) € © such that 8(9TD) = argmaxgce Q(0;6(9).

If it exists several possible values 8(9t1) at the M-step, we retain simply one
of them. Finally, the algorithm stops as soon as the log-likelihood reaches
stationarity:

108+ D) — (89, D)| <&, (1.32)
with ¢ a fixed small non-negative value. It is also possible to stop EM after a
predefined iteration number.
EM properties

A first important property of EM is that the log-likelihood monotonically in-
creases along the run: £(8(t1; D) > £(9); D) pour ¢ > 0. Proving this point
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(see for instance McLachlan and Krishnam [1997] Chap. 3) relies on the fol-
lowing decomposition of the log-likelihood into a term of complete-data-like
log-likelihood and an entropy-like term:

0(0;D) =4(0;D,z") + £(0;2"), (1.33)

where the complete-data-like log-likelihood is

£0;D,z")
= 0(6;D;)+4(0;Dy,2") (1.34)
n! K n K
= Z zie In (g f (x4 g)) + Z Zzzkln mef (x5 o)) (1.35)
i=1 k=1 i=nl+41 k=1

and the entropy-like term is

— Zik ln zk Z 0. (136)
DIDY

This last term varies between 0 and n* In(K).

Taking expectation of both members of this equation subject to f(z*|D; (%)),
we obtain

6(60;D) = Egw[l(0;D,Z")|D] + Egc [£(0; Z")|D] (1.37)
Q(0:0') +£(6:£(6')), (1.38)
where t%(0) = (t,,:,1(0),...,t,(0)). The transformation of the entropy term
is a consequence of tik(O(‘?)) p(Zg = 1X; = xl,O(‘?)) = Ego [Zir|Xi = x]
(i=n'+1,...,n,k=1,...,K). We thus deduce that
(O D) — (07 D) = {£(0'TV5¢(0)) — £(6';(6'))}

+{Q(9(q+l); g(q)) _ Q(g(a); g(q))}_ (1.39)

The first term of the second member of this equation is non-negative as defined
in the M-step. We then conclude by noting that the second term is also non-
negative since

(0D £4(0@)) — £(69; £4(0(9)) =
2 (09) }
tik ( . > 0. (1.40)
X;{Z ’ ( K(00F >>>

Indeed, we recognize, for each i = n'+1, ..., n, the Kullback-Leibler divergence
between distributions t;(6(?) and t;(8+V).

A second EM property is its speed of convergence towards a stationary value
of the likelihood. This convergence rate is usually considered as low since it is



18 Chapter 1

linear around a stationary parameter 8* of the likelihood (see McLachlan and
Krishnam [1997] Chap. 3.9), contrary to Newton-like methods which benefit
from a local quadratic convergence. Each EM iteration is a mapping g of ©
into © such that 8@+ = ¢(@(@). If 89 converges towards a parameter 6*
and that ¢ is a continuous mapping also, then 8* = g(6*). A Taylor expansion
of g(8(9)) around 6* allows to write

07t — 0" ~ H(0*)(0'D — 6%), (1.41)

with H(6*) the Jacobian matrix D x D of (@), D being the number of contin-
uous parameters in ©. Thus, an EM iteration is nearly linear around conver-
gence with convergence matrix equal to H(6*). In addition, since the global
convergence rate is given by

fi 1070 = 0] (1.42)
= [1m .

T % 0 — o]

for any norm || - || of R” it also corresponds to the largest eigenvalue of H(8*).

The speed of convergence of EM then depends on the value of v, a large value
leading to a slow convergence rate.

Beyond its theoretical properties, EM is widely appreciated for its ease
of implementation, its generally computationally light iterations (no Hessian
matrix to compute), the low memory requirement to make it work (it requires
little storage) and finally it quite appealing principle. All these previous points
can be easily guessed when having a precise look at its two steps. The E-
step finally consists, for the mixture case, to compute conditional probabilities
ti(09D) (i =n'+1,...,n,k=1,..., K) since the complete-data log-likelihood
£(0; D, z*) is linear with respect to missing data z*. In other words, we have the
identity Q(8;0@) = £(8;D,t*(6(?))). The M-step allows to find the parameter
00t in closed form for many standard mixture models. Indeed, it is often
easy to obtain the maximum likelihood estimate with complete data and the M-
step finally consists of maximizing the complete-data likelihood where missing
data have been replaced by their expectation, thus the previous conditional
probabilities. Mixing proportions are given by

(q)
Al = % (1.43)

l
where n,(cq) =30 Zik + iy tie(8D) corresponds to the “fuzzy” popula-

tion of the component k. Other parameter estimates depend on the parametric
model at hand. For instance, in the general heteroscedastic Gaussian case,
we retrieve familiar expressions for centres and covariance matrices estimates
(k=1,...,K):

l
1 n n
+1 x
w = n(® 2_1 ZikXi + E tik (0)x; (1.44)

i=nl4+1
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!
1 n

R el DR (R Tl
nl(cq) —

+ 2 tmw(q))(xi—u;W))(xi—u,&q“’)’)' (1.45)

i=nl+1

In the more restricted homoscedastic case we have

K
1
e+l — = § : (Q)z(tﬁ-l)_ 1.46
n k=1 nk g ( )

Celeux and Govaert [1995] described the M-step for each of the fourteen Gaus-
sian models already described in Section 1.1.3. For the classical latent class
model considered in Section 1.1.3, Celeux and Govaert [1991] produced also
corresponding E-steps.

Variants of EM

Since EM may be quite slow in some cases, numerous authors proposed modi-
fied versions of EM aiming at accelerating its convergence while preserving its
simplicity. In this context, Liu and Sun [1997] consider, in the mixture con-
text, the ECME algorithm (Ezpectation Conditional Mazimization of Either)
of Liu and Rubin [1994]. In ECME, the E-step of EM is unchanged but its
M-step is replaced by the CM-step (Conditional Mazimization) which maxi-
mizes, a choice based on parameters, either the expectation of complete-data
log-likelihood as in the initial EM, either directly the log-likelihood. Alterna-
tively, modifying the E-step, Ueda and Nakano [1998] propose a deterministic
version of EM involving simulated annealing. It corresponds to the so-called
DAEM algorithm (Deterministic Annealing EM) and it aims to overcome the
problem of local maxima. More precisely, at the E-step, the conditional prob-
abilities of the groups are raised to a given power, similar to a temperature,
which tends towards unity when the number of iterations increases. Pilla and
Lindsay [2001] suggested a new definition of the missing data in order to reduce
their number. In that case, the convergence rate is improved in some paramet-
ric directions which can depend on the iteration number of EM. Another way
for exploring in depth the parameter space in various directions, Celeux et al.
[2001] proposed also an EM algorithm with sequential update of parameters
for each component.

Other alternatives propose stochastic versions of EM. Their fundamental
motivation is to avoid local maxima of the likelihood. In this way, the SEM
algorithm (Stochastic EM) of Celeux and Diebolt [1985] incorporates an ad-
ditional random S-step (Stochastic) between the E-step and the M-step. This
new step consists of drawing the group memberships from a multinomial dis-
tribution of order one with the group conditional probabilities as parameters,
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instead of taken their expectation as initially in EM. starting from (), SEM
is expressed by

E-step As the E-step of EM;
S-step For each i =n!+1,...,n, draw z;(8(9)) ~ M(t;(0?));
M-step Choose 8(7F1) € © such that 8197 = arg maxgce £(0; D,z%(0(?)).

Since the parameter sequence (0(‘7)) generated by SEM does not punctually
converges, due to the S-step definition, the algorithm generally stops after a
predefined number of iterations. This sequence converges in distribution to-
wards the unique stationary distribution. Asymptotically, the average of this
distribution provides a sensible local estimate of the likelihood. Thus, SEM
allows to be less dependent on the initial value 8(©) if a “sufficient” iteration
number is performed. Noting also that there exists a simulated annealing ver-
sion of SEM, SAEM (Simulated Algorithm EM) of Celeux and Diebolt [1990],
which allows to start with SEM and which allows to finish with EM while con-
trolling a given temperature. SAEM has the advantage to punctually converge
and simultaneously to be less dependent on the starting position.

Optimizing the complete-data log-likelihood can be performed with the
CEM (Classification EM) algorithm which is a clustering version of EM pro-
posed by Celeux and Govaert [1992]. CEM consists of adding a C-step (Clas-
sification) between the E-step and the M-step of EM. It simply corresponds
to a MAP of the group conditional probabilities previously calculated at the
E-step. The detail of CEM is the following:

E-step As the E-step of EM;
C-step Defined z(0(?) as the MAP of t(8(?));
Step- M Choose 8(9T1) € © such that 8(9t1) = arg maxgce £(0; D,z*(0D)).

Remind that CEM does not optimize the observed-data log-likelihood ¢(8; D)
but the complete-data log-likelihood ¢(6; D, z") on the couple (0, z").

Initializing EM

Instead of introducing randomness in the iterations of the EM algorithm itself
(like SEM), it is possible to introduce randomness through the starting value
0. The underlying idea is that a sensible starting value 8(®) could be able to
solve at the same time the problem of slow convergence rate and also the prob-
lem of local maxima. In practice, it is recommended to run EM from several
initial parameters and then to retain the best run. However, the question to
choose such initial parameters has to be addressed. In this aim, Coleman and
Woodruff [2000] used a clustering method starting from a random partition of
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a subsample. McLachlan and Peel [2000] proposed, in the Gaussian case, to
start with equal mixing proportions, with K centres drawn from a multivariate
Gaussian with empirical mean and empirical covariance matrix of the whole
data set, with homoscedastic covariances matrices equal to the empirical co-
variance matrix of the whole data set. Markatou et al. [1998] used a bootstrap
method to preselect a sensible parameter subspace. Alternatively, Biernacki
et al. [2003] formalized the following three step strategy:

Search-step It provides several starting values for EM;
Iteration-step EM is run from each previous starting values;

Selection-step Retain the previous run providing the highest likelihood.

Originality relies on the Search-step which can involved CEM, SEM or small
preliminary runs of EM itself. Nevertheless, as rightly underlined by Meila
and Heckerman [2001], choosing a starting parameter is essentially a trade-off
between its relevance and its computational cost.

Impact of estimation on model selection

The EM solution can highly depend on its starting position especially in a
multivariate context. This jeopardizes statistical analysis of mixture for two
reasons. Firstly, as we have just discussed above, ML estimation is expected
to provide sensible estimates of the mixture parameters. Secondly, the highest
maximized likelihood enters the definition of numerous criteria (see Section 1.3
and the next sections) aiming to select a good mixture model and especially
to choose a relevant number of mixture components. Thus, it is important to
get the highest criterion value when estimating the parameters of a mixture
through maximum likelihood.

Let us illustrate this fact with a simple example. We consider a sam-
ple of size n = 50 from a two-component univariate Gaussian mixture with
proportions m; = me = 0.5, means u; = —0.8, po = 0.8 and variances
0? =1, 05 = 1.5. All the parameters are supposed to be known, except the
means p; and po. The likelihood has two local maxima as shown in Fig-
ure 1.8. If the lowest likelihood maximum is selected, it can have consequence
for choosing the number of components K. For instance, Table 1.1 gives the
AIC criterion values (Akaike [1974] and Section 1.3 below) for K = 1 and for
the two different ML solutions for K = 2. Thus, despite its marked tendency
to favour too complex models (see below again), AIC concludes wrongly for
a single Gaussian distribution when the lowest local maximum likelihood is
selected.
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Figure 1.8: A two-mode likelihood surface.

K =1 K =2 (highest ML) K =2 (lowest ML)
AIC  -85.29 -84.88 -85.95

Table 1.1: AIC criterion values for different MLE values.

1.3 Model selection in density estimation

1.3.1 Need to select a model

The bias/variance trade-off

Prefixing a parametric model Sy, = {x; € R? — f(x1;0) : 0 € O} as a
candidate for the true, but unknown, distribution f allowed to stand in a sim-
plified framework, where powerful parametric inference tools are available (see
the previous section). However, this parametric hypothesis is binding since
this true distribution can highly differ from the candidate one. For instance,
the true component densities are not Gaussians or the true number of compo-
nents is larger than this one involved in the model at hand. As a consequence,
the estimated distribution is a biased estimate of f. There exists also a more
subtle notion of “wrong” model through the idea of over-parameterized model.
For instance, using a general heteroscedastic Gaussian model whereas the true
components are spherical Gaussians would lead, for small sample sizes at least,
to poor estimates in comparison to the use of a candidate model with spher-
ical Gaussians. The same harmful behaviour would appear by involving for
instance a number of components in the model which is larger than in the true
distribution. Such situations are a consequence of too large variance estimates.

In order to formalize this bias/variance trade-off we consider now a family of
model index collection M = {m} corresponding to a family of model collection
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{Sm : m € M}. We denote by
KL(f. forn) = Ep[In f(D') — In f(D'; Orn)] (1.47)

the Kullback-Leibler divergence between the true distribution f and any pro-
posed distribution fg,, = f(:;0m) corresponding to a model (index) m in
M, where D’ is a sample independent of D but with the same distribution.
Sometimes, we refer also to 2KL(f, fo,,) as the deviance of Sy,. The following
reasoning could be applied to any other contrast than the Kullback-Leibler
divergence; this remark will be useful in Section 1.4 and 1.5. We note also
60m the MLE of 0., and 0}, the best parameter 8y, with the Kullback-Leibler
divergence

0;, = argeie%f KL(f, fo..)- (1.48)

Then, we have the following straightforward but fundamental decomposition
of KL(f, fém)’ where we have noted Oy = 6p m:

KL(f, fe,,)
= {KL(. fo) = KLU |+ {KL(F o) = KL(f for) } - (1:49)
= {biasm} + {variancem}. (1.50)

The bias corresponds to the so-called error of approzimation and the variance
to the so-called error of estimation.

