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Abstract

High-order n umerical metho ds for solving time-dep enden t acoustic-elastic coupled prob-

lems are in tro duced. These metho ds, based on Finite Elemen t tec hniques, allo w for a

�exible coupling b et w een the �uid and the solid domain b y using non-conforming meshes

and curv ed elemen ts.

Since c haracteristic w a v es tra v el at di�eren t sp eeds through di�eren t media, sp eci�c

lev els of gran ularit y for the mesh discretization are required on eac h domain, making im-

practical a p ossible conforming coupling in b et w een. A dv an tageously , ph ysical domains

ma y b e indep enden tly discretized in our framew ork due to the non-conforming feature.

Consequen tly , an imp ortan t increase in computational e�ciency ma y b e ac hiev ed com-

pared to other implemen tations based on conforming tec hniques, namely b y reducing the

total n um b er of degrees of freedom. Di�eren tly from other non-conforming approac hes

prop osed so far, our tec hnique is relativ ely simpler and requires only a geometrical ad-

justmen t at the coupling in terface at a prepro cessing stage, so that no extra computations

are necessary during the time ev olution of the sim ulation.

On the other hand, as an adv an tage of using curvilinear elemen ts, the geometry of

the coupling in terface b et w een the t w o media of in terest is faithfully represen ted up to

the order of the sc heme used. In other w ords, higher order sc hemes are in consonance

with higher order appro ximations of the geometry . Concerning the time discretization,

w e analyze b oth explicit and implicit sc hemes. These sc hemes are energy conserving and,

for the explicit case, the stabilit y is guaran teed b y a CFL condition.

In order to illustrate the accuracy and con v ergence of these metho ds, a set of repre-

sen tativ e n umerical tests are presen ted.
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1. In tro duction

The dev elopmen t of e�cien t n umerical metho ds for the sim ulation of w a v es at the

in terface b et w een �uid and solid is an issue that is raised b y man y applications. Let

us in particular men tion the sim ulation of earthquak es in o ceanic crust or o�shore seis-

mic imaging. There are also medical applications, suc h as the sim ulation of ultrasound5

propagation in biological tissues, or the detection of solid ob jects immersed in a �uid.

Man y metho ds ha v e b een prop osed to solv e this issue in harmonic domain, let us

men tion the BEM/FEM t yp e metho d, whose principle consists in using a Boundary

Elemen t Metho d to discretize the �uid and a Finite Elemen t Metho d for the solid [1 ,

2 , 3, 4, 5]; plane w a v es based metho ds, using the P artition of the Unit y Metho d [6 ],10

Ultra w eak F orm ulation [7 ] or Discon tin uous Enric hmen t Metho ds [8 ]; or Discon tin uous

Galerkin Metho ds [9 ].

Concerning transien t w a v es sim ulation, one can use Finite Di�erences Metho ds, based

for instance on the Virieux sc heme [10 ], setting the v elo cit y of S-w a v e to zero in the �uid.

Ho w ev er, this often leads to instabilities or to spurious w a v es in the �uid. Moreo v er, Fi-15

nite Di�erences are not v ery con v enien t to deal with top ograph y and Rob ertsson prop osed

a strategy to deal with irregular in terface [11 ]. Finite Elemen t Metho ds are m uc h more

adapted to deal with top ograph y and, among them, Sp ectral Elemen t Metho ds (SEM)

are v ery p opular in the Geoph ysical comm unit y , since they allo w naturally for the use

of explicit time sc hemes [12 , 13 , 14, 15 , 16 ]. In [17 ], K omatitsc h, Barnes and T romp ap-20

plied the SEM successfully to �uid-structure problems. Another solution metho dology ,

based on Discon tin uous Galerkin Metho ds (DGM) has b een prop osed in [18 ], allo wing

for non-conforming meshes.

The use of non-conforming meshes is necessary to obtain e�cien t n umerical sc hemes

since the v elo cities of the w a v es in the �uid and in the solid ma y strongly di�er. Hence, the25

w a v elengths and the space steps required to ful�ll the n um b er of p oin ts p er w a v elength

in eac h region are often v ery di�eren t. This non-conformit y can b e handled using Mortar

Elemen t Metho d [19 , 20 , 21 , 22 , 23 ], but this require the in tro duction of an additional

unkno wn, represen ting the trace of the solution on the in terface. The SEM can b e easily

adapted to deal with non-conforming meshes, as it has b een sho wn for instance in [24 ]30

and in [25 , 26 ], where the authors also prop osed a lo cal time stepping strategy in order

to adapt the time steps to the t w o di�eren t space steps.

A second issue is the mo deling of curv ed in terfaces and man y of the ab o v e metho ds

can b e easily extended to handle curv ed elemen ts, see for instance [7 , 9]. Ho w ev er, the

design of e�cien t n umerical metho ds in v olving b oth non-conforming meshes and curv ed35

in terfaces is still an op en issue. In [27 , 28 , 29 ], Jaiman et al prop osed a Com bined

In terface Boundary Condition sc heme b y imp osing higher-order in terface corrections.

The dra wbac k of this sc heme is the additional computation of the correction at eac h

coupling time step. A v ery e�cien t alternativ e, based on Discon tin uous Galerkin Metho d

has b een prop osed in [30 ]. It is ho w ev er restricted to the case where one the in terface40

(usually the �uid one) is a submesh of the other one. In [31 ], prop osed a to handle curv ed

non conforming in terfaces for sommation-b y-part (SBP) �nite di�erence metho ds.

In this w ork w e prop ose a more general solution metho dology , where the t w o domains

can b e meshed indep enden tly , up to some minor restrictions that w e presen t b elo w. W e

apply this metho dology to transien t problems discretized b y classical Finite Elemen t45

Metho d and using a classical Leap-F rog sc heme. Ho w ev er, since our strategy is based on
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the meshing of the domain, it can b e easily extended to harmonic problems, other t yp es

of Finite Elemen t Metho ds, suc h as SEM or DGM, and other time sc hemes. It can also

b e applied to other m ultiph ysics problems in v olving the coupling of sub domains with

particular ph ysical features whic h imp ose v ery di�eren t lev els of gran ularit y regarding50

their corresp onding computational mesh

The outline of this pap er is as follo ws. The mo del problem is presen ted in Sec. 2

and its corresp onding w eak form ulation in Sec. 3. The non-conforming tec hnique is

presen ted in Sec.4 and the details concerning its implemen tation are presen ted in Sec. 5.

The discretization in time is presen ted in Sec. 6, where the p ositivit y and conserv ation of55

the energy is carefully analyzed for b oth explicit and implicit sc hemes. Finally , in Sec. 7

w e presen t n umerical results v alidating the accuracy and con v ergence of our metho d

with a reference test. In the same section, w e also rep ort its e�ciency b oth in terms of

execution time and memory usage.

