Arabic Handwritten Words Off-line Recognition based on HMMs and DBNs

Abstract : In this work, we investigate the combination of PGM (Propabilistic Graphical Models) classifiers, either independent or coupled, for the recognition of Arabic handwritten words. The independent classifiers are vertical and horizontal HMMs (Hidden Markov Models) whose observable outputs are features extracted from the image columns and the image rows respectively. The coupled classifiers associate the vertical and horizontal observation streams into a single DBN (Dynamic Bayesian Network). A novel method to extract word baseline and a simple and easily extractable features to construct feature vectors for words in the vocabulary are proposed. Some of these features are statistical, based on pixel distributions and local pixel configurations. Others are structural, based on the presence of ascenders, descenders, loops and diacritic points. Experiments on handwritten Arabic words from IFN/ENIT strongly support the feasibility of the proposed approach. The recognition rates achieve 90.42% with vertical and horizontal HMM, 85.03% and 85.21% with respectively a first and a second DBN which outperform results of some works based on PGMs.
Type de document :
Communication dans un congrès
ICDAR 2015 - 13th International Conference on Document Analysis and Recognition, Aug 2015, Nancy, France. pp.51 - 55, 2015, 〈10.1109/ICDAR.2015.7333724〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01254724
Contributeur : Abdel Belaid <>
Soumis le : lundi 25 janvier 2016 - 12:46:22
Dernière modification le : jeudi 11 janvier 2018 - 06:25:25
Document(s) archivé(s) le : mardi 26 avril 2016 - 10:52:04

Fichier

ICDAR-AKRAM-AFEF-ABDEL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Akram Khémiri, Afef Kacem, Abdel Belaïd, Mourad Elloumi. Arabic Handwritten Words Off-line Recognition based on HMMs and DBNs. ICDAR 2015 - 13th International Conference on Document Analysis and Recognition, Aug 2015, Nancy, France. pp.51 - 55, 2015, 〈10.1109/ICDAR.2015.7333724〉. 〈hal-01254724〉

Partager

Métriques

Consultations de la notice

169

Téléchargements de fichiers

230