B. He, J. Zempel, A. Snyder, and M. Raichle, The Temporal Structures and Functional Significance of Scale-free Brain Activity, Neuron, vol.66, issue.3, pp.353-369, 2010.
DOI : 10.1016/j.neuron.2010.04.020

B. Weiss, Spatio-temporal analysis of monofractal and multifractal properties of the human sleep EEG, Journal of Neuroscience Methods, vol.185, issue.1, pp.116-124, 2009.
DOI : 10.1016/j.jneumeth.2009.07.027

B. He, Scale-Free Properties of the Functional Magnetic Resonance Imaging Signal during Rest and Task, Journal of Neuroscience, vol.31, issue.39, pp.13786-13795, 2011.
DOI : 10.1523/JNEUROSCI.2111-11.2011

P. Ciuciu, G. Varoquaux, P. Abry, S. Sadaghiani, and A. Kleinschmidt, Scale-free and multifractal time dynamics of fMRI signals during rest and task, Front Phys, 2012.
DOI : 10.3389/fphys.2012.00186

URL : https://hal.archives-ouvertes.fr/hal-00852175

K. Linkenkaer-hansen, V. Nikouline, J. Palva, and R. Ilmoniemi, « Long-range temporal correlations and scaling behavior in human brain oscillations, J Neurosci, vol.21, pp.1370-77, 2001.

N. Zilber, P. Ciuciu, P. Abry, and V. Van-wassenhove, « Learninginduced modulation of scale-free properties of brain activity measured with MEG, 10th IEEE ISBI, pp.998-1001

C. Lewis, Learning sculpts the spontaneous activity of the resting human brain, Proceedings of the National Academy of Sciences, vol.106, issue.41, pp.17558-17563, 2009.
DOI : 10.1073/pnas.0902455106

N. Zilber, P. Ciuciu, A. Gramfort, and V. Van-wassenhove, Supramodal processing optimizes visual perceptual learning and plasticity, Supramodal processing optimizes visual perceptual learning and plasticity, pp.32-46, 2014.
DOI : 10.1016/j.neuroimage.2014.02.017

URL : https://hal.archives-ouvertes.fr/hal-01084251

A. Gramfort, MEG and EEG data analysis with MNE-Python, Frontiers in Neuroscience, vol.7, pp.446-460, 2014.
DOI : 10.3389/fnins.2013.00267