In order to illustrate the variance effect on the accuracy estimate of the
mixture parameter, we generate 30 samples of size 40 and 200 from the following
bivariate mixture with two components: m = w3 = 0.5, 1 = (0,0), pa =
(2,2), 31 = 3o = 1. The parameter 0 is then estimated by an EM algorithm
with both a simple spherical and a more complex general Gaussian mixture
of two components. Table 1.2 illustrates that the Kullback-Leibler divergence
increases with the more complex model, revealing the effect of the variance.
We note also that the variance decreases with the sample size.

n m EDKL(fg,fém)
40  spherical 0.0760
general 0.1929
200 spherical 0.0116
general 0.0245

Table 1.2: Effect of the variance of 6y, on the density estimation quality.

What about hypothesis testing?

Tests of hypothesis, like the famous Likelihood Ratio Test (LRT), are often
not really suitable in a model selection purpose for several important reasons.
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Firstly, they induce a dissymmetry in the models comparisons through the null
hypothesis and the alternative hypothesis. Secondly, selecting between more
than two models leads to sequential testing which generates a lack of control on
the global type I error rate. Thirdly, general tests like the LRT are able only
to test nested models, what is quite restricted. A last reason, specific to the
mixture case, is that the asymptotic distribution of the LRT is not necessarily
a x? distribution with the usual number of freedom (see for instance Aitkin
and Rubin [1985] or Everitt [1981]) since the so-called standard regularity con-
ditions do not hold. Indeed, in the case of the number of groups selection,
two of these regularity conditions collapse: the model is not identifiable and
also the borderline of the parameter space is reached for mixing proportions
(one component situation corresponds to a two component situation with one
empty component). However, some proposals exist for overcoming this prob-
lem like heuristic asymptotic distributions in Wolfe [1971], like marginalization
over mixing parameters in Aitkin and Rubin [1985] or like a bootstrap non
asymptotic estimation of the LRT distribution in Mclachlan [1987].

Model selection criteria that we present now will overcome most previous
difficulties encountered by hypothesis testing, even if a particular attention
should be paid to the number of components selection. They are also generally
expressed as a penalization of the maximum log-likelihood by a measure of the
model complexity. The list of described criteria is not exhaustive since the aim
is to provide only the probably most important families of them.

1.3.2 Frequentist approach and deviance

The frequentist point of view consists of selecting the model m € M by using
the deviance 2KL(f, fg_) or alternatively the ezpected deviance 2EpKL(f, f ).
Approaches can be asymptotic or not.

In the following, we will remove the indices m and/or D when no ambiguity
is possible. For instance, 0= épm denotes the MLE of @ with the data set D
and model Sy,. Similarly, we use 8* = 0}, for the best theoretical parameter,
D = Dy, for the number of parameters, S = S;,, for the model, etc.

Expected deviance and related AIC-like criteria

The ideal model Sy« to be retained is this one minimizing the expected de-
viance

D = 2EpKL(f, f4,.) (1.51)

thus
* in Dyy,. 1.52
m” € arg min D (1.52)

The main task is to estimating Dy, first, to then estimating m*. Its asymptotic
approximation essentially relies on the following proposition.
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Proposition 1.2 Noting D* = tr[K,@JEI], D can be expressed by

D = 2{In f(D) — £(0; D)} 4+ 2D* + O, (/n). (1.53)

Moreover, if the true distribution is included in the parametric distribution
family described by S, then D* = D, where D is the number of parameters in
O.

Prqof We start with a Taylor expansion of order two around 8* of twice the log-likelihood
20(60; D'):
20(6; D)
A~ 2(0%;D') +2(6 — 6*) VL0 ; D) + (6 — 0*)'V2(0*;D') (6 — 67) (1.54)
20(6*; D) + 2(0 — 0*)'VL(0*; D) + tr[V2L(0*; D')(6 — 6*)(6 — 6*)']. (1.55)
This result, associated to the fact that Ep/V£(6*; D’) = 0 and also to independence between
D and D', allows to write

D = 2Ep/[nf(D") —£0(6%;D)] —2Ep(6 — 0*)'Ep VE(O*; D)
—tr[Ep, V20(6*; D Ep (0 — 0*)(6 — 6*)] (1.56)
~ 2Ep/(ln f(D') - £(6";D")]
~tr[{Ep, V*£(6"; D)) + Ep;, V20(0*; D))} Vp 6 (1.57)
= 2Ep/[Inf(D)) = £(0%;D)] - tr[(—nJp) (I ' Kpd ;' /n)] (1.58)
= 2Ep/[In f(D') — £(0"; D)) + tr[KJ 5 '] (1.59)

The error in this expression is of order O(1/4/n). It remains to estimate the first term from
the observed sample D to conclude:

2Ep[In (D) — £(6"; D')]

~ 2{lnf(D) —£(6*;D)} (1.60)
~ 2{Inf(D) —£(6;D)} —2(6 — 6*)'VL(O; D) — tr[VZ(0; D)(0 — 0*)(6 — 6*)(]1.61)
= 2{In f(D) — &(6; D)} — tr[{V>L(6; Dy) + V>£(6; Du)}(6 — 67)(6 — 67)']  (1.62)
~ 2{In f(D) — £(6; D)} — tr[{—nIs}Vp] = 2{In f(D) — £(6; D)} + D*. (1.63)

Error in this last approximation is of order Op(1/n), and thus becomes the new global order
of approximation for Ds. Noticing that Iis the identity matrix of dimension D x D, we
deduce then that if the true distribution belongs to the parametric family described by the
model candidate S, thus D* = tr[K/BKEl} = tr[Ip] = D, where Ip designates the identity
matrix of dimension D. O

Thus, the theoretical expected deviance D can be expressed in function of
the observed deviance 2{In f(D)—£(0; D)} penalized by a measure of the model
complexity, D*. We obtain the so-called NIC criterion (Network Information
Criterion) of Murata et al. [1991, 1993, 1994]:

NIC = ¢(0; D) — D*, (1.64)

and we retain the model S leading to the largest NIC value. When the true
distribution is included in the parametric family described by S, we retrieve
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also the so-called AIC criterion (An Information Criterion) of Akaike [1973,
1974]:
AIC =¢(6;D) — D. (1.65)

Practical implementation of NIC is quite restricted since it is difficult to
estimate (pseudo) Fisher matrices Jg and Kg. Alternatively, we can prefer
using its simpler variant AIC but with the crude assumption that the true
distribution is included in the model & at hand. Strictly speaking, it would
also impose to compare only nested models S, for the same reason.

Alternatively, it is also possible to obtain non-asymptotic approximation of
D by dividing the whole sample into two disjoint parts, so-called learning set
and test set. Independence of both data sets assures that the related estimate
is unbiased. The unbiased property is preserved while the variance is reduced if
we make the average of estimates providing from different cuttings learning/test
of the whole sample. In this light, Stone [1977] has obtained (a non-asymptotic
version of) the NIC criterion before Murata et al. [1994] because establishing
a asymptotic link between NIC and the following Cross Validation criterion
(denoted by CV) defined by

nl

CV =2 Inf(xi;00y)+ Y Inf(xi,z:00), (1.66)

i=1 i=nl+1

where é{i} is the MLE of 8 obtained from the whole data set D excepted the
ith individual. Indeed, such a criterion asymptotically converges towards NIC.
Note that Smyth [2000] suggests rather a coarse cross validation process by
involving test samples with more than a unique individual. See also recent
results about cross-validation in Arlot and Celisse [2010].

Properties of AIC-like criteria

It is proved that NIC is an inconsistent model selection criterion since it retains
too complex models with non-null probability, even asymptotically. Let for
instance two nested models S; and Sy with AD = Dy — D; > 0 and let the
additional hypothesis that the more parsimonious model S; is the true one. We
note also Al = ¢(03; D)—¥¢(01; D). Then, the following development establishes
that it is possible to wrongly retain the more complex model for large sample
sizes:

2(AIC, — AICy) + 2AD = 2A0 -4 % ), (1.67)

since p(xAp > 2AD) > 0. In fact, when models in competition consist of
choosing the number of components in a mixture, the asymptotic distribution of
the ratio of the maximum likelihoods is not well-established, as explained in the
beginning of the current section. Consequently, non-consistency of AIC is not
really well-established in that case, even if it attested by numerical experiments
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(see illustration below). In addition, the expression of AIC/NIC itself is not
totally valid since it relies on Taylor expansions not really justified again for
the number of component situation. This is the reason why Bozdogan [1981,
1983], using the conjecture of Wolfe [1971], proposes a slight over-penalization
of AIC:

AIC3 =((6;D) —1.5D. (1.68)

However, this new criterion does not solve the non-consistency problem of AIC,
even if it will select more parsimonious models than AIC because of its over-
penalization.

We numerically illustrate that AIC and AIC3 criteria tend to select too
complex models, even in the very simple situation of well-separated components
with the very parsimonious spherical Gaussian model. We consider 30 samples
of size n = 200 generated from a bivariate Gaussian mixture of two well-
separated components with mixing proportions m; = 7y = 0.5, with centres
p1 = (0,0) and po = (3.3.0), and with covariance matrices 1 = X9 = 1. A
sample is displayed on Figure 1.9. A spherical model with equal proportions
is estimated by an EM algorithm for different numbers of components K &€
{1,...,5} and the frequency of choosing K by the AIC and AIC3 criteria is
displayed in Table 1.3.

Figure 1.9: A sample of two well-separated bivariate Gaussian components
with associated isodensities.

K 1 2 3 4 5
AIC . & 7 3 3
AIC3 . 97 3

Table 1.3: Frequency of the selected number of components with AIC and
AIC3 for two well-separated bivariate components.
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Deviance and related slope heuristics criteria

The ideal model Sz to be retained now is the one minimizing the deviance
(no longer the expected one)

m* € arg Hél}\l/l 2KL(f, fg_)- (1.69)
- m

The main task is thus to estimating the deviance 2KL( f, fém)‘ A non-asymptotic
approach is now presented. This presentation is inspired by the work of Baudry
et al. [2012D].

We first derive the following straightforward but meaningful deviance de-
composition:

KL(f.fs,) = —0(0m;D)+1Inf(D)
+{KLUS. f5,.) = KLU, foy,) } + {£(0umi D) — £(6mi D) }

+{KL(f. for,) = KL(f, )} = { n F(D) = £(0mi D) } (1.70)
= —{(Om; D) + constant

—i—{variancem} + {vzﬁzﬁ:em}

+{biasm} - {b/i;sm}, (1.71)
where “constant” is independent of m, where “variance,” and “vaﬁ\ancem"
respectively denote a variance-like term and its empirical version, and where
“biasy,” and “biasy,” respectively denote a bias-like term and its empirical ver-
sion. The second and the third lines of Equation (1.71) can be seen as an
ideal penalty of the maximum log-likelihood. In order to estimate this penalty,
the slope heuristics principle (Birgé and Massart [2007]) establishes some links
between such quantities though the following two assumptions. The first as-
sumption is to expect that both the theoretical and the empirical version of
the variance are similar, thus “variance,, ~ variancen,”. The second assump-
tion is to expect that the theoretical and the empirical bias are similar, thus
“biasm — biasym & 0”. It then produces the following SH criterion (Slope Heuris-
tics) penalizing the maximum log-likelihood

SH,, = é(ém; D) — 2var/ia?cem. (1.72)

The model with the highest SH value has to be retained. The question is now
to estimate this new penalty.

The key relies on the fact that most optimal penalties shapes can be seen as
linear functions of the complexity number, so the number of parameters Dy, in
our parametric case (see for instance Maugis and Michel [2012] for the Gaussian
mixture case). Thus, the optimal penalty is now known up to a multiplicative
constant x: o

2variancem = KDm. (1.73)
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The value of k can be then estimated either by the so-called dimension jump
principle, or by the so-called slope estimation principle. The slope estimation
principle relies firstly on the following decomposition of 2variancep,:

2variancem = 2{(0m; D) ~ f(D) } +2{ (D) ~ (6 D) }. (1.74)

For the most complex models, we expect secondly the bias-like term f(D) —
£(0mm; D) to become nearly constant. Thus, the proportionality KDy, can only
be expressed through the log-likelihood term £(8.,; D). In other words, it means
that for complex enough models, f(ém; D) behaves linearly with Dy, and the
corresponding slope is /2. Then k/2 can be estimated by a linear regression
of f(ém; D) on §Dm. Thus, the involved penalty is here data-driven, contrary
to this one used in AIC for instance. Note also that this method requires the
estimation of a quite large number of “t00” complex models to be involved. We
can notice that this method formalizes some classical rules of thumb strategies
aiming to detect an elbow directly in the maximum log-likelihood curve, like
the so-called EL criterion (Elbow Likelihood) of Cutler and Windham [1993].

An illustration of the bias-variance trade-off on the log-likelihood function
is given in Figure 1.10. It is apparent through an elbow in the curve of the
maximum log-likelihood. We guess also the linearly part of the maximum log-
likelihood beyond three components.
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Figure 1.10: Ilustration of the bias and the variance parts with the maximum
log-likelihood contrast: (a) sample from a mixture with three bivariate
Gaussian components and (b) maximum log-likelihood for different numbers
of components candidates.

In practice, the graphical user interface cApusHg! (CAlibrated Penalty Us-
ing Slope HEuristics), implements in R both the dimension jump and the slope
estimation methods.