2. Coupled system of equations and b oundary conditions60

The domain 
 mo deling the acoustic-elastic isotropic coupled problem of in terest

is divided in to t w o sub domains, one corresp onding to the �uid (acoustic) part and the

other to the solid part, denoted b y 
 f and 
 s , resp ectiv ely (see Fig. 1 ). The coupling

b oundary b et w een these t w o sub-domains is denoted b y � i .

Figure 1: Domain problem with a curv ed coupling in terface, � i . The p oin t source lo cated at x 0 is

lab eled as ' � '.

The w a v e propagation problem with op en b oundaries under consideration has to65

b e solv ed computationally in a giv en truncated domain with a delimited b oundary ,

� = � f [ � s , where an arti�cial b oundary condition m ust b e imp osed. Although sev eral

sophisticated solutions do exist in the literature whic h ma y b e appropriate when consid-

ering high-order sc hemes, a �rst-order absorbing b oundary condition (ABC) is c hosen

for this w ork, for the sak e of simplicit y . On the top b oundary of the acoustic sub domain,70

� t , a free-condition is imp osed.
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As for the system of equations, sev eral form ulations ma y alternativ ely b e considered.

Among them, a symmetric form ulation that simpli�es considerably energy estimates

in tro duced later on is considered in this w ork. Suc h form ulation consists of a �uid

pressure ( q) form ulation for the �uid part and a v elo cit y form ulation for the elastic75

structure ( v ). Finally , the full mathematical con tin uous problem of in terest reads as

follo ws

1
� f c2

F

@2q
@t2

� r �
�

1
� f

r q
�

= f (t)� x 0 ; in 
 f ; (1a)

� s
@2v
@t2

� r � � (v ) = 0 ; in 
 s; (1b)

� (v ) � ns �
@q
@t

n f = 0 ; on � i ; (1c)

� f
@v
@t

� ns � r q � n f = 0 ; on � i ; (1d)

q = 0 ; on � t ; (1e)

1
cF

@q
@t

+ r q � n f = 0 ; on � f ; (1f )

� sB
@v
@t

+ � (v ) � ns = 0 ; on � s; (1g )

where the external force f (t)� x 0 represen ts a p oin t source in space lo cated at x0 , f (t)
is the source time function, cF is the w a v e sp eed on the �uid part, n f and ns are the

exterior unit normal to their resp ectiv e b oundaries, @
 f and @
 s . The tensors

� ij (v ) = � r � v � ij + 2 � � ij (v ) (2)

and

� ij (v ) =
1
2

�
@vi
@xj

+
@vj
@xi

�
(3)

are, resp ectiv ely , the classical Cauc h y and stress tensors t ypically de�ned in a homoge-

neous and isotropic elastic media. The symmetric, p ositiv e-de�nite matrix B app earing

in (1g ) is de�ned as80

B :=
�

cP n2
s1

+ cSn2
s2

(cP � cS )ns1 ns2

(cP � cS )ns1 ns2 cP n2
s1

+ cSn2
s2

�
; (4)

where cP and cS are the compression and the shear w a v e v elo cit y , resp ectiv ely , with

cP =
q

� +2 �
� s

and cS =
q

�
� s

.

3. W eak form ulation

It is w ell kno wn that the Finite Elemen t Metho d (FEM) is one of the most general and

�exible n umerical metho ds for solving partial di�eren tial equations, sp ecially whenev er85
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the de�nition of the problem of in terest includes a curv ed domain and complex couplings.

The classical FEM is c hosen in this w ork due to its pro v en generalit y , robustness and

simplicit y regarding details of implemen tation. Ho w ev er, the non-conforming metho d

that w e in tro duce in this pap er could easily b e extended to other v arian ts of FEM, suc h

as Sp ectral Elemen t Metho d or Discon tin uous Galerkin Metho d and/or m ultiph ysics90

problems.

Before describing the spatial and temp oral discretization, w e pro ceed no w in tro ducing

the w eak form ulation of the coupled problem de�ned in (1 ) whic h reads as follo ws: 8t 2
(0; T], �nd v = v(t) 2 V and q = q(t) 2 Q suc h that

Z


 s

� s
@2v
@t2

� w sd
 +
Z


 s

� r � v r � w s d
 +
Z


 s

2�
2X

i;j =1

� i;j (v )� i;j (w s)d
 s

+
Z

� s

� s

�
B

@v
@t

�
� w sd� �

Z

� i

@q
@t

n f � w sd� = 0 ;

Z


 f

� � 1
f c� 2

F
@2q
@t2

wf d
 +
Z


 f

� � 1
f r q � r wf d


�
Z

� f

� � 1
f c� 1

F
@q
@t

wf �
Z

� i

@v
@t

� nswf d� =
Z


 f

fw f d
 ; (5)

for all test functions w s 2 Ws and wf 2 Wf , where the Sob olev trial spaces V and95

Q are de�ned as

V = f v 2 H 1(
 s)g; (6)

Q = f q 2 H 1(
 f ) : q = 0 on � t g; (7)

whereas the test spaces Ws and Wf are de�ned as

Ws = f w s 2 H 1(
 s) : w s = 0 on � sg; (8)

Wf = f wf 2 H 1(
 f ) : wf = 0 on � f g: (9)

4. The new non-conforming tec hnique

Using conforming meshes, i.e. when a v ertex of the solid mesh on the in terface � i

is also a v ertex of the �uid mesh and con v ersely , there is no particular di�cult y to100

discretize the ab o v e v ariational form ulation. Ho w ev er, since the ph ysical parameters,

and in particular the w a v e sp eeds, ma y di�er strongly in the t w o sub domains, it is often

necessary to use v ery di�eren t space steps in the �uid and in the solid and, consequen tly ,

non-conforming meshes at the in terface � i .

Before in tro ducing our new non-conforming coupling strategy at the in terface � i , let105

us �rst explain with the aid of Fig. 2 the essen tial dra wbac ks faced when considering a

naiv e approac h for a non-conforming coupling in Finite Elemen t Metho ds. In Fig. 2, the

dotted green line represen ts the actual geometrical in terface of problem (1 ), � i , whic h

m ust b e matc hed as accurate as p ossible b y the �nite elemen t mesh.
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empty

overlapped

Figure 2: Dra wbac ks pro duced when considering a naiv e non-conforming coupling due to the presence of

b oth empt y and o v erlapp ed regions of the domain. The green dotted line represen ts the actual geometry

of the in terface, � i . The blue and red lines represen t the appro ximation of the geometry from the �uid

and the solid side, resp ectiv ely .

