Exploring Complex and Large Data with Formal Concept Analysis

Amedeo Napoli 1
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : Knowledge discovery in large and complex datasets is one of the main topics addressed by the so-called ``Data Science'' but is also a topic of main interest for the ``Science of Knowledge'' (or Artificial Intelligence). Indeed data and knowledge are interacting and knowledge discovery is applied on datasets and has a direct impact on the design of knowledge bases (or ontologies). Following this idea, it can be interesting to have at hand a generic formalism that can support knowledge discovery and, as well, knowledge representation and reasoning. Accordingly, in this presentation, we introduce Formal Concept Analysis (FCA), a mathematical formalism for data and knowledge processing. FCA starts with a binary table composed of objects and attributes and outputs a concept lattice, where each concept is made of an intent (i.e. the description of the concept in terms of attributes) and an extent (i.e. the objects instances of the concept). Intents and extents are two dual facets of a concept that naturally apply in knowledge representation. There are two main variations of FCA, Relational Concept Analysis (RCA) for dealing with relational data and Pattern Structures (PS) for dealing with complex data (numbers, sequences, trees, graphs). We will discuss the usability of FCA and its variations in knowledge discovery and knowledge engineering through various tasks and applications, such as e.g. data and text mining, information retrieval, biclustering and recommendation, and extraction of functional dependencies. Finally, the structure of a concept lattice can be visualized and allows a suggestive interpretation for human agents while it can be also processable by software agents.
Type de document :
Communication dans un congrès
Jean-Marc Petit. Colloque sur l'Optimisation et les Systèmes d'Information (COSI 2015), Jun 2015, Oran, Algeria. Colloque sur l'Optimisation et les Systèmes d'Information (COSI 2015), 2015, Colloque sur l'Optimisation et les Systèmes d'Information (COSI 2015). 〈http://www.isima.fr/cosi/cosi2015/index.php〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01254129
Contributeur : Amedeo Napoli <>
Soumis le : lundi 11 janvier 2016 - 17:54:33
Dernière modification le : jeudi 11 janvier 2018 - 06:25:24

Identifiants

  • HAL Id : hal-01254129, version 1

Collections

Citation

Amedeo Napoli. Exploring Complex and Large Data with Formal Concept Analysis. Jean-Marc Petit. Colloque sur l'Optimisation et les Systèmes d'Information (COSI 2015), Jun 2015, Oran, Algeria. Colloque sur l'Optimisation et les Systèmes d'Information (COSI 2015), 2015, Colloque sur l'Optimisation et les Systèmes d'Information (COSI 2015). 〈http://www.isima.fr/cosi/cosi2015/index.php〉. 〈hal-01254129〉

Partager

Métriques

Consultations de la notice

228