Lhttp://cran.r-project.org/web/packages/capushe/
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1.3.3 Bayesian approach and integrated likelihood
Integrated likelihood

In a Bayesian context, the key point is to retain the model Sy,+ associated to
the largest posterior probability?. This probability is expressed by

f(m|D) o f(Dm)f(m). (1.75)

Thus, m* € argmaxmeam f(m|D). In the case where all models have the same
prior probabilities, this is equivalent to select the model maximizing f(D|m).
This quantity, usually called integrated likelihood or also marginal likelihood, is
expressed by

f(Dlm) = /@ £(D]6. m) £(6]m)de, (1.76)

where f(D|0,m) = f(D; 0). Evaluating this probability relies on the definition
of a prior distribution f(6) on 6 (we note also for simplicity f(6) = f(6|m)) and
also on the computation of the integral. The integral computation is possible
only in some restricted situations (typically with conjugate priors). Otherwise,
several very different methods to approximate it are available (see for instance
Kass and Raftery [1995]): numerical methods (but their are unstable in high
dimension), Monte Carlo methods like the Gibbs or the Metropolis-Hastings
samplers, the asymptotic Laplace-Metropolis approximation obtained from a
Taylor expansion at the second order of the integral. We describe first the
BIC criterion which is derived from the Laplace-Metropolis approximation.
We then present a Monte Carlo evaluation in the latent model case, where
conjugate non-informative priors are available.

Asymptotic approximation

The Laplace-Metropolis approximation allows in particular to express the inte-
grated log-likelihood as the maximum log-likelihood penalized by the number
of parameters D and also the sample size n. It thus provides a simple ex-
pression which allows also to avoid defining the prior distribution on 6. The
following proposition details this important property (see for instance Kass and
Wasserman [1995], Raftery [1995] p. 130-133 or also Ripley [1996] p. 62-65).
We prove it in the general setting where the model at hand does not necessary
include the true distribution.

Proposition 1.3 Under standard regularity conditions, we have3

In (D) = £(6; D) — gln(n) +0,(1). (1.78)

2There exists also another approach combining the frequentist deviance and the Bayesian
posterior distributions. It leads to the so-called DIC criterion (Dewviance Information Crite-
rion), proposed by Spiegelhalter et al. [2002].

3Such an approximation is quite crude since of high order. Raftery [1995] (p. 130-133)
proposed to retain the particular prior distribution f(0) = N(9A7 jglf(ﬁjgl), which provides,
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Proof The posterior distribution f(@|D) of 6 is assumed to be approximatively a Gaussian
N(6,V). In that case, its mean corresponds also to its mode, thus 8 = arg maxgce f(0|D),
and the covariance matrix corresponds to the inverse of the Hessian of —In f(8|D), thus V =
[-V21n f(|D)]~! (some simple algebra are used). When the sample size is large enough,
the distribution f(8|D) is concentrated around its mode, so g(8) = —£(8; D) —1n f(0) is also
concentrated around @ since f(0|D) x exp{—g(6)}. Consequently, the Taylor expansion at
the second order of g(6) around 8 is valid for large sample sizes, what allows to write, after
noticing that Vg(6) = 0,

fD) = /@ F(D;0)£(8)d6 = /e exp{—g(6)}d6 (1.79)
~ expi{— 7] ex —1 —6)yvt .y
~  exp{ 9(0)}/9 p{ 5 (0—0)V(6 0)}d0 (1.80)
= exp{—g(B)}@m)P V]2, (1.81)

The last equation is due to_the fact that the integral is equal to the normalize constant of
a Gaussian distribution N(6, V). The associated error being of order O,(1/n) (see Tierney
and Kadane [1986]), we obtain

In f(D) = £(6; D) + In f(6) + g In(27) + % In|V|+ Op(1/n). (1.82)

For large sample sets, we make the following two approximations O~0et Ve %jglkgjgl

where jB et KB are respectively Jg et Kz where is replaced 8* by 6 inside expectations
(see Proposition 1.1), and thus |V| &~ n*D|jglK5.jEl\. An error of order Op(1/+/n) being
induced by these last approximations, we obtain

In f(D) = £(6; D) + In f(6) + gln(%r) - gln(n) + %m 135 KI5t +0p(1/v/n). (1.83)

In this equation, the first term is of order Op(n), the fourth one of order Op(In(n)) and all
other ones of order equal or less than a O,(1). Removing all terms of order less or equal to
Op(1), it gives than:
- D
In f(D) = £(8; D) ~ - In(n) + Op(1). (1.84)

O

Such an approximation leads to maximize the so-called BIC criterion (Bayesian
Information Criterion) of Schwarz [1978]:

BIC = /(0; D) — gln(n). (1.85)

Unlike the NIC criterion, the BIC penalty is simply expressed by a function of
the number of parameters, the candidate S corresponding or not to the true
model. Thus, the difficulty to estimating D* in NIC is no more present. We can
notice that the BIC criterion has been also proposed in the coding theory setting
by Rissanen [1989] with the name MDL for Minimum Description Length. The

in average, the same information quantity as a unique observation. Thus,
- D 1o s 1p a1
In f(0) = —Eln(27r)— 5111\.]ﬁ K»’J’JB | (1.77)

and then, combining with Equation (1.83), some terms vanish and the greatest order becomes

now Op(1/4/n).



32 Chapter 1

BIC penalty being heavier than this one of AIC as soon as In(n) > 2 (son > 8),
BIC is expected to select more parsimonious models than AIC. In fact, it can
be proven even that BIC is consistent. For instance, for two nested models Sy
and Sy, §1 being the true one, we have, in a similar way as Equation (1.67),

2(BIC; — BIC1) + ADIn(n) = 2A0 -4 % 1, (1.86)

where AD = Dy — Dy, Al = ((65;D) — £(6,; D). Noting u = AD and o2 =
2AD respectively the mean and the variance of the rv x4 , and using also the
Chebyschev inequality, we can write

o? n—o
— 0.

p(XAp > ADn(n)) < p(IXAp—pl > ADIn(n)—p) < (ADI(n) —p2

(1.87)
It means that, asymptotically, BIC will select the simplest model &7, which
corresponds to the true one. We could show also that BIC do not underestimate
the order of the model. Thus, if the true model was S, BIC will retain it with
probability one. The proof still relies on the distribution of the ratio of the

maximum likelihood, which is a non-central x? (see Biernacki [1997] p. 74-75).

However, since all these consistency proofs rely on the fact that the model
parameter is not on the borderline of the parameters space ©, validity of such
results can be hazardous in the mixture context for selecting a number of com-
ponents. Some specific works on this problem exist. Leroux [1992] proved
that BIC does not asymptotically underestimate the true number of compo-
nents. Roeder and Wasserman [1997] proved, in the Gaussian mixture context
to estimate a density in a non-parametric manner, that using BIC to select the
number of components leads to consistent density estimate. Keribin [2000] gen-
eralizes these results by proving, under some conditions and by using a locally
canonical reparameterization in order to obtain valid Taylor expansions, that
BIC does not either overestimate the number of components, asymptotically.

Moreover, when the true model is not present in the family at hand, BIC
will asymptotically select the model in the model family being the closest to
the true one (see Lebarbier and Mary-Huard [2004]). It corresponds then to
the case f # fo- , where m”* is the best model m in the set M

m* = arg nig.f/‘\/l KL(f, fox )- (1.88)

Non-asymptotic approximation for the latent class model

In the Gaussian mixture context, the BIC criterion appears to give a reasonable
answer to the important problem of choosing the number of mixture compo-
nents (see for instance Fraley and Raftery [2002]). However, some previous
works dealing with the latent class model (see for instance Nadif and Govaert
[1998]) for the binary case suggest that BIC needs particular large sample size
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to reach its expected asymptotic behaviour in practical situations. In this sec-
tion, we take profit from the possibility to avoid asymptotic approximation of
the observed integrated likelihood to propose an alternative non-asymptotic
criterion®.

Actually, a conjugate Jeffreys non informative prior distribution is available
for the latent class model parameters (contrary to what happens for Gaus-
sian mixture models; see for instance Marin et al. [2005]) and integrating the
complete-data likelihood leads to a closed form formula. Defined in a Bayesian
perspective, the integrated complete-data likelihood of a mixture is defined by

f(x,z)z/@f(x,z;@)f(G)dG. (1.90)

Classical Jeffreys non informative Dirichlet prior distributions for the mixing
proportions and the latent class parameters (respectively of order K and m;)
are given by

f(ﬂ'):D(%,...,%) and f(a{c):D(%,...,%). (1.91)
Assuming independence between prior distributions of the mixing proportions
7 and the latent class parameters o, (k=1,...,9;j=1,...,d), we get, since

the Dirichlet prior distribution is conjugate for the multinomial model (see for
instance Robert [2001] Section 3.3.3), that

where ny = #{i : z; = 1} and nih =#{i: 2z = 1,;vgh =1}
Denoting now by Z* all possible combinations of labels z%, Equation (1.76)
can be written (see Frithwirth-Schnatter [2006] p. 140)

D)= Y fxa), (1.93)

ZUEZY

and thus the integrated likelihood f (D) is explicit since the integrated complete-
data likelihood f(x,z) can be exactly calculated for the latent class model as
just seen before.

Unfortunately, the sum over Z includes generally two many terms to be
exactly computed. Following Casella et al. [2000], an importance sampling pro-
cedure can solve this problem. The importance sampling function, denoted by

4Notice that general non asymptotic approximation of f(D) is possible (see Chib [1995])
by using the identity, for any 6 value,
_ 1(D;6)/(6)

IP) = =56y

The denominator has then to be estimated from a MCMC (Monte Carlo Markov Chain)
sampler for instance. However, this general method suffers from instabilities.

(1.89)
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Ip(z"),is apdfon z* (3°,.czu Ip(2") = 1 and Ip(z") > 0) which can depend
on D, its support necessarily including the support of f(x,z). Denoting by

“(1), .., 2"5) an ii.d. sample of size S from Ip(z"), f(D) can be consistently
estimated by the following Monte Carlo approximation

S
f(D) = % Z Zu S) ) (1.94)

This estimate is unbiased and its variation coefficient is given by

. Var[f(D 2 Zu
cv[f(D)]zwz ( > I |D 1). (1.95)

In order to approximate the ideal importance function I} (z%), d.e. this one
minimizing the variance and defined by

I%(Z“)—f(Z“ID)—/@f(Z“ID;O)f(@ID)d& (1.96)

Biernacki et al. [2011] propose to make use of the following “Bayesian” instru-
mental distribution

Ip(z") = R#P Z > f@D;p(6M)), (1.97)

r=1peP(z!)

where the set P(z!) denotes all label permutations of @ on the set {1,..., K}\{k :
2z, = 24} of label permutations not already fixed® by z' and where {8("} are
chosen to be independent realisations of f(8|D). The sum over all label permu-
tations P(z') provides an importance density which is labelling invariant, like
the ideal one®. Moreover, independence of {#(")}, although not necessary for
ensuring the validity of the unbiasedness of the estimator (1.94) and the vari-
ation coefficient (1.95), is recommended for a good estimation of (1.96) from
the strong law of large numbers. In practice, a Gibbs sampler can be used”
and the derived criterion will be called ILbayes (IL for Integrated Likelihood).
Note that ILbayes is depending on both S and R. Note also that, in practice,

5If no label permutation if known (n! = 0), then P(z') contains all X! label permutations
on {1,...,K}. It can be huge for moderate to large values of K and thus (1.97) can be
intractable.

6Because the prior distribution is symmetric in the components of the mixture, the pos-
terior distribution is invariant under a permutation of the component labels (see for instance
McLachlan and Peel [2000], Chap. 4). This lack of identifiability of @ corresponds to the
so-called label switching problem.

7An iteration of a possible Gibbs sampler for the latent class model is the following gsee
for instance Biernacki et al. [2011]) with priors defined in (1.91): |z ~ D(l +ni,., 5+

ng), ak|xz~ D(2+n 7...,2—i-nJ 7Y and, for i = nl 4+ 1,...,n, by z¥x;,2;0 ~

M (tzl (0) tik (0))
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calculating ILbayes for values of K > 6 can be unreachable because of the
factorial term involved in (1.97).

In order to illustrate the BIC and the ILbayes behaviour, we consider ob-
servations described by six variables (d = 6) with numbers of levels my = ... =
my4 = 3 and ms = mg = 4 and a four component mixture (K = 4) with equal
mixing proportions, w = (0.25,0.25,0.25,0.25). The parameter « is chosen to
get a low cluster overlapping, about 11% of error rate, which corresponds to
15% of the worst error rate equal to 0.75. Detail of parameter value is given
in Biernacki et al. [2011]. Figure 1.11 displays a data sample on the first two
axes of a correspondence analysis. 20 samples are generated for three different
sample sizes n € {320,1600,3200}. For each sample, the EM algorithm has
been run 10 times with random initial parameters (uniform distribution on the
parameter space) for a sequence of 1000 iterations and the best run is retained
as being the maximum likelihood estimate. The mean of the retained number
of mixture components with BIC and ILbayes criteria is displayed on Table 1.4.
We notice that ILbayes performs better than BIC.