The �rst step to discretize b oth sub domains consists in in tro ducing a triangulation110

Th k made up of non-o v erlapping elemen ts within eac h domain, whose c haracteristic linear

size is denoted b y hk , and suc h that 
 f =
S I k

i =1 k i
f and 
 s =

S J k
j =1 k j

s . Note that

this indep enden t decomp osition ma y geometrically in tro duce a non-conforming coupling

b et w een the t w o sub domains. T o understand the ro ot of this issue, let �rst consider

the use of linear elemen ts whose sides are straigh t lines, commonly referred to as P1-115

elemen ts. In eac h sub domain, the set of edges whose end p oin ts b elong to the in terface � i

determine a particular discretization � ih , sa y � 1
ih for the �uid in terface, and another one,

� 2
ih for the solid in terface, iden ti�ed in Fig. 2 as the blue and the red line, resp ectiv ely .

As it is clear from the �gure, empt y and o v erlapp ed regions are t ypically generated in

this approac h when mo deling a curv ed in terface, corresp onding to the green dotted line.120

This strategy will therefore in tro duce n umerical instabilities and m ust b e a v oided. The

source of this problem comes from the fact that t w o indep enden t, non-matc hing p olygons

are used in order to matc h the no des pro jected on � i , sa y � polygon 1
i and � polygon 2

i , as

represen ted in the follo wing diagram

T o a v oid this problem, w e prop ose a non-conforming solution built on follo wing ingre-125

dien ts: the empt y and o v erlapp ed regions pro duced b y the naiv e approac h just describ ed

m ust b e a v oided without adding a signi�can t extra computational cost and, at the same

time, the accuracy of the geometry m ust b e of the same order as that of the discretization

in space, p.

Let �rst start with p = 1 with the aid of Fig. 3. Again, the dotted green line represen ts130

the actual geometrical in terface of problem (1 ), � i . No w, w e consider a unique p olygon

in terp olan t on the in terface � i , de�ned suc h that it in terp olates o v er the set of no des

6



Figure 3: Non-conforming in terface matc hing through spline in terp olation of order 1 (p olygon). The

green dotted line represen ts the actual geometry of the in terface, � i . The blue and red lines represen t

the appro ximation of the geometry from the �uid and the solid side, resp ectiv ely .

that b elongs to that sub domain with a coarser mesh re�nemen t requiremen t. T o mak e

these ideas more concrete, let us assume that this is the case of the solid sub domain.

Then, from the solid part, w e construct a p olygon � polygon
i that in terp olates o v er the set135

of no des of the solid mesh that b elongs to the in terface, building � 2
ih (in red). Next, w e

pro ject o v er � polygon
i the no des of the �uid part that b elongs to the in terface, building

� 1
ih (in blue). A t this stage, all no des from b oth sides b elong to a unique p olygon and

therefore�with the condition that the no des of the p olygon are also v ertices in b oth � 1
ih

and � 2
ih �w e ensure that � 1

ih and � 2
ih are no w matc hing. This idea is represen ted in the140

follo wing diagram

The same idea can no w b e extended to higher order, p > 1, using a spline in terp olan t

of order r � p, spline(r ) . F or the sak e of simplicit y w e consider r = p. As in the P1
case, once all no des that b elongs to the in terface ha v e b een placed follo wing our strategy ,

w e pro ceed to build up the t w o meshes whose elemen ts are of order p. Keeping all145

these asp ects in consideration, the resulting meshes from the �uid and the solid side are

appro ximating the geometry of � i with order p. A dditionally , � 1
ih = � 2

ih pro vided that a

knot that b elongs to spline(p) is also a v ertex in b oth � 1
ih and � 2

ih . Again, this idea can

b e represen ted in the next diagram

F rom no w on w e ma y refer to � 1
ih = � 2

ih simply as � ih . The in terface � ih can b e150

compared to the glue mesh prop osed in [31 ] for SBP �nite di�erences metho ds. In Figs. 4

7



and 5, w e pro vide an illustration of these ideas for the particular case of p = 2 . There,

the no des from the �uid and solid side matc h p erfectly on the in terface whic h is de�ned

b y a common spline of order p. W e also remark ho w the accuracy of the actual geometry

impro v es with increasing order p, in consonance with the order of appro ximation used in155

the spatial discretization.

Figure 4: Non-conforming in terface matc hing through spline in terp olation of order 2. The green dot-

ted curv e represen ts the actual geometry of the in terface, � i . The blue and red lines represen t the

appro ximation of the geometry from the �uid and the solid side, resp ectiv ely .

T w o illustrations of a mesh pro duced b y our non-conforming tec hnique is sho wn in

Fig. 6 for P1- and P2-elemen ts. Note here that b et w een t w o giv en no des of the spline that

builds � ih , they could b e an arbitrary n um b er of elemen ts that b elongs to b oth � 1
ih and

� 2
ih , indep enden t of eac h other. Consequen tly , as an adv an tage in our approac h, there is160

no sp eci�c pattern that geometrically constrains the relation of re�nemen t b et w een � 1
ih

and � 2
ih .

In the next section w e explain the space discretization used and ho w to deal prop erly

with the n umerical in tegration o v er � ih .

5. Discretization in space and algorithmic treatmen t of the non-conforming165

coupling

W e no w in tro duce the �nite-dimensional trial spaces as Qh � Q , and Vh � V , and

test spaces as Wsh � Ws , and Wf h � Wf . F or the sak e of simplicit y w e in tro duce the

follo wing notation

u := uh = ( q; v1; v2)T ;

where

q := qh =
N fX

j =1

qj N f;j ; F = ( f; 0; 0)T ;

v1 := v1h =
N sX

j =1

v1;j Ns;j ; v2 := v2h =
N sX

j =1

v2;j Ns;j ;

8



Figure 5: Detail of the non-conforming in terface: The blue and red curv es (�uid and solid in terface)

are exactly the same, pro duced b y a common spline in terp olation. Both curv es approac h the actual

geometry (green dotted curv e) of the in terface � i with order 2.

and N f and 2Ns represen t the n um b er of degrees of freedom in the �uid and the solid

part, resp ectiv ely . The matrix system asso ciated to problem (5 ) is de�ned as

M
@2u
@t2

+ ( S + C)
@u
@t

+ Ku = F; (10)

whose blo c k matrices of size 2NsN f � 2NsN f are de�ned as

M =

0

@
M f 0 0
0 M s1 0
0 0 M s2

1

A ; S =

0

@
Sf 0 0
0 Ss11 Ss12

0 Ss21 Ss22

1

A ;

C =

0

@
0 Cf;s 1 Cf;s 2

Cs1;f 0 0
Cs2;f 0 0

1

A ; K =

0

@
K f 0 0
0 K s11 K s12

0 K s21 K s22

1

A : (11)

Regarding the �uid equations, the mass ( M ), sti�ness ( F ) and absorbing ( S ) matrices

and v ector en tries are giv en comp onen t-wise as

(M f ) ij =
Z


 fh

� � 1
f c� 2

F N f;i N f;j d
 ; (Sf ) ij =
Z

� fh

� � 1
f c� 1

F N f;i N f;j d� ;

(K f ) ij =
Z


 fh

� � 1
f

�
@Nf;i

@x1

@Nf;j

@x1
+

@Nf;i

@x2

@Nf;j

@x2

�
d
 ; (F ) i =

Z


 fh

fN f;i d
 ;

