H. Mannila, H. Toivonen, and A. I. Verkamo, Discovery of frequent episodes in event sequences, Data Mining and Knowledge Discovery, vol.1, issue.3, pp.259-289, 1997.
DOI : 10.1023/A:1009748302351

C. W. Cho, Y. Zheng, and A. L. Chen, Continuously Matching Episode Rules for Predicting Future Events over Event Streams, Advances in Data and Web Management, pp.884-891, 2007.
DOI : 10.1007/978-3-540-72524-4_91

G. He, Y. Duan, T. Qian, and X. Chen, Early prediction on imbalanced multivariate time series, Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, CIKM '13, pp.1889-1892
DOI : 10.1145/2505515.2507888

I. Rahal, D. Ren, W. Wu, and W. Perrizo, Mining confident minimal rules with fixed-consequents, 16th IEEE International Conference on Tools with Artificial Intelligence, pp.16-2004, 2004.
DOI : 10.1109/ICTAI.2004.85

L. Fahed, A. Brun, and A. Boyer, Episode Rules Mining Algorithm for Distant Event Prediction, Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, pp.5-13, 2014.
DOI : 10.5220/0005027600050013

URL : https://hal.archives-ouvertes.fr/hal-01108803

R. Agrawal, T. Imieli´nskiimieli´nski, and A. Swami, Mining association rules between sets of items in large databases, In: ACM SIGMOD, pp.207-216, 1993.

S. Laxman, P. Sastry, and K. Unnikrishnan, A fast algorithm for finding frequent episodes in event streams, Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '07, pp.410-419, 2007.
DOI : 10.1145/1281192.1281238

K. Y. Huang and C. H. Chang, Efficient mining of frequent episodes from complex sequences, Information Systems, vol.33, issue.1, pp.96-114, 2008.
DOI : 10.1016/j.is.2007.07.003

J. Li, A. W. Fu, and P. Fahey, Efficient discovery of risk patterns in medical data, Artificial Intelligence in Medicine, vol.45, issue.1, pp.77-89, 2009.
DOI : 10.1016/j.artmed.2008.07.008

J. Li, A. W. Fu, H. He, J. Chen, H. Jin et al., Mining risk patterns in medical data, Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining , KDD '05, pp.770-775, 2005.
DOI : 10.1145/1081870.1081971

V. Tseng, C. Wu, B. Shie, and P. Yu, UP-Growth, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, p.16, 2010.
DOI : 10.1145/1835804.1835839

M. Liu and J. Qu, Mining high utility itemsets without candidate generation, Proceedings of the 21st ACM international conference on Information and knowledge management, CIKM '12, pp.55-64
DOI : 10.1145/2396761.2396773

C. F. Ahmed, S. K. Tanbeer, and B. S. Jeong, Mining High Utility Web Access Sequences in Dynamic Web Log Data, 2010 11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp.76-81, 2010.
DOI : 10.1109/SNPD.2010.21

C. Wu, Y. F. Lin, P. S. Yu, and V. S. Tseng, Mining high utility episodes in complex event sequences, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '13, pp.536-544
DOI : 10.1145/2487575.2487654

K. Iwanuma, R. Ishihara, Y. Takano, and H. Nabeshima, Extracting Frequent Subsequences from a Single Long Data Sequence: A Novel Anti-Monotonic Measure and a Simple On-Line Algorithm, Fifth IEEE International Conference on Data Mining (ICDM'05), p.8, 2005.
DOI : 10.1109/ICDM.2005.60

W. Zhou, H. Liu, and H. Cheng, Mining closed episodes from event sequences efficiently Advances in Knowledge Discovery and Data Mining, pp.310-318, 2010.

N. Tatti and B. Cule, Mining closed strict episodes, Data Mining and Knowledge Discovery, vol.23, issue.2, pp.34-66, 2012.
DOI : 10.1007/s10618-011-0232-z

R. Srikant, Q. Vu, and R. Agrawal, Mining association rules with item constraints, In: KDD, vol.97, pp.67-73, 1997.