K = 4, overlapping = 11%

Class 1
* Class 2
15 X Class 3{
+ Class 4

FEI I
e e M R RE W

Second principal correspondence analysis
,
o
G

s N First priﬁéipal corregpundencoesanalysis '
Figure 1.11: A sample (n = 1600) arising from K = 4 mixture situation for
low overlapping. It is displayed on the first plane of a correspondence analysis
and an i.i.d. uniform noise on [0,0.01] has been added on both axes for each
point in order to clarify the visualisation.

n 320 1600 3200
BIC 3.0 35 4.0
ILbayes 3.4 4.0 4.0

Table 1.4: Mean of the chosen number of groups for BIC and ILbayes criteria
when K = 4 for the latent class model. ILbayes is performed with R = 50 and
S =100.
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1.4 Model selection in (semi-)supervised classi-
fication

1.4.1 Need to select a model

In the (semi-)supervised setting, usually the number of components is known
and model selection essentially addresses model structure complexity and also
variable selection. Model structure complexity corresponds for instance to par-
ticular constraints on the Gaussian matrices in the Gaussian mixture case.
However, notice that variable subsets were not considered as possible models
in the previous density estimation context (Section 1.3).

The reason for choosing a model in the (semi-)supervised classification set-
ting is again the universal bias/variance trade-off. Nevertheless, this trade-off
has primarily to be obtained on the discriminant rule rg, rule given by the
MAP of t(0), instead of the density value fg. We recall also the notation of
the theoretical error rate e(rg) associated to the rule rg. Denoting by r the
optimal MAP rule obtained from the true (unknown) distribution f, we define
also

0y, = arg Jnin e(re) —e(r) (1.98)
the best parameter associated to the model Sy, with regards to the best discrim-
inant rule 7. We then have the simple but important following decomposition,
0., denoting as before the MLE:

{e(rg;fn) — e(r)} + {e(rém) — e(rg;fn)} (1.99)
= {biasm} + {Variancem}. (1.100)

e(rg,,) —e(r)

We notice thus that this bias/variance trade-off differs from this one produced
in the density estimation context (see Equation (1.50)). Consequently, the
best models in the density setting could be different from the best ones in the
semi-supervised setting. Ripley [1996] (p. 27) illustrates for instance a situation
where well-separated components has definitively not the same effect for density
estimation and for discrimination. The question which is then addressed in this
section is to propose specific model choice criteria taking fully into account the
discriminant purpose. Such criteria will involve naturally error e(rg) and also
conditional probabilities t(8).

Figure 1.12 illustrates influence of the model and of the sample size on the
estimated discriminant rule (obtained by the plug-in method) in a supervised
setting. We observe that the less is the sample size, the furthest the complex
quadratic borderline is from the true simple linear borderline. In addition,
when the sample size is too low (n = 5), the quadratic borderline is no more
available since the estimate is singular. It corresponds to the limit case of
an infinite variance situation. We see also that the simple linear estimate
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borderline has less variance than the quadratic one around the true borderline.
This dependence on the model structure would be similarly illustrated in the
semi-supervised setting.

— true -°
- - - linear

... quadratic

Figure 1.12: Illustration of the variance of estimates in the supervised
classification setting: influence of the sample size on both the estimated
spherical linear and general quadratic borderlines when the true borderline is
spherical linear.

In a semi-supervised setting now, we illustrate the importance of selecting
a subset of variables. We consider data simulated according to a design where
all variables contribute to discrimination but with less and less information.
This matter of fact causes an increase in the classification error rate. The
experimental setting corresponds to K = 2 groups of same proportions (71 =
mo = 0.5) and the class-conditional distributions are Gaussian distributions in
dimension d = 50 with X1|Z11 =1~ N(O,I) and X1|Z12 =1~ N([.L,I) with
i = % Vi € {1,...,50}. Thus, variables provide less and less discriminant
information. The order in which variables are selected from 1 to 50 is assumed
to be known. With the true model all the variables will be selected, but the
less informative variables will dramatically increase the classifier variance. We
consider 100 data sets with n! = 100 label data and n* = 1 000 unlabelled
data. The optimal and the actual error rates, associated respectively to rules
rg and rg, are evaluated through a test sample of size 50000. The apparent
error rate of 74 is evaluated on the learning set. See more details on error
rates in the next section. All error rates are shown Figure 1.13 and we can see
that the optimal and apparent error rates decrease as the number of selected
variables increases, while the actual error rate on the test sample decreases and
then increases.

1.4.2 FError rates-based criteria

The aim of (semi-)supervised is to provide a discriminant rule with the min-
imum error rate. Ideally, it corresponds thus to retain the model where the
associated rule 7 = r4 obtained from D leads to the less error in average. It
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~ © — Optimal error rate

y(*éH'
034 —#= Actual error rate ¥
o Apparent error rate o

o,
aela) DDDDDDDDD

(Sl al= o

000, 0!

10 20 30 40 50

Figure 1.13: Variable selection for simulated data in the semi-supervised
context: error rates according to the number of selected variables.

corresponds to the criterion e expressed by:
e=Eple(f)] =1- ED(X’I,Z’I)[Z{HX’I)]’ (1.101)

(X%,Z}) being a rv independent of (Xi,Z;) but with identical pdf. Several
classical estimates of e exist. The most simple of them if the apparent error
rate é* defined by

l
. 1 ¢
=1 > Zixy- (1.102)
=1

It is a consistent estimate of e but it is well-known to have an optimistic bias,
it means an underestimation of the error rate in average with Ep[é*] < e, since
the same sample is used to learn and also to test the rule.

The so-called partition error rate é?l} estimate is more relevant because it
divides the whole data set into two different subsamples. The first one (the
training or the learning sample), denoted by pll} = (’Dl{l}, Dil}), is composed
by a labelled subset, ’Dl{l} and an unlabelled subset ’D{El}. It is used for learning
the discriminant rule, denoted by #{*}. Then, the second subsample (the testing
or test sample) is composed by all the remaining labelled data @l{l} = Dl\Dl{l}
and is used for testing the rule 711} (note that the unlabelled data of Du\Dil}
are thus discarded). Evaluating error #{1} is finally given by

1

=1l —— > Zpnx,). (1.103)

{1} I i#11 (X,)
#Dl{ }xiebl

Note that a proper use of this partition estimate in a semi-supervised setting is
to remove the same proportion of labelled and unlabelled data from the training
sample. It produces an unbiased estimate of Ep 1) [e(7#11})] since we can easily
verify that

Eplefy] =1~ Epoyx; 221500 )] = Epos [e(# )], (1.104)
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We immediately notice that Epiy [e(711})] ~ e only if the learning set D1} is
large enough. Thus, it make sense to select quite small testing sets for increasing
the sample size of the learning set. The limit is of course a unique individual,
SO #Dl{l} = 1. However, restricted excessively the size of the learning set could
provide an estimate é1} with too large variance.

The principle of V-fold cross-validation can then be applied for restricted
this variance while preserving a small testing data set. It consists in splitting at
random D,, and D; in V blocks of (approximately) equal sizes {’Djl}7 e ,’D}V}}

and {Dil}, . ,DiV}}, respectively, and then to compute the following error
estimate

A
o= Zl &y (1.105)
Random variables é‘{l}, RN é?v} having the same distribution but being non-

independent, we can verify that it remains an unbiased estimate of Ep 1y [e(7{11)]
since

Ep[e] = Ep[e},,] = Epu [e(FU1)], (1.106)

while its variance is less than this one of é?l} since

1

VD [écv] - W

Vo < V'D{l}[éil}]. (1.107)

1%
; o)

This last inequality is the consequence that two rv Y7 and Y5 of same distribu-
tion verify V[Y] + Y2] = 2V[Y3] +2Cov[Y7, Y] and that also Cov[Y7, Ya] < V[Y7]
if no functional relationship exists between both rv.

The main competitors to év are the Jacknife estimate Tukey [1958] and
also the bootstrap estimate Efron [1983]. However, the V-fold cross-validation
criterion leads to good results with a low cost of implementation.

Nevertheless, resampling methods like the V-fold cross-validation criterion
has two important drawbacks. Firstly, the choice of V may affect the model
selection. Secondly, computing V' discriminant rules can be time consuming,
especially in the semi-supervised setting where unlabelled data require to use an
algorithm like EM each time. In the supervised context, this problem vanishes
sometimes, as in the Gaussian case where a closed-form updated formula for
the discriminant rule is available (Biernacki and Govaert [1999] Appendix A).

1.4.3 A predictive deviance criterion

BEC: A Bayesian entropic criterion

A good approximation of the conditional distribution f(z'|x) is expected to
produce a good classifier (see Equation (1.9)). Consequently, it makes sense
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to choose a generative classification model Sy, that gives the largest condi-
tional integrated likelihood f(z'|x, m). In this Bayesian perspective, the BEC
criterion to be maximized is a BIC-like approximation of In f(z!|x, m):

BEC = In f(D; 0p) — In f(x; ), (1.108)

where 0y is the MLE of 6 derived from x with the model S. The computational
cost of the BEC criterion is approximately twice as large as the computational
cost of AIC or BIC, since both 8p and 64 have to be estimated through an
EM algorithm, but it nevertheless remains significantly cheaper than cross-
validation.

From a theoretical point of view, if the sampling distribution belongs to a
single model of the model collection, this model will be asymptotically selected
by BEC (Bouchard and Celeux [2006]). However, when there are several nested
true models, BEC can select arbitrarily complex models among them.

From a practical point of view, BEC has been proved to behave better
than AIC and BIC for many classification problems, though it often selects
more complex generative classifiers than the cross-validated error rate criterion
(Bouchard and Celeux [2006]).

AICcond: A predictive deviance criterion

A specific criterion for selecting a classifier in the semi-supervised setting has
been proposed by Vandewalle et al. [2013]. This criterion is designed to se-
lect a generative model that has good classification performances and a low
computational cost. It can be seen as a penalized BEC criterion and also as a
predictive version of the AIC criterion.

In the frequentist perspective view, when seeking to select a generative clas-
sifier with good prediction performances, one particularly interesting quantity
is the predictive deviance of the classification model, which is related to the
conditional likelihood of the model knowing the predictors. Similarly to the
AIC criterion genesis, the aim is to find the model that minimizes an expected
Kullback-Leibler divergence. In our case both distributions involved in this
divergence are the estimated conditional distribution of Z!|x and the true con-
ditional distribution:

2Epp [In f(zll|x’) —In f(zl/|x’; 6p)], (1.109)

with D and D’ two independent samples. Since the first term does not depend
on the model, it is equivalent to finding the model that maximizes:

Eeond = 2Epp In f(z[x'; 6p). (1.110)

Proposition 1 in Vandewalle et al. [2013] provides the following estimate of
E.onq under the hypothesis that there is a true model S, that n! is a realization
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Figure 1.14: Value of the penalty according to the class separation.

of the rv N' ~ B(n, 3), the binomial distribution of parameters n and 3 € [0, 1]

(thus N'/n “%° 3 when n — o0), and also that standard regularity conditions
hold [Jennrich, 1969; Amemiya, 1973; White, 1981]:

Beona = 2[In f(D; 0p) — In f(x;0,)] — [D — trace(JJEl)] + O0p(v/n), (1.111)

J and Jg are respectively the Fisher information matrices for unlabelled and
partially-labelled data evaluated at the true parameter value 8* and already
defined in 1.24.

Equation (1.111) exhibits a specific penalty [D — trace(JJEl)], which de-
pends on the class overlap and can be related to the number of so-called pre-
dictive parameters present in the generative model. Indeed, when groups are
well-separated, J ~ J. and consequently J ~ Jg so that D — trace(JJE,l) ~ 0.
Moreover, the more the groups overlap, the larger the value of D —trace(JJ El)
This claim can be made precise in particular Gaussian situations (see Vande-
walle [2009]) and we illustrate it in the following example.

Suppose that data are generated according to the homoscedastic distribution
X1|le =1~ N(O7 1), X1|Z12 =2~ N(A, 1) and T = T = 0.5. In this case
it is possible to compute the penalty. Figure 1.14 displays the value of the
penalty according to A for a heteroscedastic Gaussian model in the supervised
setting (8 = 1). The penalty is largest when the classes are not separated. It
is important to note that when A = 0 the penalty is equal to the number of
parameters involved in the quadratic logistic regression, which corresponds to
the predictive expression of the previous Gaussian model.

However, the penalty D — trace(JJEl) is difficult to derive, because in a
mixture framework the information matrices will need to be computed. For
this reason, Vandewalle et al. [2013] provide a simple means of approximating
it, under the same previous hypotheses:

[D — trace(JJ ;1)) = 2(In f(x; 0x) — In f(x;0p)) + Op(V/n). (1.112)
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This gives the following expression for F.opnq:
Econd =2 lnf(Zl|X; éD) - 4[1nf(X7 éx) - lnf(x; éD)] + Op(ﬁ)v (1113)

which finally leads to the criterion, to be maximized,

=B

f(x; 05
b’ (1.114)

X

AIC.ong = In f(zl|x; ép) —2In

The approximation error centred at zero involved in AIC.,,q is relatively high
(of order O, (1/n)) as for AIC. However, note that AIC.nq is different from the
usual AIC criterion in the predictive setting, even in the absence of additional
unlabelled data. In addition, AIC.,,q can be viewed as an overpenalized BEC
criterion, since it can be written

AIC,pq = BEC — In f((i (1.115)

The additional penalty is expected to prevent the appearance of a plateau when
considering true nested models, since Vandewalle et al. [2013] proved that in
case of two nested models S; and Ss, with S; C So, then

ED[AICcondl] —Ep [AICCO’ﬂdz] > 0, (1.116)

if the number of data points is large enough and AIC,,,q, denoting the value
of the AIC,,,q criterion obtained with the model Sy. Thus, AIC.,,q tends to
prefer the less complex model among two nested true models. Moreover, like
BEC, AIC .4 selects the right model when there is only one as proved also in
Vandewalle et al. [2013].