9



(a) P1-elemen ts

(b) P2-elemen ts

Figure 6: Illustration of a non-conforming mesh pro duced b y our tec hnique for linear and curv ed elemen ts,

zo oming in on the coupling part. No sp eci�c pattern of re�nemen t b et w een the t w o domains is imp osed.

whereas for the solid equations, as

(M s11) ij =
Z


 sh

� sNs;i Ns;j d
 ; (M s22) ij =
Z


 sh

� sNs;i Ns;j d
 ;

(Ss11) ij =
Z

� sh

� s(cP n2
s1 + cS n2

s2)Ns;i Ns;j d� ; (Ss12) ij =
Z

� sh

� s(cP � cS )ns1ns2Ns;i Ns;j d� ;

(Ss21) ij =
Z

� sh

� s(cP � cS )ns1ns2Ns;i Ns;j d� ; (Ss22) ij =
Z

� sh

� s(cP n2
s2 + cS n2

s1)Ns;i Ns;j d� ;

(K s11) ij =
Z


 sh

�
@Ns;i

@x1

@Ns;j

@x1
+ 2 �

�
@Ns;i

@x1

@Ns;j

@x1
+

1
2

@Ns;i

@x2

@Ns;j

@x2

�
d
 ;

(K s12) ij =
Z


 sh

�
@Ns;i

@x1

@Ns;j

@x2
+ �

@Ns;i

@x2

@Ns;j

@x1
d
 ;

(K s21) ij =
Z


 sh

�
@Ns;i

@x2

@Ns;j

@x1
+ �

@Ns;i

@x1

@Ns;j

@x2
d
 ;

(K s22) ij =
Z


 sh

�
@Ns;i

@x2

@Ns;j

@x2
+ 2 �

�
1
2

@Ns;i

@x1

@Ns;j

@x1
+

@Ns;i

@x2

@Ns;j

@x2

�
d
 :

W e use a standard treatmen t to compute the n umerical quadrature, but it useful to

detail ho w w e o v ercome the tec hnical di�culties related to our non-conforming coupling

tec hnique. These in tegrals app ear in the coupling matrices ( C ) and are giv en comp onen t-

wise as follo ws

(Cfs 1) ij = �
Z

� ih

ns1N f;i Ns;j d� ; (Cfs 2) ij = �
Z

� ih

ns2N f;i Ns;j d� ;

(Cs1f ) ij = �
Z

� ih

nf 1Ns;i N f;j d� ; (Cs2f ) ij = �
Z

� ih

nf 1Ns;i N f;j d� : (12)

As sho wn in Fig. 7 , from the algorithmic p oin t of view there are four sp ecial cases that

m ust b e considered in order to determine prop erly the limits of in tegration p erformed

o v er a giv en in tersection of t w o giv en edges (sho wn in red). Let us consider that along

� ih , there are nf edges from the �uid side and ns edges from the solid side. Let ef
l and170

10



Figure 7: The four p ossible scenarios to deal with the n umerical quadrature in our non-conforming

tec hnique.

es
m denote resp ectiv ely , a particular edge from the �uid and the solid along � ih , so that

� ih = [ n f

l =1 ef
l = [ n s

m =1 es
m . Ob viously � ih = [ n f

l =1 [ n s
m =1

�
ef

l \ es
m

�
. T o �x the ideas, let

us consider without loss of generalit y the follo wing represen tativ e in tegral from (12 ),

Z

ef
l \ es

m

N f;a Ns;b d� ; (13)

o v er the curv ed determined b y ef
l \ es

m , as illustrated in red in Fig. 8 (corresp onding to

the fourth case in Fig. 7 ). W e denote b y kf
1 the �uid elemen t whose in terfacial edge is175

ef
l and b y ks

2 the solid elemen t whose in terfacial edge is es
m .

Figure 8: Illustration of the n umerical quadrature p erformed o v er the in tersection of t w o edges, ef
l \ es

m ,

where ef
l 2 k f

1 and es
m 2 ks

2 .

Let us for instance assume that w e compute the in tegral �from the �uid side�, i.e. b y

using the map Fk f
1

that transforms the reference elemen t k̂f
1 in to the �uid elemen t kf

1 . The

di�cult y in ev aluating suc h in tegral comes from the fact that, while the shap e function

N f;a can b e easily ev aluated, the ev aluation of the shap e function Ns;b from the solid side

is m uc h more tedious. T o illustrate this, it is necessary to in tro duce additional notation

related to the parametric space. Regarding the co ordinates, w e de�ne a (non-linear)

map x = ( x(�; � ); y(�; � )) = Fk f
1
(�; � ) from the parametric space in k̂ �with � 2 [0; 1]

11



and � 2 [0; 1 � � ]�to the ph ysical space in kf
1 , giv en b y

Fk f
1
(�; � ) =

n
k f

1X

i =1

x k f
1 ;i N̂ f;i (�; � );

where nk f
1

is the n um b er of Lagrange shap e functions de�ned on kf
1 whic h ob viously

dep ends on p, N̂ f;i is the i -th Lagrange shap e function of degree p on the reference elemen t

k̂f
1 and x k f

1 ;i represen ts the ph ysical co ordinate of the degree of freedom asso ciated to

the i -th Lagrange shap e function. Since our in tegral is p erformed o v er a particular

edge of kf
1 , ef

l (sp eci�cally , o v er the in tersection with es
m ), w e in tro duce a bijectiv e

parameterization r f
el

: [0; 1] ! ef
l of ef

l . The function can b e easily constructed with

the aid of an auxiliary function (� êf
k 1

(t f ); � êf
k 1

(t f )) = � (t f ) suc h that � (t f ) = ( t f ; 0),

� (t f ) = (1 � t f ; t f ) or � (t f ) = (0 ; 1� t f ) , dep ending on the edge that w e are considering.

Then, r f
el

(t f ) = Fk f
1
(� (t f )) and

r f
el

(t f ) =

n
k f

1X

i =1

x k f
1 ;i N̂ f;i (� êf

l
(t f ); � êf

l
(t f )) :

Similarly in the solid side, a bijectiv e parameterization of es
m can b e written as

r s
em

(ts) =

n k s
2X

i =1

x k s
2 ;i N̂s;i (� ês

m
(ts); � ês

m
(ts)) :

No w, let t f
0 and t f

1 b e suc h that r f
el

(t f
0 ) and r f

el
(t f

1 ) giv e the ph ysical endp oin ts of

ef
l \ es

m , 0 � t f
0 � t f

1 � 1.

Figure 9: Diagram of the ev aluation of the shap e function N s;b in the solid side, starting from the

v ariable of in tegration t f
in the �uid side. Ev ery arro w connecting t w o terms implies that the second

one ma y b e obtained from the �rst one. A term o v er the arro w sp eci�es ho w the second term is actually

obtained from the �rst as an argumen t.

