Leveraging Power Spectral Density for Scalable System-Level Accuracy Evaluation

Abstract : The choice of fixed-point word-lengths critically impacts the system performance by impacting the quality of computation, its energy, speed and area. Making a good choice of fixed-point word-length generally requires solving an NP-hard problem by exploring a vast search space. Therefore, the entire fixed-point refinement process becomes critically dependent on evaluating the effects of accuracy degradation. In this paper, a novel technique for the system-level evaluation of fixed-point systems, which is more scalable and that renders better accuracy, is proposed. This technique makes use of the information hidden in the power-spectral density of quantization noises. It is shown to be very effective in systems consisting of more than one frequency sensitive components. Compared to state-of-the-art hierarchical methods that are agnostic to the quantization noise spectrum, we show that the proposed approach is 5× to 500× more accurate on some representative signal processing kernels.
Type de document :
Communication dans un congrès
IEEE/ACM Conference on Design Automation and Test in Europe (DATE), Mar 2016, Dresden, Germany. pp.6
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01253494
Contributeur : Olivier Sentieys <>
Soumis le : dimanche 10 janvier 2016 - 18:31:14
Dernière modification le : mardi 16 janvier 2018 - 15:54:13
Document(s) archivé(s) le : lundi 11 avril 2016 - 10:57:55

Fichier

204_OutputPaper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01253494, version 1

Citation

Benjamin Barrois, Karthick Parashar, Olivier Sentieys. Leveraging Power Spectral Density for Scalable System-Level Accuracy Evaluation. IEEE/ACM Conference on Design Automation and Test in Europe (DATE), Mar 2016, Dresden, Germany. pp.6. 〈hal-01253494〉

Partager

Métriques

Consultations de la notice

940

Téléchargements de fichiers

127