To illustrate the AIC.,,q behaviour, we retrieve the variable selection ex-
ample described at the end of Section 1.4.1 but with more values of n* and
n!. For this experiment, the performances of the cross-validation criterion é=
for V € {1,3} (denoted by é57), of BEC and of AIC,,,q criteria are compared.
The results are summarized in tables 1.5 and 1.6, where NbVar* denotes the
optimal number of variables derived from the actual error rate function and
Err* the corresponding error rate. Those tables show that AIC.,,q performs
the best, since it selects on average the number of variables closest to the opti-
mal number of variables (Table 1.5) and produces a low classification error rate
(Table 1.6). Moreover, it has the lowest standard deviations. Cross-validation
also produces good results in both settings, while BEC behaves poorly because
it selects too many variables. This experiment shows that for nested reliable
models, AIC.,,q leads to the selection of a parsimonious model with good
prediction performances, in contrast to BEC.
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(n*,n™) BEC AICcond s’ 5% NbVar*
(100, 1 000) 175 (12.6) 9.2 (7.8)  10.7 (10.3) 10.0 (9.5) 6 (3.6)
(1000,10 000) 33.8 (30.6) 22.0 (17.8) 21.1 (18.5) 21.4 (25.5) 23 (6.2)

Table 1.5: Variable selection for simulated data: Average number of selected
variables for each criterion (best criterion in bold and standard deviations in

brackets).
(nt,n%) BEC AIC ona B ey Err*
(100, 1 000) 30.42 (2.21)  29.75 (1.10)  29.70 (1.23) 29.82 (1.00)  28.55 (0.54)

(1000,10 000)  27.18 (0.34) 27.17 (0.21) 27.17 (0.29) 27.21 (0.27)  27.03 (0.12)

Table 1.6: Variable selection for simulated data: Error rate (%) for the
different criteria (best criterion in bold and standard deviations in brackets).

1.5 Model selection in clustering

1.5.1 Need to select a model

In the model-based clustering context, the model set involved is potentially very
large because it includes the model structure (Gaussian covariance matrices for
instance), the number of groups and also the set of discriminant variables®. In
addition, it is the situation where the data set is the smallest because since it
is only composed of data positions x. Finally, in comparison to the density es-
timation context and to the (semi-)supervised context, the clustering setting is
the most difficult for two reasons: variety of models and poor data information.

In the model-based clustering setting, the bias/variance trade-off can be
expressed in the following manner. We note err(zi,z2) > 0 a distance-like
measure between two partitions z; and z3. When the number of groups in
each partition is identical, it can be the classical empirical error rate. When
the number of groups differs, it can be for instance the Rand criterion defined
in Rand [1971]. We also define, with z(6) the MAP derived from 6,

m

0;, = argeré%n err(z,z(0)) (1.117)

the best parameter associated to the model Sy, with regards to the true par-
tition z. We then have the simple but important following decomposition,

8In Maugis et al. [2009], variable selection in the Gaussian model-based setting is expressed
as a model selection problem. They model differently three kinds of variables: variables in-
teresting for the clustering, variables redundant for the clustering and variables uninteresting
for the clustering. Then model/variable selection relies on a BIC criterion for instance (see
Chap. 77, Section ?7).
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Om = éxm denoting as before the MLE:

err(z,z(0m))
= {err(z,z(an)) - err(z,z)} + {err(z,z(ém)) - err(z,z(@&))}(l.llS)
= {biasm} + {variancem}. (1.119)

We notice again that this bias/variance trade-off differs from the one produced
in the density estimation context (see Equation (1.50)). Consequently, the
best models in the density setting could be different from the best ones in
the clustering setting. In particular, it can be much more dramatic to make a
mistake on the number of groups in clustering than in density estimation. Thus,
similarly to the (semi-)supervised situation, the question to be addressed in this
section is to propose specific model choice criteria taking fully into account
the partitioning purpose. Such criteria will involve naturally entropy terms
£(0,t(0)) and also conditional probabilities t(8).

In order to illustrate the variance effect on the accuracy estimate of the
partition, we retrieve the example given in Section 1.3.1 but we display now
in Table 1.7 the empirical error estimate err of the partition instead of the
Kullback-Leibler divergence. Again, we see that the partition accuracy de-
creases with the model complexity, revealing the effect of the variance. We
note also that the variance decreases with the sample size.

n m err(z, Zym )
40  spherical 0.0967
general 0.1100
200 spherical 0.0840
general 0.0872

Table 1.7: Effect of the variance of zy, on the partition estimation quality. Zm
denotes the partition obtained from the MAP of the estimated parameter O,y,.

1.5.2 Partition-based criteria
Criteria not using the likelihood term

Some criteria propose to retain the model leading to the best group separability.
It is the case of the so-called PC criterion (Partition Coefficient) of Bezdeck
[1981] which sums the square of all conditional probabilities t(0). There is also
the so-called MIR criterion (Minimum Information Ratio) of Windham and
Cutler [1992], and its variants, involving a ratio of the complete-data Fisher

information matrix J.(@) and of the observed-data Fisher information matrix
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J(0). This ratio gives a measure of the ability of the data set to be partitioned
with the model. Generally, these criteria have poor theoretical justification
and are also difficulty to apply for distinguishing K = 1 (no structure) from
K > 1. To overcome this drawback, there is a need to aggregate a measure of
the model adequacy to the measure of partitioning ability. The log-likelihood
value can reach this task as we now show.

Criteria using the likehood term

The entropy term £(0;t(0)) measures the groups overlap: a small value indi-
cates poor overlap between groups whereas a large value corresponds to strong
overlap. The following fundamental relationship between the log-likelihood and
the entropy is given by Hathaway [1986]:

£(0;x) = £(0;%,t(0)) + £(0;t(0)). (1.120)

The NEC criterion (Normalized Entropy Criterion) of Celeux and Soromenho
[1996] and Biernacki et al. [1999] is established from this link. It is expressed
as a normalization of the entropy by two log-likelihood terms:

953 .

—_— fK>1

NECk ={ -0, " 57
1 ifK =1

(1.121)

with ¢, = E(ék;’D) and &, = f(ék;fk) where 0}, is the MLE for k groups and
tr = t(ék) It has to be noticed that @ and 6; must be obtained with the same
constraints on the parameters (for instance, in the Gaussian case, a spherical
model for both numbers of groups). We retain then the model Sy, with the
lowest NEC,, value. The NEC value itself appears to be meaningful since the
partitioning evidence is associated to NEC values less than 1.

Another approach has been proposed to merge the log-likelihood and an
entropic term. The retained criterion in Biernacki and Govaert [1997] is simply
the complete-data log-likelihood ¢(;x,2), z being the MAP of 6. It corre-
sponds to the so-called CL criterion (Completed Likelihood):

CL = £(0;x,2) = £(0;x) — £(8; 2). (1.122)

The retained model is this one leading to the largest CL value. This criterion
can be seen as the maximum log-likelihood value combined with an entropic
penalty term indicating the group overlapping. It is thus quite different from
the AIC or the BIC criteria for which the penalty term is related to the model
complexity. This entropic term corresponds also to minus the logarithm of
the conditional probability of the partition z, since we can write f(z|x; é) =
T, HkK:1 ff,ik. Thus, the quantity £(0;z) measures a dissimilarity between
the conditional probabilities t and the partition z which is the closest from a
certain point of view.
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We have to note that both NEC and CL show a certain ability to select
K but fail to select other kinds of models like the Gaussian structure on the
covariance matrices. It seems to lack a penalty term involving the model com-
plexity.

1.5.3 The Integrated Completed Likelihood criterion
Integrated completed likelihood for model selection

We remember that in the clustering context, observed data are restricted to D =
x. In a Bayesian context, model selection was thus relying on the calculus of the
observed-data integrated likelihood f(x|m) given in (1.76) in Section 1.3.3. If
complete data (x,z) were known, model selection would be similarly performed
by retaining the model Sy, maximizing the complete-data integrated likelihood
f(x,z/m) expressed in (1.90). The following straightforward relationship exists
between the integrated complete-data and observed-data likelihoods:

In f(x,2z/m) = In f(x|m) + In f(z|x, m). (1.123)

Thus, as already noticed in Biernacki et al. [2011], the complete-data integrated
likelihood can be interpreted as the classical integrated likelihood penalized by
a measure of the cluster overlap expressed through f(z|x,m). It means that
it tends to realize a compromise between the adequacy of the model to the
data measured by In f(x|m) and the evidence of data partitioning measured
by In f(z|x, m). For instance, highly overlapping mixture components typically
lead to a low value of f(z|x, m) and consequently dos not favour a high value of
f(x,z|m). However, the partition z being hidden in clustering, Biernacki et al.
[2011] propose to replace it by its MAP estimate z, associated to the MLE
Om = Ox.m. Then, it gives the so-called ICL (Integrated Completed Likelihood)
criterion which retains the model Sy, associated to its maximum value?:

ICLy, = In f(X, Zm|m). (1.125)
The question we now address is how to practically calculate ICL and also to

identify its properties.

Asymptotic approximation

Biernacki et al. [2000] propose to proceed in two steps for approximating
the previous ICL criterion. First, they use a BIC-like approximation of the
complete-data integrated likelihood:

In f(x,z/m) = In f(x, z; éx7z)m|m) — D—2m Inn + O,(1), (1.126)

9 Another definition of ICL is also used sometimes, with £ = t(6):
ICLm = In f(x, tm|m). (1.124)
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where éx)zm denotes the MLE associated to complete data (x,z) with model
Sm- But, in case of the right model Sy,, we have both éx,z 3 9* and O X3 o,
6 still denoting the MLE associated to x and also index m being omitted.
Thus, for n large enough, we can make the approximation 0y , ~ 6. Then, we

replace the missing cluster indicators z by their MAP values z associated to
the MLE 8. It finally leads to the so-called ICLbic criterion'®

N D
ICLbic = In f(x,%;0) — - Inn. (1.128)
Remark that the so-called AWE criterion (Approzimate Weight of Evidence)
also proposed in a Bayesian context by Banfield and Raftery [1993] is very
similar to ICLbic. However, it uses the complete-data estimate 6. defined
in (1.29) and it penalizes more strongly the number of parameters.

By some simple algebra, The ICLbic criterion can also be viewed either as
a partition complexity (measured by an entropy-like term) penalized version
of the BIC criterion or as a model complexity penalized version of the CL
criterion:

ICLbic = BIC —£(8;2) (1.129)

CL — glnn. (1.130)

Robustness of ICL to model misspecification

This trade-off between the model adequacy (log-likelihood), the model complex-
ity (number of parameters) and the partitioning evidence (entropy) provides
robustness properties for the ICL/ICLbic criterion as we now illustrate. We
consider experiments from a bivariate mixture of a uniform and a Gaussian
cluster. One of the 50 simulated data sets of size n = 200 is displayed in
Figure 1.15 and the mixture characteristics are as follows:

e non-Gaussian component: 7 = 0.5, f1(x1) = 0.25 1j_1 3j(z') 1_q,1y(2?)
where 1;_; ;) denotes the indicator function in the interval [—1, 1];

e Gaussian component: mo = 0.5, o = (3.3,0)', Xy =1.

When running the EM algorithm, only the most simple spherical model is
considered and K is varying from one to five. Percentage of times K is chosen
is displayed in Table 1.8. In this case BIC has a disappointing behaviour.
This example highlights a well-known tendency of this criterion: when the

10The following other definition is also widely used:
. . oa D
ICLbic = In f(x,t;0) — 5 Inn. (1.127)
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Figure 1.15: A uniform and a Gaussian component.

clustering model at hand (here a Gaussian mixture model) does not fit well the
data, BIC tends to overestimate the number of components. On the contrary,
ICLbic includes an entropic term £(0;z) which penalizes overlapping groups
and which balances the lack of fit of the data in the model at hand . Thus, ICL
is expected to be more robust to violations of the model specifications than
BIC, as it appears in this experiment.

K 1 2 3 4 5
BIC . 60 . 32 8
ICLbic . 100

Table 1.8: Non-Gaussian component samples: percentage of times K is
chosen with the spherical Gaussian model.

Question on the consistency of ICL

A counterpart of this robustness of ICL/ICLbic is that it is not consistent
for the number of components if their overlap is two high. Indeed, ICLbic
tends to underestimate the true number of components in this situation, even
asymptotically. We illustrate this fact from both a theoretical and a practical
point of view in the simple situation where two components are really present.

We note 6, = n(0; — 6;7)'J(05)(05 — 6,F) with J(03) the Fisher matrix
for a data unit calculated with the true parameter 03 (see Equation (1.24))
and 05" its projected value on the parameter subspace associated to the one
component case. Moreover, denoting by x2(b) a rv with the non-central 2
distribution with a degrees of freedom and non-centrality parameter b, we define
AE = £(09;2(02)) — £(61;2(0,)) with 2(0) the MAP partition obtained from
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t(0x) and finally Al = ((65;D) — £(6,; D). The probability of choosing the
wrong model (one group instead two groups) by ICLbic is given by

p(ICLbice < ICLbicy) = p(2A¢ < ADInn+2A¢) < p(2A¢ < ADInn+2n1n2),

(1.131)
the last inequality being implied by A < nln 2 (the entropy of two components
is higher than that for one component). Noting now that 2A¢ and x4 ,(6»)
have asymptotically the same distribution, then the probability of choosing the
wrong model by ICLbic is asymptotically less than

p(Xiap(6,) < ADInn+2n1n2) < p(|ttn — xap(0n)| > pin —ADInn —2n1n?2).
(1.132)
Finally, the Chebishev inequality gives

2

2 (5,) < ADI1 mIn?2) < In "2, (1.1
p(XAD( )< nn+2nin )— (,LLn—ADlnn—inn?)Q — U, ( 33)

provided that p, — ADInn — 2nln2 > 0, thus provided that the two com-
ponents are sufficiently separated since p, is a measure of the overlapping.
In addition, noting that u, and —2nln2 are of same order with n, then the
IClbic consistency is not guaranteed for a quite large degree of overlapping,
even asymptotically.