With this notation, note that the n umerical in tegration in (13 ) is p erformed in the

�uid side with a in tegration v ariable t f
b et w een end p oin ts t f

0 and t f
1 . The ev aluation of

12



Ns;b from t f
is sc hematically summarized in Fig.9 . Note that the connection b et w een the

�uid side and the solid side is p ossible in our approac h b ecause of the p erfect matc hing

b et w een the t w o sides on � i . In fact,

if ef
l \ es

m 6= ? ) 8 t f 2 [t f
0 ; t f

1 ] 9 ts 2 [0; 1] j r f
el

(t f ) = r s
em

(ts):

Notice, ho w ev er, that w e cannot in general compute the in v erse of the map r (t) if w e

consider curvilinear elemen ts. T o solv e this �nal issue, w e need to consider that, within180

an elemen t, the map r (t) is monotonically increasing in either x - or y -direction. If it is

the case, sa y for x , w e are sure that w e can n umerically determine the ro ot of x � r � 1(t)x ,

as it has m ultiplicit y p and is therefore unique. T o �nd suc h a ro ot n umerically within a

�xed tolerance, a bisection metho d ma y b e used with linear con v ergence.

With the ab o v e notation, the represen tativ e in tegral in (13 ) ma y b e then written in

the reference edge êf
l as

Z t f
1

t f
0

dtf N f;a

�
� êf

l
(t f ); � êf

l
(t f )

�

� Ns;b

�
� ês

m

�
r s� 1

em

�
r f

el

�
t f �� �

; � ês
m

�
r s� 1

em

�
r f

el

�
t f �� ��

�
� �

@x=@tf � 2
+

�
@y=@tf � 2

� 1=2
; (14)

where

r s� 1

em

�
r f

el

�
t f ��

= ts;

and

(x; y) = r f
el

(t f ):

6. Discretization in time and stabilit y analysis185

Regarding the stabilit y analysis w e consider the absence of the source term for con-

v enience, i.e., F = 0 . A t this stage, w e w ould lik e to p oin t out that the family of

Runge-Kutta time-discretization sc hemes ma y w ell deserv e atten tion in a future w ork.

In this pap er w e stic k to the w ell-kno wn Leap-frog sc heme for the discretization in time

of the second deriv ativ e, whereas for the �rst deriv ativ e w e apply cen tral di�erences, to

obtain the follo wing second-order explicit sc heme

M f
qn +1 � 2qn + qn � 1

� t2 + Sf
qn +1 � qn � 1

2� t
+ Cfs

vn +1 � vn � 1

2� t
+ K f qn = 0 : (15)

M s
vn +1 � 2vn + vn � 1

� t2 + Ss
vn +1 � vn � 1

2� t
+ Csf

qn +1 � qn � 1

2� t
+ K svn = 0 ; (16)

Multiplying equations (15 ) and (16 ) b y

qn +1 � qn � 1

2� t and

vn +1 � vn � 1

2� t , resp ectiv ely , sum-

ming them up and using

un +1 � 2un + un � 1 = ( un +1 � un ) � (un � un � 1)
13



and

un +1 � un � 1 = ( un +1 � un ) + ( un � un � 1);

w e �nally obtain the follo wing expression

1
2� t

< M s
vn +1 � vn

� t
;

vn +1 � vn

� t
> � < M s

vn � vn � 1

� t
;

vn � vn � 1

� t
>

+ < S s
vn +1 � vn � 1

2� t
;

vn +1 � vn � 1

2� t
> +

< K svn +1 ; vn > � < K svn ; vn � 1 >
2� t

+
1

2� t
< M f

qn +1 � qn

� t
;

qn +1 � qn

� t
> � < M f

qn � qn � 1

� t
;

qn � qn � 1

� t
>

+ < S f
qn +1 � qn � 1

2� t
;

qn +1 � qn � 1

2� t
> +

< K f qn +1 ; qn > � < K f qn ; qn � 1 >
2� t

= 0 : (17)

No w, a discrete energy can b e in tro duced for v (and similarly for q) as

E i +1
v =

1
2

�
�
�
�

�
�
�
�
vn +1 � vn

� t

�
�
�
�

�
�
�
�

2

+
1
2



M � 1

s K svn +1 ; vn �
; (18)

where the follo wing condition holds (in absence of the source F , whic h v anishes after a

giv en time)

1
� t

(E i +1
v � E i

v ) +
1

� t
(E i +1

q � E i
q) = � < M � 1

s Ss
vn � vn � 1

� t
;

vn � vn � 1

� t
>

� < M � 1
f Sf

qn � qn � 1

� t
;

qn � qn � 1

� t
>;

whic h sho ws, using the p ositivit y of matrices M f , M s , Sf and Ss , that the discrete energy

decreases in time.

Ho w ev er, the term



M � 1

s K svn +1 ; vn
�

presen t in (18 ) do es not guaran tee the p ositivit y

of the discrete energy . Nev ertheless, w e �rst notice that

1
2

�
�
�
�

�
�
�
�
vn +1 � vn

� t

�
�
�
�

�
�
�
�

2

+
1
2

��
M � 1

s K
vn +1 + vn

2
;

vn +1 + vn

2

�
�

� t2

4

�
M � 1

s K s
vn +1 � vn

� t
;

vn +1 � vn

� t

��

= 0 :

De�ning

jjAs jj = sup
v



I s � M � 1

s K sv; v
�

jjvjj2 ;

it holds that

�
I s � M � 1

s K s
vn +1 � vn

� t
;

vn +1 � vn

� t

�
� jj As jj

�
�
�
�

�
�
�
�
vn +1 � vn

� t

�
�
�
�

�
�
�
�

2

;
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and then, the discrete energy satis�es

E i +1
v �

�
I s �

� t2

4
jjAs jj

� �
�
�
�

�
�
�
�
vn +1 � vn

� t

�
�
�
�

�
�
�
�

2

+
�

M � 1
s K s

vn +1 + vn

2
;

vn +1 + vn

2

�
:

A su�cien t condition that ensures the p ositivit y of E i +1
v is therefore

� t2 <
4

jjAs jj
:

In order to go deep er in our analysis, w e consider no w the case of rectangular sub-

domains with a regular mesh consisting of triangles with straigh t sides where square

elemen ts are �rst divided in to t w o triangles. In this setting, the largest eigen v alue of

jjAs jj b eha v es as � s=h2
s , � s dep ending only on the space discretization metho d, and so

� t <
2hsp
� s d

; (19)

where d is the dimension of the domain 
 . Similarly for q, w e obtain

� t <
2hfp
� f d

; (20)

and th us the �nal CFL condition for our coupled problem reads

� t < min

 
2hfp
� f d

;
2hsp
� s d

!

: (21)

This sho ws that the coupling do es not p enalize the CFL condition.

On the other hand, considering the sti�ness terms implicitly , i.e.

