H. Ben-ameur, G. Chavent, F. Clément, and P. Weis, Image segmentation with multidimensional refinement indicators, Inverse Problems in Science and Engineering, vol.10, issue.5, pp.577-597, 2011.
DOI : 10.1088/0266-5611/18/3/317

URL : https://hal.archives-ouvertes.fr/inria-00533799

G. Hend-ben-ameur, J. Chavent, and . Jaffré, Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities, Inverse Problems, vol.18, issue.3, p.775, 2002.
DOI : 10.1088/0266-5611/18/3/317

F. Hend-ben-ameur, P. Clément, G. Weis, and . Chavent, The multidimensional refinement indicators algorithm for optimal parameterization, Journal of Inverse and Ill- Posed Problems, pp.107-126, 2008.

G. Chavent, On the theory and practice of non-linear least-squares, Advances in Water Resources, vol.14, issue.2, pp.55-63, 1991.
DOI : 10.1016/0309-1708(91)90051-O

G. Chavent, Nonlinear Least Squares for Inverse Problems : Theoretical Foundations and Step-by=Step Guide for Applications, 2009.
DOI : 10.1007/978-90-481-2785-6

G. Chavent and L. Jun, Multiscale parameterization for the estimation of a diffusion coefficient in elliptic and parabolic problems, 5th IFAC Symposium on Control of Distributed Parameter Systems, pp.26-29, 1989.

R. L. Cooley, A method of estimating parameters and assessing reliability for models of steady state groundwater flow: 1. Theory and numerical properties, Water Resources Research, vol.7, issue.4, pp.318-324, 1982.
DOI : 10.1029/WR013i002p00318

G. De-marsily and . Buoro, 40 years of inverse problems in hydrogeology. Comptes Rendus de l'Academie des Sciences Series IIA Earth and Planetary Science, pp.73-87, 1999.

M. Eppstein and D. Dougherty, Simultaneous Estimation of Transmissivity Values and Zonation, Water Resources Research, vol.33, issue.2, pp.3321-3336, 1996.
DOI : 10.1029/96WR02283

A. A. Grimstad, T. Mannseth, G. , and H. Urkedal, Adaptive multiscale permeability estimation, Computational Geosciences, vol.7, issue.1, pp.1-25, 2003.
DOI : 10.1023/A:1022417923824

M. Hayek and P. Ackerer, An Adaptive Subdivision Algorithm for the Identification of the Diffusion Coefficient in Two-dimensional Elliptic Problems, Journal of Mathematical Modelling and Algorithms, vol.17, issue.3, pp.529-545, 2007.
DOI : 10.1007/s10852-006-9046-1

M. Hayek, P. Ackerer, and É. Sonnendrücker, A new refinement indicator for adaptive parameterization: Application to the estimation of the diffusion coefficient in an elliptic problem, Journal of Computational and Applied Mathematics, vol.224, issue.1, pp.307-319, 2009.
DOI : 10.1016/j.cam.2008.05.006

J. Liu, A Multiresolution Method for Distributed Parameter Estimation, SIAM Journal on Scientific Computing, vol.14, issue.2, pp.389-405, 1993.
DOI : 10.1137/0914024

N. Sun, Inverse problems in groundwater modeling, 1994.
DOI : 10.1007/978-94-017-1970-4

I. Clifford and . Voss, A finite-element simulation model for saturated-unsaturated, fluid-densitydependent ground-water flow with energy transport or chemically-reactive single-species solute transport, US Geological Survey, vol.84, 1984.

W. William and . Yeh, Review of parameter identification procedures in groundwater hydrology : The inverse problem, Water Resources Research, vol.22, issue.2, pp.95-108, 1986.