We now numerically illustrate the fact that ICLbic can be inconsistent, even
asymptotically, if components are not well-separated. We draw 100 samples of
sizes n = 100,400, 700,1 000 from a univariate Gaussian mixture with same
proportions, with unit variances and with a distance between the two centres
successively equal to Ap = 2.9,3.0,3.1,3.2,3.3. The EM algorithm is then run
with a model with one and two components on all 100 samples and for all values
of n and Au. Table 1.9 displays the percentage of times the right number
of components (two) is chosen by ICLbic and by BIC. We clearly identify
a threshold around Ap = 3.0 where ICLbic switches from non consistency
towards consistency.

AL 2.9 3.0 31 3.2 3.3
n  BIC ICL BIC ICL BIC ICL BIC ICL BIC ICL
100 94 23 96 31 97 44 95 45 97 60
400 100 9 100 21 100 48 100 70 100 85
700 100 8 100 15 100 39 100 72 100 96
1000 100 6 100 16 100 56 100 75 100 91

Table 1.9: Percentage of times two components is chosen as a function of
their overlapping .
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ICL with a new contrast point of view

Alternatively, Baudry [2012] considers that ICLbic is a criterion relying on the
(fuzzy) complete-data log-likelihood £(0;x,t(0)), instead of the log-likelihood
£(6;x). From Equation (1.120), it can be rewritten as the following penalized
log-likelihood:

(8%, £(0)) = £(8;x) — £(6:£(0)). (1.134)
This author proposes the following new ICLbic-like criterion
ICLbic = £(0;x,t(0)) — glnn, (1.135)
where R
6= argggg)cé(@;x,t(@)). (1.136)

Thus ICLbic is here a penalized contrast with a BIC-like penalty. It no longer
involves any entropic penalty because here entropy is a part of the contrast
itself. This criterion is then proved to be consistent (only) from this new
contrast point of view. It appears that the ICLbic and ICLbic criteria are very
close both by their expressions and by their numerical behaviour. In addition,
since 0 is more difficult to obtain that the MLE 6, ICLbic could be preferred.

Note that Baudry [2012] also proposes to use the slope heuristics to obtain
a data-driven penalty associated to the contrast £(0;x,t(0)).

Combining ICL and BIC

Baudry et al. [2010] proposed to combine BIC and ICL in the following manner
for obtaining the model flexibility given by BIC while preserving the clustering
evidence given by ICL. Firstly, they choose the number of components by BIC.
Secondly, they merge the more overlapped components in order to obtain the
number of groups initially proposed by ICL. Finally, a mixture of mixture is
obtained: a group may be composed by several components. Other strategies
of combinations are possible by looking directly at the entropy value.

Combining ICL and an external partition

Baudry et al. [2012a] assumed that an ezternal partition y with J groups is
known and proposed to use it to reveal an (unknown) internal partition z with
K groups. Noting njr = #{i : y;; = 1 and z;; = 1} the elements of the con-
tingency table cross-tabulating y and z, and noting also n ; = ijl n;i, they
derived the so-called SICL criterion (Supervised Integrated Completed Likeli-
hood) expressed by

J K
Nk
SICL = ICL e ln =22 1.137
+§§” nos (1.137)
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The last additional term quantifies the strength of the link between both par-
titions, making a subtle trade-off between model adequacy, evidence of parti-
tioning z and also accordance between partitions y and z.

Exact ICL criterion for the latent class model

We have seen in Section 1.3.3 that conjugate Jeffreys non informative prior
distributions are available for all the parameters of the latent class model.
Thus, using the associated closed-form of the integrated complete-data likeli-
hood given in (1.92) and then replacing the missing labels z by z in In f(x, z),
we obtain the following non-asymptotic expression for the ICL criterion:

ICL =In f(x,2) =

K d m;
ZZ{ 1nr(ﬁ§j+§) —1nr(m+%)}—1nr(n+ Ey+mr(k)
1

k=1j=1 (h=

d K
+K 3 {In (%) = my T (5} + > Wl + 3) = KInT(3), (1.138)
j=1 k=1

where 7, = #{i : 2ipy = 1} and 2" = #{i: 2y = 1, 2" = 1}.

In order to illustrate the ICL and the ICLbic behaviour, we consider obser-
vations described by six variables (d = 6) with numbers of levels m; = ... =
my = 3 and ms = mg = 4 and a two component mixture (K = 2) with un-
balanced mixing proportions 7 = (0.3,0.7). The parameter « is chosen to get
successively a low cluster overlapping (about 5% of error rate), a middle over-
lapping (about 10% of error rate) and a high overlapping (about 20% of error
rate), to be compared to the worst error rate equal to 30%. Detail of parameter
values is given in Biernacki et al. [2011]. Figure 1.16 displays a data sample
on the first two axes of a correspondence analysis. 20 samples are generated
for three different sample sizes n € {320,1600,3200}. For each sample, the
EM algorithm has been run 10 times with random initial parameters (uniform
distribution on the parameter space) for a sequence of 1000 iterations. The
mean of the retained number of mixture components with ICL and ICLbic
criteria is displayed on Table 1.10. We notice that ICL has ability to detect
structures with lower sample sizes than ICLbic. In addition, we notice again
that ICL/ICLbic are not consistent when the overlapping is too high.

1.6 Experiments on real data sets

In this section, we illustrate the behaviour of numerous criteria described in the
previous three sections on various real data sets. It gathers the three settings of
density estimation, semi-supervised classification and clustering. At the same
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g = 2, overlapping = 30%

Class 1
+ Class 2

Second principal correspondence analysis
.

-0.5 o 05 1
First principal correspondence analysis

Figure 1.16: A sample (n = 1600) arising from a K = 2 mixture situation for
medium overlapping. It is displayed on the first plane of a correspondence
analysis and an i.i.d. uniform noise on [0,0.01] has been added on both axes
for each point in order to clarify the visualisation.

n 320 1600 3200

Overlap (%) 5 10 20 5 10 20 5 10 20
ICLbic 20 15 10 20 20 1.0 20 20 1.0
ICL 20 19 10 20 20 10 20 20 1.0

Table 1.10: Mean of the chosen number of groups for ICL and ICLbic criteria
when K = 2 for the latent class model.

time, it is the opportunity to discover their use with mixture models dedicated
to particular kinds of data: interval data, rank data, mixed data. ..

1.6.1 BIC: extra-solar planets

In numerous fields, the collected data are available only in grouped form, i.e.
their exact position inside a given subset, or bin, is unknown. Grouped data
may occur systematically when a measurement instrument has finite resolution
but it may also occur intentionally when real-valued variables are quantized to
simplify data collection. In the context of Gaussian mixtures, some features has
already been studied for such data. In particular, McLachlan and Jones [1988]
and Cadez et al. [2002] adapted the EM algorithm in order to reach the MLE
for both univariate and multivariate normal mixtures. Since the bin dimension
is a crucial feature for grouped data, Cadez et al. [2002] performed also some
simulation experiments to observe the effect of the bin dimension on the MLE
of the mixture parameter in the case of a two-component bivariate Gaussian
mixture. They note that increasing the bin dimension obviously decreases
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the quality of the MLE although substantial differences between both MLE of
grouped and individual data are obtained only with quite wide bins. But, as
far as we know, the effect of the bin dimension on model selection problems has
not yet been studied. Thus, the aim of this experiment is to study the influence
of data precision on the BIC behaviour for selecting a model, in particular here
the number of components in a Gaussian mixture.

We consider extra-solar planets from single planetary systems for which
both mass and eccentricity are not exactly known at the date of June 25 2004.
Data are obtained from the Paris Observatory!!. Mass (measured in Jupiters,
one Jupiter mass corresponding to 318 Earths), eccentricity and the associated
uncertainty for both variables are given for the 10 concerned planets in Ta-
ble 1.11. Figure 1.17(a) displays this data set and it shows that uncertainty is
often very high.

Name of the planetary system  Jupiter Mass Eccentricity
HD 76700 0.197 £+ 0.017 0.00 =+ 0.04
HD 217107 128 +04 0.14 £+0.09
HD 195019 343 +04 0.05 +0.04
HD 52265 1.13 + 0.06 0.29 + 0.04
HD 73526 3.0 +0.3 0.3¢ +0.08
HR 810 1.94 + 0.18 0.24 + 0.07
HD 210277 124 +£0.03 0.450 = 0.015
HD 2039 485 1.7 068 +£0.15
Gl 614 474 +£0.06 0.338 4 0.011
HD 30177 917 +£1.5 0.30 +0.17

Table 1.11: Extra-solar planets from single planetary systems for which both
mass and eccentricity are not exactly known at the date of June 25 2004
(source: Extra-solar Planets Catalog of the Paris Observatory at
http://www.obspm.fr/encycl/catl.html).

Retaining the homoscedastic diagonal model with free mixing proportions,
the EM algorithm is launched on the extra-solar data set for one and two
components. In this situation, the BIC criterion selects only one component.

However, in the future, we can reasonably expect a reduction of uncertainty
by the evolution of the measurement instruments. Thus, we propose to study
the influence of decreasing uncertainty on the number of components (between
1 and 2) selected by the BIC criterion. To this end, we artificially decrease
the bin dimensions of both mass and eccentricity by multiplying each side of
all rectangles of uncertainty successively by factors 0.5% where u = 1,...,7.
Obviously, we do not know where to place the narrower rectangles inside the
rectangles of the initial data set. Consequently, for each v = 1,...,7, 1000

HUhttp://wuw.obspm.fr/encycl/catl.html
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Extra-solar planets
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Figure 1.17: Extra-solar planets: (a) initial data, (b) frequency to select two
components by BIC for each uncertainty decreasing factor 0.5 (u =0,...,7).

data sets are generated in the following manner: for each of the 10 planets,
the associated uncertainty rectangle is uniformly drawn inside the initial un-
certainty rectangle. Then, the EM algorithm is run again for the 1 000 x 7
artificial data sets. Figure 1.17(b) displays the relative frequency of choosing
two components by BIC among 1 000 replications for each 0.5% value of the
decreasing factor (u = 1,...,7). Note that the selected number of components
for the initial data set is also available in this figure: it corresponds to a factor
0.5 = 1.

We remark that, when uncertainty decreases, the frequency of choosing two
components regularly increases. It becomes stable at about 0.24 from a factor
equal to 0.5°. From an astronomic point of view, the probability of having two
components will increase when the accuracy will become better. For instance,
dividing uncertainty by 4 (it means multiplying by a factor 0.5 = 0.25 on the
figure) may lead to a new data set with probability of around 0.1 (i.e. 10%)
that BIC discovers two components. If uncertainty completely disappears in
the future (so all data are exactly known), then the probability of having an
individual data set with two components by the BIC criterion is about 0.24 (i.e.
approximately a quarter), the frequency value obtained with the very small bin
dimensions 0.5% and 0.57.

1.6.2 AIC,,;/BIC/AIC/BEC/é: benchmark data sets

We compare now the behaviour of the previous semi-supervised classification
specific criteria (BEC, AIC o4, €°) to general density estimation criteria (AIC,
BIC) on some real data sets. Results are extracted from Vandewalle et al.
[2013]. In each case, the RMIXMOD'? software has been used. We consider

2http://www.mixmod.org/ and http://cran.r-project.org/web/packages/Rmixmod /
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benchmark data sets from the UCI database repository® and Pattern Recog-
nition data sets'?. Performances of criteria for selecting a Gaussian model
are compared among the six following constraints on homoscedastic covariance
matrices: spherical (with equal or free volume), diagonal (idem) and general
(idem). Features of the data sets are summarized in Table 1.12. If a test set
is provided, its predictors are used to learn the parameters of the classification
models in the semi-supervised setting and its labels are used to compute the
error rate. Otherwise, 100 random splits of n* unlabelled data and n' labelled
data are generated. Table 1.13 shows that AIC,,,q, BEC and cross-validation
have a similar behaviour and outperform BIC and AIC, as is the case for the
Parkinson and Pima data sets.

Dataset n d K Testset n" n!
Crab 200 5 4 no 150 50
Iris 150 4 3 no 100 50
Parkinson 195 22 2 no 95 100
Pima 532 7 2 yes 332 200
Wine 178 13 3 no 89 89

Table 1.12: Variable parameter selection for benchmark data sets:
Experimental setting.

BIC AIC BEC AlC.ona &5 &5
Crab 6.63 6.75 680 677 7.8L 7.8
Iris 2098 298 2.91 2.91 3.25 3.21
Parkinson 26.45 30.68 15.43 15.16 18.20 16.38
Pima  25.00 25.00 19.58 19.58 22.53 19.58
Wine 3.24 1.17 145 147 1.73 1.70

Table 1.13: Variable parameter selection for benchmark data sets: error rate
of each criterion on UCI data sets (the criterion producing the lowest error
rate is shown in bold).

1.6.3 AIC,,,q/é: textile data set

We now consider a three-class problem extracted from Vandewalle et al. [2013].
The RMIXMOD software has been used. The data are the near infra red (NIR)
spectra of different manufactured textile materials. The three-class NIR data
set contains 223 NIR spectra of manufactured textiles of various compositions.
The classification problem is to recover the physical characterisation of the tex-
tiles, which can take three values Devos et al. [2009]. The data were naturally
separated into a learning sample (132 textiles) and a test sample (91 textiles)

L3http://archive.ics.uci.edu/ml/
Mhttp://www.stats.ox.ac.uk/pib/PRNN/
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with the labels of the test sample initially unknown. The NIR spectra were
measured on an XDS rapid content analyzer instrument in reflectance mode in
the range 1100 — 2500 nm at 0.5 nm apparent resolution (2 800 data points per
spectrum). Standard Gaussian models are too complex for this data set, since
the number of variables is too large. Parsimonious high-dimensional Gaussian
models can be used Jacques et al. [2010], although the large number of tuning
parameters make these unattractive in the semi-supervised setting.