K f q(n� t) �
1
2

K f (qn +1 + qn � 1)

and

K s v(n� t) �
1
2

K s(vn +1 + vn � 1)

in (15 ) and (16 ), similar calculations lead us to an unconditional stable and conserv ativ e

sc heme where the discrete energy satis�es:

E i +1
v =

1
2

�
�
�
�

�
�
�
�
vn +1 � vn

� t

�
�
�
�

�
�
�
�

2

+
1
2



M � 1

s K svn +1 ; vn +1 �
+

1
2



M � 1

s K svn ; vn �
:

Notice that this implicit sc heme do es not in tro duce an y additional computational190

cost with resp ect to the explicit sc heme, as it also in v olv es only one matrix factorization

op eration. Moreo v er, the sparsit y structure of the matrix to b e in v erted remains the

same and so do es, consequen tly , the cost of the factorization for a giv en direct solv er

used.
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7. Numerical results195

In this section w e �rst consider a classical reference problem found in ([17 ]) in order

to v alidate our metho d, b oth in terms of accuracy and �exibilit y . An illustration of the

domain of this problem 
 = 
 f [ 
 s is giv en in Fig. 10 , whose in terface � i is de�ned b y

means of a sin usoid. The size of the rectangular domain 
 is 64 km � 48 km, where the

origin of the co ordinate system is placed at the lo w er left corner of the domain.200

The equations and b oundary conditions imp osed are those in tro duced previously in

(1 ).The parameters in the acoustic domain are giv en b y � f = 1020 kg m

� 3
, for the

densit y of the homogeneous material, and cF = 1500 m s

� 1
for the P -w a v e sp eed. In

elastic medium, w e �x the material densit y to � s = 2500 kg m

� 3
, whereas cP = 3400 m

s

� 1
and cS = cP =

p
3 for the P - and S -w a v e sp eeds, resp ectiv ely . The p oin t source time205

function based on a Ric k er w a v elet is lo cated in the �uid domain at x0 = [29:0833; 31],

with a dominan t frequency of 10 Hz. On the other hand, a set of receiv ers used to

register seismograms are placed in b oth sub domains: in the �uid part, receiv ers r f
i are

lo cated at [32 + 2:2i; 33], for i = 0 ; :::; 10; whereas in the solid part, receiv ers r s
i are

lo cated at [32 + 2:2i; 15], for i = 0 ; :::; 10. The smallest elemen ts of the computational210

mesh are lo cated in the �uid side and ha v e a c haracteristic length ab out h = 12:5 m,

whereas the c haracteristic length for the elemen ts in the solid side is h = 25 m. As

for the discretization in time, the implicit second-order Leap-frog sc heme presen ted in

Sec. 6 is used. Regarding the details of implemen tation, w e p oin t out that our co de

Figure 10: Illustration of the domain of the problem with a sin usoidal in terface. The p oin t source lo cated

at x 0 = [29 :0833; 31] is lab eled as ' � '. In �uid part, receiv ers r f
i are lo cated at [32 + 2 :2i; 33], whereas

in the solid part, at [32 + 2 :2i; 15], for i = 0 ; :::; 10.

has b een completely written in C=C + + , where the MUMPS [32 ] pac k age is emplo y ed215

for solving the corresp onding linear algebraic system. An imp ortan t building blo c k that

has also b een dev elop ed consists of a mesh loader for meshes generated b y Gmsh [33 ],

suitable for arbitrary high-order triangle elemen ts. In order to compare the results of our

metho d with those pro vided in [17 ], where the authors used the Sp ectral FEM, w e sho w
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t w o snapshots in �gures 12 and 13 , exactly at the same times, t = 0 :87 and t = 1 :57,220

resp ectiv ely . The coincidence of b oth metho ds is remark able and all c haracteristic w a v es

are iden ti�ed in b oth domains as exp ected. In Fig.11 w e sho w the seismogram registered

at receiv er r f
0 , lo cated at [32; 15]. Once the signal emitted from the source passes through

it, the rest of the signal registered comes from b oth the free condition imp osed on top of

the �uid domain and the n umerical re�ections due to the �rst order absorbing b oundary225

conditions imp osed. In order to v alidate further the accuracy of the n umerical solutions

0 2 4 6 8 10
t

-2e+05

-1.5e+05

-1e+05

-50000

0

50000

|| 
u 

||

0.2 0.4 0.6 0.8

-1e+05

-50000

0

50000

Figure 11: Seismogram recorder at receiv er r f
0 . The inner plot represen ts a zo om from t = 0 to t = 0 :92,

where it is re�ected the source signal passing through, without re�ections.

pro vided b y our metho d, w e ha v e computed this same seismogram on an extremely

�ne conforming mesh and used it as a reference solution. In the next table w e rep ort

n umerical errors in the L 2� norm obtained when using coarser non-conforming meshes

with c haracteristic length giv en b y h , for p = 1 and p = 2 , ac hieving the exp ected rates230

of con v ergence.

h
L 2� error

P� 1 P� 2

12:5 0.06039971 0.000081702

25 0.53659014 0.004501854

50 4.50163058 0.342980559

100 31.34660553 26.12291773
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Figure 12: Snapshot of the reference test at time t = 0 :87 secs.

Let us no w v alidate the theoretical con v ergence of our metho d. In classical FEM, the

follo wing relativ e H 1
error computed along the time

eh :=
jju(�; �) � uh jjL 2 (0 ;T ;
)

jju(�; �)jjL 2 (0 ;T ;
)

is dominated b y hp+1
, where h is the c haracteristic mesh size and p the order of the space

discretization. In �gures 14 and 15, w e sho w the n umerical con v ergence in log-log scale,

ac hiev ed b y our metho d for the classical reference test describ ed ab o v e, v alidating the235

theoretical estimates. In b oth cases, a v ery �ne n umerical solution using a conforming

mesh has b een computed and considered as a reference solution, since no analytical solu-

tion is a v ailable for this test problem. Note that the con v ergence rate rep orted is sligh tly

b etter than the theoretical estimates just b ecause the meshes used are unstructured. In

the case p = 2 , w e observ e a regime where the con v ergence is actually of order p + 1 , as240

exp ected. Clearly for p > 1, for small enough h the dominan t error will ev en tually b e

asso ciated to the time discretization error of the Leap-frog sc heme considered whic h is

of second-order.