A variable pre-selection step is performed, based on the analysis of variance
(ANOVA) Toher et al. [2005]. For each variable an ANOVA is performed with
respect to the class membership of the data, and the F statistic is plotted ac-
cording to the variable number in Figure 1.18. This preprocessing step searches
for the most discriminant variables, taking into account its ordered nature. As
remarked in Toher et al. [2005], this method is competitive with wavelets for
NIR data. It can be seen that the F statistic presents 20 peaks, each variable
corresponding to a peak yielding more information than its neighbours. These
20 variables are chosen and sorted in decreasing order of F statistic. The model
selection problem is then equivalent to choosing the right number of variables
among those 20 ordered variables. In this setting, a general quadratic Gaussian
model is used. Error rates with respect to the number of selected variables are
presented in Table 1.14. As expected, this error rate computed on the test sam-
ple decreases and then increases according to the number of selected variables.
The optimal number of variables is 13 and 14, which produces an error rate of
7.69%, which is in accordance with the error rates produced by other methods
on these data (8.8% with SVM Devos et al. [2009]). The selection criteria é5",
€5y, BEC and AIC.,,q are compared in a semi-supervised setting, where the
test sample is used as an unlabelled sample to improve the classification func-
tion. Table 1.15 shows that the three criteria produce good results, AIC 4
and BEC performing the best.

F statistic according to
the variable number

F statistic

T T T T T T
[ 500 1000 1500 2000 2500

Variable number

Figure 1.18: F statistic according to the variable number.
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Nb of variables 1 2 3 4 5 6 7 8 9 10
Error rate (%) 64.84 59.34 26.37 27.47 28.57 19.78 24.18 20.88 18.68 18.68
Nb of variables 11 12 13 14 15 16 17 18 19 20
Error rate (%) 18.68 12.09 7.69 7.69 9.89 7.69 10.99 10.99 18.68 20.88

Table 1.14: Error rate according to the number of selected variables.

Criterion Number of variables Error rate (%)

AIC. ong 14 7.69
BEC 13 7.69
&y 15 9.89
e 10 18.68

Table 1.15: Number of selected variables and resulting error rate according to
the criterion.

1.6.4 BIC: social comparison theory

The following data set has been provided by Dr Hans Kuyper who is a re-
searcher at the Faculty of Behavioural and Social Sciences at the University of
Groningen (The Netherlands). His research domain is “social comparison the-
ory”. It is known that most persons compare themselves with others, in order
to evaluate themselves, to get positive feelings, or to improve themselves. More
specifically, his interest goes to the question of knowing along which dimensions
persons prefer to compare themselves, given a free choice situation. It is origi-
nal since in most research there is no free choice, as the comparison dimension
is part of the experimental design. The subject of the present research topic,
therefore, is “preference for comparison dimensions”.

All his research is in secondary education. The present data were collected
in third classes (US grade 9), when most students were 15 years. The data
were collected with a questionnaire, during regular school time. The social
comparison items were one part of the questionnaire. The tasks in the ques-
tionnaire had to be suitable for students of all ability levels. The Dutch system
of secondary education is highly tracked (one of the most tracked systems in
the world). In the social comparison part of the questionnaire were several sub-
topics. This part started with a few remarks about comparing with others, for
instance that it is quite normal to do such thing. The second social comparison
question was as follows: “Which things do you prefer to compare with other
children of your age? Put a 1 in front of what you prefer to compare most, a 2
in front of what you prefer next, and so on. More than 3 is not necessary, but is
allowed”. We offered 13 “objects” O; (j =1,...,13), i.e. aspects or dimensions
from which the students could choose: O7) “your popularity”, O3) “how well you
do in sports”, O3) “your appearance”, O4) “how much money you can spend”,
Os) “how you are feeling”, Og) “your parents”, O7) “your clothes”, Og) “your



58 Chapter 1

grades at school”, Og) “how well you can express your opinions”, O1g) “your
hobby?s”, 011) “how "courageous" you are”, O12) “how smart you are”, O13)
“the kind of friends you have”. These topics were assumed (and partly known)
to be important dimensions for this age group. As the questionnaire had to be
suitable for students of all ability levels, except the lowest levels, it has been
decided to ask only partial rank orders, i.e. the highest three ranks. Finally,
the final data set if composed by n = 1 567 students with only one ranking
variable (d = 1) for which the space X' corresponds to the permutation space
of size 13! (“I” stands for factorial). In addition, 85% of students provided only
partial ranks, for instance only the first three objects they preferred. Among
the 15% of full ranking data, note also that 20% of them contain tie situations.
Finally, this data set is thus very partial.

We use the model proposed for partial ranking data in Biernacki and Jacques
[2013] and Jacques and Biernacki [2014]. It corresponds to a mixture of a
specific distribution for rank data parameterized by ay = (pg, A\x), pr being
the rank modal value of this distribution and A, € [0.5,1] being its so-called
precision parameter. When A\ = 0.5, it gives the uniform distribution; when
A = 1, it gives the Dirac distribution on gt;,. This model is implemented in the
RANKCLUSTER!® R package of Jacques et al. [2014] with a specific SEM-Gibbs.
The command line for running this package on this data set for K =1,...,5
is the following:

R> res=rankclust(x,13,1:5).

It provides the BIC values given in Figure 1.19. Note that confidence intervals
for BIC are given since the log-likelihood is intractable for this model and so
has been estimated (see Jacques and Biernacki [2014] for more details). We
note that a clear hesitation between one and two groups appear, certainly due
to the high degree of missing data (partial rankings and ties).

=T
L=

1 2 3 4 5
Number of clusters.

65500 66000

65000

64500

Figure 1.19: BIC value, and its associated confidence interval, for different
number of groups on the social comparison theory data set.

LShttp:/ /cran.r-project.org/web/packages/Rankcluster /index.html
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The estimated parameter of the dispersion for the one-group case is A~
0.65. It indicates that the component distribution is quite uniform, thus de-
noting no particular preference between objects in the data set.

For the two-groups case, a large group (1 =~ 0.93) and a small group
(1 =~ 0.07) are present. The first one corresponds again to a very flat dis-
tribution A\ & 0.65, thus similar to the first group obtained in the previous one
group case. The second group is more interesting since it exhibits a more tight
distribution (5\2 ~ 0.8) which was probably masked by the previous one-group
case. This group is potentially interesting for the researcher in social sciences
and it can be described in depth by its meaningful parameter of preferences fio
for further studies.

1.6.5 NEC: marketing data

We consider the marketing data set described in Hastie et al. [2001] concerning
the d = 13 demographic attributes (nominal and ordinal variables) of n =
6 876 shopping mall customers in the San Francisco Bay (it corresponds to the
complete data observations among 8 993 observations). Here are examples of
attributes with the corresponding levels between brackets: SEX (1. Male, 2.
Female), MARITAL STATUS (1. Married, 2. Living together, not married,
3. Divorced or separated, 4. Widowed, 5. Single, never married), AGE (1. 14
thru 17, 2. 18 thru 24, 3. 25 thru 34, 4. 35 thru 44, 5. 45 thru 54, 6. 55 thru
64, 7. 65 and Over), etc. Data are displayed Figure 1.20(a) on the first two
multiple correspondence analysis axes.

2nd MCA axis

21 -05

05 1
1st MCA axis
(a)

Figure 1.20: Marketing data set: (a) data on the first two multiple
correspondence analysis axes, (b) the NEC values for several numbers of
groups.

We use the RMIXMOD package to search for a hidden structure in this
data set. The following command line in R runs an EM algorithm with K €
{1,...,10} and the NEC criterion for selecting the number of groups:
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R> out = mixmodCluster (x, nbcluster = 1:10, criterion = "NEC").

The NEC criterion values are given in Figure 1.20(b) and it appears that K =
3 components are selected. There exists a possible true partitioning of this
data set which corresponds to the following three groups of annual income
of households (personal income if single), as displayed in Figure 1.21(a): less
that 19 999$ (group of “low income”), between 20 000$ and 39 9993 (group
of “average income”), more than 40 000$ (group of “high income”). We see in
Figure 1.21(b) that the three group estimated partition is highly correlated to
this true partitioning.

K] T 2 T T T T T

S 1F } Low income S 1F } Low income H

O o 4 Qo i ” B

= =

T -1p T -1p

=t L L L =t L L L L L

N -1 -05 o 05 1 15 2 25 N -1 -05 o 05 1 15 2 25
1st MCA axis 1st correspondance analysis axis

) i) - - T T

S 1F Averageincomell & 1f Average income H

< <

O o 1 O o Bt q

= =

T -1p T -1p

=t L L L L =t L L L

Ny 05 05 1 15 2 25 N 4 05 o 05 1 15 2 25
1st MCA axis 1st correspondance analysis axis

o T 2 T

< <

O o g W 4 Qo R

= =

T -1p T -1p

< . . . < . . . . .

N 05 1 15 2 25 N 05 05 1 15 2 25
1st MCA axis 1st MCA axis

(a) (b)

Figure 1.21: Marketing data set: (a) true underlying partition, (b) estimated
partition.

1.6.6 ICL: prostate cancer data

Hunt and Jorgensen [1999] (see also McLachlan and Peel [2000] p. 139-142) con-
sidered the clustering of patients on the basis of petrial variates alone for the
prostate cancer clinical trial data of Byar and Green [1980] which is reproduced
in Andrews and Herzberg [1985] p. 261-274. This data set was obtained from a
randomized clinical trial comparing four treatments for n = 506 patients with
prostatic cancer grouped on clinical criteria into two Stages 3 and 4 of the dis-
ease. As reported by Byar and Green [1980], Stage 3 represents local extension
of the disease without evidence of distance metastasis, while Stage 4 represents
distant metastasis as evidenced by elevated acid phosphatase, X-ray evidence,
or both. Twelve pre-trial variates were measured on each patient, composed by
eight continuous variables (age, weight, systolic blood pressure, diastolic blood
pressure, serum haemoglobin, size of primary tumour, index of tumour stage
and histolic grade, serum prostatic acid phosphatase) and four categorical vari-
ables with various numbers of levels (performance rating, cardiovascular disease
history, electrocardiogram code, bone metastases). The skewed variables “size
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of primary tumour” and “serum prostatic acid phosphatase” were transformed
by using a square root and a logarithm transformation, respectively. Obser-
vations that had missing values in any of the twelve pretreatment covariates
were omitted from further analysis, leaving n = 475 out of the original 506
observations available. Figure 1.22(a) and (b) displays continuous and cate-
gorical data, respectively, on the first two factorial axes. It seems difficult to
distinguish groups on these axes.

Continuous data Categorical data

2nd axis MCA

2nd axis PCA

L L L . L L o L L L L
80 -60 -40 -20 0 20 40 60 25 -2 -15 0 05 1

1st axis PCA 121 axis NiéﬁA
(a) (b)

Figure 1.22: Prostate cancer data: (a) continuous data on the first two
principal component analysis axes, (b) categorical data on the first two
multiple correspondence analysis axes.

We propose to perform three different clustering procedures: a first one on
only continuous variables with the diagonal Gaussian model, a second one on
only categorical variables with the multivariate multinomial latent class model
and a last one with all variables (mixed case) with the so-called Gaussian-
multinomial model. This model assumes that continuous and categorical vari-
ables are mutually independent conditionally to the group membership while
the conditional continuous variable distribution is diagonal Gaussian and while
the continuous categorical variable distribution is multivariate multinomial
with independence. Thus, the corresponding component pdf can be written

fxiag) = f(x;a”™) - f(x1;06™) (1.139)

where ay = (™, af™), ai®™ = (uk, Xi) is the Gaussian parameter with

3, diagonal and where a$ is the multivariate multinomial parameter. This
particular model is implemented in the RMIXMOD software and the command
line to launch it for K € {1,...,6}, selected through the ICLbic criterion, is

the following;:

R> out = mixmodCluster(x, nbCluster = 1:6,
+ dataType = "composite", criterion = "ICL").
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The RMIXMOD software is also run for the pure continuous and the pure cate-
gorical cases with the same number of components and with the same criterion.
Results of the corresponding ICL values are displayed in Figure 1.23(a)(b)(c),
each sub figure corresponding to a particular data situation. We note that only
the continuous and the mixed cases allow to choose a two-group structure by
ICLbic.

«1¢ Continuous data Categorical data «10¢  MIXED data
2.08 3600 2.38,
¢ ¢
2,07 3500 p
2.36
2.06 3400
- 1 -
O 205 O 3300 O 234 : 5
2.04 3200
D 2.32
2.03 3100
2.02 300 23
1 2 3 4 5 6 2 3 4 5 6 1 2 3 4 5 6
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Figure 1.23: Prostate cancer data: ICLbic values with (a) continuous data
only, (b) categorical data only, (c¢) mixed continuous and categorical.

The two group estimated partition for the continuous, categorical and mixed
cases is also given in Table 1.16 in comparison to the true partition in Stage 3
and Stage 4. It appears that categorical data alone are not able to provide a
relevant partitioning of data. However, associated with continuous data (mixed
case) they allow to improve slightly the partition estimated by the continuous
variables alone. It indicates thus that categorical variables contain some par-
titioning information also. Figure 1.24(a) and (b) displays this mixed case
estimated partition for continuous and categorical data, respectively, on the
first two factorial axes.

Variables Continuous Categorical Mixed
Error (%) 9.46 47.16 8.63
True \ estimated group 1 2 1 2 1 2
Stage 3 247 26 142 131 252 21
Stage 4 19 183 120 82 20 182

Table 1.16: Prostate cancer data: classification error rate and
missclassification table for the three kinds of variables.

1.6.7 BIC: density estimation in the steel industry

The work of Thery et al. [2014] takes place in the steel industry context, with
a quality oriented objective. The purpose is to understand and to prevent
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Figure 1.24: Prostate cancer data with the too group partition estimated in
the mixed case: (a) continuous data on the first two principal component
analysis axes, (b) categorical data on the first two multiple correspondence
analysis axes.

quality problems on finished products, knowing the whole process. The corre-
lations between involved features can be strong because many parameters of
the whole process are highly correlated (physical laws, process rules, etc.). A
quality parameter (confidential) is considered as a response variable y and 205
variables from the whole process are measured to explain it. It is then a re-
gression problem with the goal to explain y from these 205 variables. However,
some of these industrial variables are naturally highly correlated. For instance,
denoting by p the linear correlation coefficient between two variables, the width
and the weight of a steel slab (see an illustration of a slab in Figure 1.25(a))
gives |p| = 0.905, the temperature before and after some tool gives |p| = 0.983,
the roughness of both faces of the product gives |p| = 0.919, etc. Consequently,
performing directly a regression on y with such covariates would lead to very
unstable estimates. For this reason, Thery et al. [2014] developed a specific
method which identifies intra linear regressions which are present between the
205 variables in order to obtain an uncorrelated variable subset. This proce-
dure relies on a whole generative process, thus it is needed to have a density
estimation of all potentially uncorrelated variables. To this end, the density
of each variable is estimated by a univariate Gaussian mixture, each related
number of components being selected by a BIC criterion. The RMIXMOD pack-
ages is used to perform these estimations. Thus, each variable being replicated
3 000 times, we have 205 univariate data sets x of identical size n = 3 000.
An example of one of this variable (temperature) is displayed by its histogram
in Figure 1.25(b). Figure 1.25(c) gives also the distribution of the number of
components estimated for all the 205 data sets. We note that the flexibility
of Gaussian mixtures allows to obtain quite parsimonious densities since the
estimated value of K remains quite moderate.
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Figure 1.25: Steel industry: (a) a steel slab, (b) Example of a non-Gaussian
real variable easily modeled by a Gaussian mixture, (c) distribution of the
number of components found for each covariate.

1.6.8 BIC: partitioning communes of Wallonia

This illustration is extracted from Thomas et al. [2008]. The purpose is to
classify the n = 262 communes of Wallonia (made up of urban, suburban,
periurban and rural areas) in terms of so-called d = 2 fractals at a local level.
By definition, a fractal is a rough or fragmented geometric shape that can be
subdivided into parts, each of which is (at least approximately) a smaller copy
of the whole. Fractals are generally self-similar and independent of scale. The
use of fractals in urban analysis was mainly developed in the 1990s. The first
fractal variable is associated to built-up surfaces and the second one to their
perimeters.

In many situations, practitioners decide to perform a clustering procedure
on a one to one transformation g(x) = (g(z}),i=1,...,nj =1,...,d) of the
initial data set instead of on the initial data set x itself. The reasons are gener-
ally either that the new data set g(x) “seems to have a better specific mixture
shape” than x, or that its unit has a particular meaning for the practitioner.
Typically, standard transformations are g(z]) = x] (identity), g(z]) = exp(z])
or g(z!) = In(z). The second transformation expresses data in the same units
as fractals indices, which is a traditional quantity for many geographers. This
may be a sufficient reason to consider such a transformation. However, to avoid
the difficult task of proposing and justifying a particular transformation, the
practitioner may use the statistical framework to choose one of the suggested
transformations automatically. We describe this interesting and innovative fea-
ture below.

If the new sample g(x) arises from a mixture model f(;0) then the initial
sample x arises from another distribution fg(-;@) which is a transformation
of f(x;0). Consequently, it is possible to interpret any transformation g as
another kind of model § and to employ the BIC criterion to select this trans-
formation. Denoting by Hg the Jacobian of the transformation g, and by ég
the MLE obtained with g(x), we retain the transformation g leading to the
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largest of the following BIC expressions:
5 D
BICg = ((0g;8(x)) — Bl Inn + In |Hg|. (1.140)

The 262 communes can now be classified with a K = 6 component Gaus-
sian mixture (the number of components is here imposed by the geographer),
with the three previous standard transformations g (identity, exponential, loga-
rithm) and with all 28 Gaussian of Celeux and Govaert [1995]. A model is thus
composed by the couple transformation and constraints on covariance matri-
ces/mixing proportions, leading so to 3 x 28 = 84 models in competition. The
BIC criterion retains the simplest model (spherical with equal mixing propor-
tions) and also the exponential transformation. As said before, such a transfor-
mation was expected by geographers. The partitioning result is illustrated in
Figure 1.26(a). The map reveals strong effects of contiguity: communes close
to each other look alike in terms of fractal dimensions. Groups are, however,
spread out all over the region. The six groups lead to the following geographical
interpretation, with in brackets the three communes which are closest to the
centre of each group (Mahalanobis distance):

e Group 1 Peri-urban I and small cities (Brugelette, Heron, Nandrin);

e Group 2 Rural I: compact isolated hamlets (Lierneux, Havelange, Merbes-
le-C);

e Group 3 Peri-urban II and eastern (Hainaut) part (Pepinster, Saint-
Georges, Blegny);

e Group 4 Rural II: hamlets with a linear structure (Erquelinnes, Baelen,
Rendeux);

e Group 5 Urban, thus homogeneous, fully urbanised communes (Ottig-
nies, Chatelet, Chaudfontaine);

e Group 6 Rural III: rural communes with hamlets and one (small) city
centre (Gesves, Jalhay, Ciney).

Figure 1.26(b) and (c) respectively display the map of a commune of Group 1
and a commune of Group 5, revealing high differences between both structures.
In addition, we show that fractal indices partition the region into sub-areas
that do not correspond to “natural landscapes” but result from the history of
urbanisation. Urban sprawl seems to affect most communes, even the remotest
villages: traditional (compact, ribbon, etc.) villages are transformed into more
complex and heterogeneous shapes.
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(a) (b)

Figure 1.26: Communes of Wallonia: (a) the estimated six component
partitioning, (b) Héron commune map as an example of Group 1, (c)
Chaudfontaine commune map as an example of Group 5.

1.6.9 ICLbic/BIC: acoustic emission control

This example is extracted from Biernacki et al. [2000]. It is concerned with
flaws detection on a pressurized vessel by acoustic emission. During a pressur-
ization control, the vessel sounds (the events) are located on its surface. The
first step of the flaw detection procedure consists of grouping those events in
homogeneous groups. Data at hand are n = 2 061 event locations in a rectangle
of R? representing the vessel (so, d = 2).

In this setting, a Gaussian mixture model with equal proportions, diagonal
variance matrices with different volumes appears to be relevant. Moreover, the
uniform background noise is taken into account with a uniform distribution on
the rectangle where the sounds are located. It is worth noting that adding such
a uniform distribution in the mixture is straightforward and simply leads to
consider the proportion of the uniform component as an additional parameter
(see for instance Banfield and Raftery [1993]).

x10* Critere ICL x10° Critere BIC

-214 |
ok

- RS

(a) O (©)

Figure 1.27: Acoustic emission control: (a) ICLbic values, (b) BIC values, (c)
the ten-cluster partition retained by ICL.
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For this industrial example, the problem is to find a relevant number of
mixture components leading to a clear grouping of the sound locations. Figure
1.27(a) and (b) displays the values of ICLbic and BIC, respectively, when K is
varying from 2 to 20. BIC increases almost monotonically with K and does not
provide evidence for any K value. On the contrary, ICLbic gives a preference for
the ten-cluster partition which is depicted in Figure 1.27(c) by the iso-density
of each of the ten components. In particular, it seems that the ten-cluster
partition selected ICLbic captures the high density regions appearing in this
data set.

1.6.10 ICLbic/ICL/BIC/ILbayes: a seabird data set

This example is extracted from Biernacki et al. [2011]. Puffins are pelagic
seabirds from the family Procellaridae. A data set of n = 153 puffins divided
into three subspecies dichrous (84 birds), lherminieri (34 birds) and subalaris
(35 birds) is considered [Bretagnolle, 2007]. These birds are described by the
five plumage and external morphological characters displayed in Table 1.17.
Figure 1.28 (a) displays the birds on the first correspondence analysis plan.

levels
variables 1 2 3 4 5
gender male  female
eyebrows® NONE tvtiieeeieiineennns very pronounced
collar® TIOTIE ottt ettt et e e e e e e s continuous
sub-caudal  white black black & white black & WHITE BLACK & white
border?® none  ...... many

@ using a paper pattern
Table 1.17: Details of plumage and external morphological characters for the
seabird data set.

For a number of groups varying from K = 1 to 6, asymptotic criteria BIC
and ICLbic and non-asymptotic criteria ILbayes and ICL are computed. Ta-
ble 1.18 displays values of all of them for each number of components. It ap-
pears that only non-asymptotic criteria ICL and ICLbayes select three groups,
whereas asymptotic criteria select less groups: one for ICLbic and two for BIC.
The estimated three-group partition, where labels are chosen to ensure the
minimum error rate with the true partition, is given in Figure 1.28 (b). It has
to be compared with the true partition given in Figure 1.28 (a). It leads to
55 misclassified birds (35.95% of birds), a rand criterion value of 0.6121 and a
corrected rand criterion value of 0.1896 (Rand [1971]).

However, it has to be noticed that the ICL values for one, two and three
groups are quite similar. It seems to point out that there are little differences
between the birds, and that it could be hazardous to discriminate the sub-
species with the available variables. Moreover, it appears that ICLbic and
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Second principal correspondence analysis
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Figure 1.28: Seabird data set on the first two correspondence analysis axes:
(a) with the true partition and (b) with the EM estimated partition. An i.i.d.
uniform noise on [0, 0.1] has be added on both axes for each individual in
order to improve visualisation.

K
criteria 1 2 3 4 5 6
ICLbic -714.03 -727.33 -741.37 -774.01  -802.47  -830.83
ICL -712.08 -712.57 -711.81 -727.44  -737.46  -T41.79
BIC -714.03 -711.14  -729.97 -754.58  -784.49  -814.61
ILbayes -712.08 -693.41 -692.88 -694.01 -695.21 -696.00

Table 1.18: Value of ICL, ICLbic, BIC and ILbayes (with R = 50 and
S =1 000) criteria for different number of groups on the seabird data set.
Boldface indicates maximum value for each criterion. Italic indicates an
upper bound value for ILbayes (see detail in Biernacki et al. [2011]).

ICL do not behave the same since ICLbic has a marked preference for the
one component solution (no clustering). BIC favours the two-group solution,
but the no-cluster solution cannot be completely discarded. On the contrary,
ILbayes clearly rejects the no clustering solution and favours three groups,
emphasizing again the potentially high difference between the two types of
criteria of ICL-type and of BIC-type for revealing structures in data sets.

1.7 Future methodological challenges

We identify two main challenges for model selection in mixtures: the increasing
number of proposed models and the increasing volume of data (individuals
and/or variables). In addition, both problems are not totally unrelated.
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The increasing number of models

The number of models is expected to have a linear-like increase because new
ones are regularly proposed for dealing with particular situations. In addition,
some models can be combined, like the Gaussian structure and the number of
components, implying this time a multiplying-like increase of models. But an
exponential-like increase of models is also possible as soon as discrete parame-
ters are involved in models. It is the case for instance in variable selection or
also in the categorical case in Marbac et al. [2013].

Having a huge model set M than implies two important consequences. First,
from a computational point of view, the whole model set cannot be exhaustively
browsed. Thus, some specific strategies have to be performed for obtaining
efficient trajectories inside M. For instance, stochastic chains on M can be a
candidate strategy, as the seminal work on the reversible jump of Green [1995].
See also a particular Gibbs strategy in Marbac et al. [2013] and Thery et al.
[2014] where the chain is guided by the BIC value.

The second consequence of having a very large M is about the criteria valid-
ity. Indeed, asymptotic criteria like AIC, BIC or ICLbic are defined relatively
to a given error order which, when the number of models highly increases, may
be too crude for making accurate distinction between some of them. Note that
when the number of models grows, the set of “close” models, hence poorly indis-
tinguishable models, is expected to grow also. A solution for dealing with this
phenomenon in the Bayesian context is either to implement non-asymptotic
criteria, or to define a non-uniform prior f(m) on M. For instance, in Thery
et al. [2014], a hierarchical uniform distribution has been put on a particular
decomposition of Sy, resulting in a higher penalty for more complex models
while preserving a non-informative approach. In the frequentist setting, the
heuristics slope has also to be adapted for large M. For instance, Meynet
and Maugis-Rabusseau [2012] give some proposal for variable selection in the
model-based clustering framework.

The increasing volume of data

The “Big Data” era implies an increasing number of individuals and/or vari-
ables. From the model selection point of view, it may increase a lot the compu-
tation time, in particular in mixtures where EM-like algorithms are quite slow.
Simultaneously, a larger volume of data encourage to try a larger model set
M, as testing a much larger upper bound for the number of groups. Indeed,
we expect to discover finer structures when the data set grows!

Possible solutions are sampling strategies. However, the risk of them is
to miss some fine structures in data. Thus, some specific researchs could be
needed to overcome this difficulty.
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