No w, w e analyze the e�ciency of our non-conforming approac h. Let  c denote the

total n um b er of degrees of freedom presen t in a problem with a conforming mesh (note

the fact that in the elastic media there are t w o degrees of freedom p er no de). T o �x the

ideas, let supp ose that the solid side requires a �ner mesh discretization than the �uid

side. Ob viously , in the conforming case the domain with the �nest mesh induces in the

other domain a �ner mesh than necessary . F or this reason, for the same problem it is

clear that the total n um b er of degrees of freedom with our non-conforming tec hnique,

 n , is suc h that  n <  c . With this notation, w e de�ne the e�ciency factor � as the gain

of our non-conforming tec hnique,

� := 1 �
 n

 c
; (22)
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Figure 13: Snapshot of the reference test at time t = 1 :57 secs.

ranging from 0 to 1, i.e., from minim um to maxim um e�ciency . This e�ciency dep ends

on sev eral v alues, suc h as the ph ysical dimension of the problem, d, the ratio b et w een the

size of the domain with the coarser mesh with resp ect to the size of the whole domain,

j

�ner

j=j
 j , and the ratio b et w een the t ypical linear size of the mesh discretization in

b oth domains, � h = hf =hs . With those de�nitions, w e are able to b e more precise ab out

the form ula in (22 ) for the e�ciency in (22 ), claiming that

� := 1 �
 n

 c
' 1 �  � 1

c

�
j


�ner

j
j
 j

 c +
j


coarser

j
j
 j

1
� d

h

 c

�
; (23)

Let us consider a concrete problem of reference to v alidate this estimation. As b efore, w e

consider a t w o-dimensional rectangular domain 
 = 
 f [ 
 s , with 
 = [0 ; 64] � [0; 48],


 s = [0 ; 64] � [0; 24] and 
 f = [0 ; 64] � [24; 48], so that j
 s j = j
 f j = 1=2j
 j . Let

supp ose that w e ha v e a ratio of discretization 2 : 1 b et w een the t w o sub domains, i.e.,

� h = hf =hs = 2hs=hs = 2 . Th us, using all these v alues and form ula (23 ), w e exp ect to

obtain the follo wing e�ciency for this problem

� p ' 1 �  � 1
c

�
1
2

 c +
1
2

1
4

 c

�
= 0 :375: (24)

Therefore, w e estimate to sa v e 37:5% of degrees of freedom for this problem with our

non-conforming metho d. In T able 7 w e rep ort the n umerical results obtained, for sev eral245

mesh discretizations c haracterized b y h . F or eac h h -v alue considered, w e compare  n

v ersus  c , and pro vide the e�ciency obtained for eac h case as a function of h , � p(h) .

Note the go o d agreemen t b et w een the n umerical v alues of � p(h) and theoretical estimate

� p = 0 :375.
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Figure 14: Con v ergence results for P 1-elemen ts in log-log scale.

h
Degrees of freedom

� p(h)
 n (hs = hf = h)  c(2hs = hf = h)

6:25 2,663 4,290 0.38461

12:5 10,832 16,802 0.38425

25 40,994 66,498 0.38353

50 162,914 264,578 0.38209

100 649,538 1,055,490 0.37925

Theoretical: � p = 0 :375

250

No w w e insp ect the memory consumption related to the computational mesh as w ell

as the computational time. In case of a ratio 4 : 1, the estimated e�ciency is � p = 0 :4,

whic h means that the amoun t of memory asso ciated to the mesh m ust b e reduced nearly

b y 44; 4% with resp ect to the conforming mesh. In T able 7 w e v alidate this estimation

for the same problem as b efore, where it is sho wn that our non-conforming metho d near255

halv es the amoun t of memory consumption for sev eral h -v alues considered, as exp ected.

Note also the signi�can t reduction of the computational time rep orted in the same table,

for a sim ulation with �nal time Tend = 2 :5 seconds and time step � t = 10 � 3
seconds.

Note that w e are relativ ely sa ving more computational time than memory . This b eha vior

is explained b y the fact that the computational cost of MUMPS for b oth the factorization260

of the matrix and solving for the RHS, gro ws faster than linearly with resp ect to the

n um b er of unkno wns. In this p oin t it is w orth men tioning that, despite the sa vings

resp ect to the n um b er of elemen ts b y our tec hnique ma y b e similar to those ac hiev ed

b y other non-conforming tec hniques, the latter in tro duce either additional degrees of

freedom (as in Mortar-metho ds, for example) and/or additional parameters to con trol265
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Figure 15: Con v ergence results for P 2-elemen ts in log-log scale in log-log scale.

the accuracy (as in [27 , 28 , 29 ]).

h
Memory size (MB) Time (s)

Non-confor. Confor. Sa v ed Non-confor. Confor. Sa v ed

6:25 63 122 48.4% 3973 5036 58.4%

12:5 16 30 46.7% 652 911 56.5%

25 3.7 7 47.1% 154 207 57.3%

Theoretical: � p = 0 :4

Coupling mor e than two layers: the ac oustic-ac oustic and ac oustic-elastic c ase

Finally , w e sho w ho w the metho d p erforms under more complicated con�gurations,

when more than t w o di�eren t media are considered. T o describ e our strategy , w e consider

here that the �uid domain 
 f is divided in t w o sub-domains 
 a and 
 w (the air and

the w ater for instance) suc h that 
 f = 
 a [ 
 f . Note that the metho dology can b e

extended without di�cult y to the solid and to more than t w o domains. Denoting the

pressure unkno wn b y qa = qj 
 a in the air la y er and b y qw = qj 
 w in the w ater la y er, the

t w o con tin uit y conditions to b e imp osed at their coupling in terface � aw = 
 a \ 
 w are

qa = qw ; (25)

and

r
1
� a

qa � n =
1

� w
r qw � n: (26)
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Di�eren tly than in the acoustic-elastic coupling case, the �rst condition cannot b e nat-

urally imp osed in the w eak form ulation. One p ossibilit y to circum v en t this problem

consists of in tro ducing Lagrange m ultiply ers. Ho w ev er, w e prefer to c hose a Discon tin u-

ous Galerkin (DG)-lik e form ulation instead, whic h is easier to implemen t in our metho d.

Among the family of DG metho ds, w e ha v e based our solution metho dology on the w ell-

kno wn In terior P enalt y DG metho d (IPDG) [34 , 35 , 36 , 37]. W e prop ose here to use

con tin uous �nite elemen t in eac h sub domains and to couple the t w o sub domains using

IPDG metho d. Th us, w e searc h for solution q 2 L 2(
 f ) suc h that qa = qj 
 a 2 H 1(
 a)
and qw = qj 
 w 2 H 1(
 w ) . In this case, the w eak form ulation corresp onding to the

t w o acoustic unkno wns on eac h media and at their coupling in terface reads as follo ws:

8t 2 (0; T], �nd qa = qa(t) 2 Qa and qw = qw (t) 2 Qw suc h that

Z


 a

� � 1
a c� 2

a
@2qa

@t2
wa d
 +

Z


 a

� � 1
a r qa � r wa d


+
Z


 w

� � 1
w c� 2

w
@2qw

@t2
ww d
 +

Z


 w

� � 1
w r qw � r ww d


�
Z

� aw

1
2

�
1
� a

r qa +
1

� w
r qw

�
(wa � ww ) � naw d�

�
Z

� aw

1
2

(qa � qw )
�

1
� a

r wa +
1

� w
r ww

�
� naw d�

+ 
Z

� aw

(qa � qw ) (wa � ww ) d�

�
Z

� i

@v
@t

� nswf d� =
Z


 f

fw f d
 ; (27)

for all test functions wa 2 Wa and ww 2 Ww , where Qa and Wa are de�ned as b efore

in (7 ) and (9 ) for the �uid media (w e omit here the external b oundaries for the sak e of270

simplicit y). Here, naw denotes the normal v ector from 
 a to 
 w , and  is a p ositiv e

p enalizing co e�cien t that m ust b e large enough in order to ensure the stabilit y of the

metho d, but not to o large in order to not p enalize the CFL condition. A careful analysis

ab out the com bination of our metho d with DG is out of the scop e of this pap er and th us

reserv ed for future w ork. The v ariational equation in the solid remains unc hanged.275

First, w e consider the case of coupling three di�eren t media b y adding an air la y er on

top of the w ater la y er. F or the air la y er, ph ysical parameters are � a = 1 :204 kg m

� 3
for

the densit y and ca = 344 m s

� 1
for the acoustic-w a v e sp eed. Lo cating again the source

in the �uid domain at x0 = [29:0833; 31], t w o snapshots for this test are sho wn in �gures

16 and 17 , corresp onding to ph ysical times t = 1 :4 and t = 2 :6, resp ectiv ely . Notice ho w280

the fron t w a v e emanating from the �uid media is b eing transmitted and re�ected across

the t w o non-conforming couplings, reac hing the three media and b eha ving globally as

exp ected.

As a second example, let us consider a more sophisticated con�guration on whic h the

three la y ers join together, corresp onding for example to the ph ysical situation where the285

shore line region is included. In Figure 18 w e sho w part of the non-conforming mesh used

for this test, emphasizing the region on whic h all the coupling b oundaries meet. The ratio

of p oin ts for the coupling b et w een the �uid and the solid is appro ximately 2:1 (notice

that it is not estrict), b et w een the air and the �uid 2:1 as w ell, and 4:1 b et w een the air
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Figure 16: Snapshot of the sim ulation in v olving three di�eren t media, at time t = 1 :4. secs. The upp er

la y er corresp onds to the air acoustic la y er, the middle to the �uid acoustic la y er and the b ottom to the

solid elastic la y er.

and the solid. Once again, lo cating the source in the �uid domain at x0 = [29:0833; 31],290

three snapshots for this test are sho wn in �gures 19, 20 and 21, corresp onding to the

ph ysical times t = 1 :4, t = 2 :1 and t = 3 :6, resp ectiv ely . A t time t = 1 :4, w e illustrate

the momen t after the fron t of the w a v e reac hes the �rst sharp p oin t, b et w een the �uid

and the elastic media. A t time t = 2 :1, the fron t w a v e has already crossed the p oin t on

whic h the three coupling b oundaries in tersect. And �nally , at time t = 3 :6 w e sho w the295

exp ected stable ev olution of the sim ulation, on whic h the fron t w a v e has already reac hed

all junctions and p oin ts of in terest with the exp ected b eha v oir.

8. Conclusions

A new non-conforming n umerical tec hnique has b een in tro duced, in the con text of

high-order Finite Elemen t Metho ds for coupled w a v e propagation problems.300

The adv an tage of this metho d with resp ect to other existing non-conforming tec h-

niques is based on the simplicit y and generalit y of its application, since it is based on

a geometrical adjustmen t b et w een sub domains at its coupling in terface, whic h is done

at a prepro cessing stage when the mesh is built. Another remark able feature of this

metho d is found on the fact that curv ed in terfaces are geometrically appro ximated, in305

consonance, with the same accuracy as that of the �nite elemen t space discretization.

That is to sa y , the metho d resp ects and tak es the maxim um p ossible adv an tage of the

spatial discretization in a natural w a y . This has b een p ossible b y mo deling the geometry

of the in terface with a unique spline, with the goal to pro ject the edges of the elemen ts
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Figure 17: Snapshot of the sim ulation in v olving three di�eren t media, at time t = 2 :6. secs. The upp er

la y er corresp onds to the air acoustic la y er, the middle to the �uid acoustic la y er and the b ottom to the

solid elastic la y er.

adjacen t to the in terface in suc h a w a y that it pro vides a p erfect matc h b et w een the310

coupled domains.

W e ha v e pro v ed the conserv ation of a discrete energy for a second-order, Leap-frog

discretization in time, b oth for explicit and implicit sc hemes. Moreo v er, w e ha v e pro v ed

that our coupling strategy do es not p enalize the CFL condition of the explicit sc heme.

Of course, the study of this metho d with higher-order time sc hemes, in consonance with315

the space discretization, pro vides a direction for future w ork. T o some exten t, coupling

v ery di�eren t meshes, although p ossible, ma y require the use of a lo cal time stepping

metho d. As far as the extension of our metho d to three dimensions, there is no theoretical

di�cult y . The main issues are simply of practical nature, related to the de�nition of t w o

dimensional splines and the computations of the surface in tegrals.320

Our prop osed metho d is arbitrarily high-order in space and its con v ergence has b een

carefully studied. W e ha v e pro vided relev an t n umerical tests and compared the results

with the w ell-established Sp ectral Elemen t Metho d, sho wing an excellen t agreemen t.

Also, w e ha v e sho wn that our non-conforming tec hnique reduces the size of the problem

in v ersely prop ortional to the c haracteristic ratio of the non-conforming coupling, raised325

to the p o w er of the dimension of the problem. This signi�can t result amoun ts to a big

sa ving in terms of memory consumption and computational time (decreasing faster than

linearly with resp ect to the n um b er of unkno wns sa v ed) , a critical asp ect in the con text

of large scale w a v e propagation problems.

Another remark able feature of this metho d is found on its suitabilit y to b e extended330

to an y metho dology based on the Finite Elemen t Metho d. In the particular case of the

Sp ectral Elemen t Metho d, widely used in geoph ysical applications, no extra w ork has to
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Figure 18: Illustration of the non-conforming mesh used in the case of a three la y ers sim ulation including

the shore line region, zo oming in on the p oin t on whic h the coupling b oundaries in tersect.

b e in tro duced once the coupling stage is completed. The same argumen t applies for the

family of Discon tin uous Galerkin metho ds and Isogeometric Analysis. In terestingly , as it

o ccurs in Mortar-metho ds, the use of Discon tin uous Galerkin metho ds in our prop osed335

tec hnique (as w e ha v e sho wn for the case of coupling t w o acoustics media) allo ws to

obtain algebraic blo c k systems. This feature will certainly b e w orth in v estigating further

for building e�cien t solv ers for v ery large systems and parallel computations.

Finally , w e remark the general applicabilit y of this non-conforming tec hnique to an y

m ultiph ysics, m ultiscale phenomena form ulated as a coupled problem.340
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