L. Chaari, F. Forbes, T. Vincent, and P. Ciuciu, Hemodynamic-informed parcellation of fMRI data in a variational joint detection estimation framework, MICCAI'12, pp.180-188, 2012.

B. Thirion, G. Flandin, P. Pinel, A. Roche, P. Ciuciu et al., Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets, Human Brain Mapping, vol.22, issue.8, pp.678-693, 2006.
DOI : 10.1002/hbm.20210

B. Thirion, P. Pinel, A. Tucholka, A. Roche, P. Ciuciu et al., Structural Analysis of fMRI Data Revisited: Improving the Sensitivity and Reliability of fMRI Group Studies, IEEE Transactions on Medical Imaging, vol.26, issue.9, pp.1256-1269, 2007.
DOI : 10.1109/TMI.2007.903226

URL : https://hal.archives-ouvertes.fr/cea-00333747

. Poline, A new representation of fMRI data using anatomo-functional constraints, Proc. 8th HBM, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00615928

T. Vincent, P. Ciuciu, and B. Thirion, Sensitivity analysis of parcellation in the joint detection-estimation of brain activity in fMRI, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro
DOI : 10.1109/ISBI.2008.4541059

Y. Ji, P. Hervé, U. Aickelin, and A. Pitiot, Parcellation of fMRI datasets with ICA and PLS?a data driven approach., " in MICCAI'09, LNCS, vol.5761, pp.984-991, 2009.

S. Badillo, G. Varoquaux, and P. Ciuciu, Hemodynamic Estimation Based on Consensus Clustering, 2013 International Workshop on Pattern Recognition in Neuroimaging, 2013.
DOI : 10.1109/PRNI.2013.61

URL : https://hal.archives-ouvertes.fr/hal-00854621

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar mri, Magnetic Resonance in Medicine, vol.13, issue.4, pp.537-541, 1995.
DOI : 10.1002/mrm.1910340409

V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar, Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms, Human Brain Mapping, vol.2, issue.1, pp.43-53, 2001.
DOI : 10.1002/hbm.1024

R. E. Marcus, A. M. Macleod, A. Z. Snyder, W. J. Powers, D. A. Gusnard et al., A default mode of brain function, Proc. of the National Academy of Sciences, pp.676-682, 2001.

C. F. Beckmann and S. M. Smith, Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging, IEEE Transactions on Medical Imaging, vol.23, issue.2, pp.137-152, 2004.
DOI : 10.1109/TMI.2003.822821

G. Varoquaux, S. Sadaghiani, P. Pinel, A. Kleinschmidt, J. Poline et al., A group model for stable multi-subject ICA on fMRI datasets, NeuroImage, vol.51, issue.1, pp.288-299, 2010.
DOI : 10.1016/j.neuroimage.2010.02.010

URL : https://hal.archives-ouvertes.fr/hal-00489507

G. Varoquaux, A. Gramfort, F. Pedregosa, V. Michel, and B. Thirion, Multi-subject Dictionary Learning to Segment an Atlas of Brain Spontaneous Activity, Info. Process. in Medical Imag, pp.562-573, 2011.
DOI : 10.1007/978-3-642-22092-0_46

URL : https://hal.archives-ouvertes.fr/inria-00588898

G. Varoquaux and R. C. Craddock, Learning and comparing functional connectomes across subjects, NeuroImage, vol.80, pp.405-415, 2013.
DOI : 10.1016/j.neuroimage.2013.04.007

URL : https://hal.archives-ouvertes.fr/hal-00812911

A. Abraham, E. Dohmatob, B. Thirion, D. Samaras, G. Varoquaux et al., Extracting brain regions from rest fMRI with total-variation constrained dictionary learning Hemodynamically informed parcellation of cerebral fMRI data, MICCAI'13 IEEE ICASSP, pp.607-615, 2013.

D. A. Handwerker, J. M. Ollinger, and M. D. Esposito, Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses, NeuroImage, vol.21, issue.4, pp.1639-1651, 2004.
DOI : 10.1016/j.neuroimage.2003.11.029

S. Badillo, T. Vincent, and P. Ciuciu, Group-level impacts of within- and between-subject hemodynamic variability in fMRI, NeuroImage, vol.82, pp.433-448, 2013.
DOI : 10.1016/j.neuroimage.2013.05.100

URL : https://hal.archives-ouvertes.fr/hal-00854481

S. Makni, J. Idier, T. Vincent, B. Thirion, G. Dehaene-lambertz et al., A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI, NeuroImage, vol.41, issue.3, pp.941-969, 2008.
DOI : 10.1016/j.neuroimage.2008.02.017

URL : https://hal.archives-ouvertes.fr/cea-00333624

T. Vincent, L. Risser, and P. Ciuciu, Spatially Adaptive Mixture Modeling for Analysis of fMRI Time Series, IEEE Transactions on Medical Imaging, vol.29, issue.4, pp.1059-1074, 2010.
DOI : 10.1109/TMI.2010.2042064

URL : https://hal.archives-ouvertes.fr/cea-00470594

L. Chaari, T. Vincent, F. Forbes, M. Dojat, and P. Ciuciu, Fast Joint Detection-Estimation of Evoked Brain Activity in Event-Related fMRI Using a Variational Approach, IEEE Transactions on Medical Imaging, vol.32, issue.5, pp.821-837, 2013.
DOI : 10.1109/TMI.2012.2225636

URL : https://hal.archives-ouvertes.fr/inserm-00753873

K. J. Friston, A. P. Holmes, K. J. Worsley, J. P. Poline, C. D. Frith et al., Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping, vol.26, issue.4, pp.189-210, 1994.
DOI : 10.1002/hbm.460020402

L. Chaari, F. Forbes, T. Vincent, M. Dojat, and P. Ciuciu, Variational Solution to the Joint Detection Estimation of Brain Activity in fMRI, MICCAI'11, pp.260-268, 2011.
DOI : 10.1109/TMI.2006.880682

URL : https://hal.archives-ouvertes.fr/inserm-00635384

M. Woolrich, B. Ripley, M. Brady, and S. Smith, Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data, NeuroImage, vol.14, issue.6, pp.1370-1386, 2001.
DOI : 10.1006/nimg.2001.0931

M. Woolrich, M. Jenkinson, J. Brady, and S. Smith, Fully Bayesian Spatio-Temporal Modeling of FMRI Data, IEEE Transactions on Medical Imaging, vol.23, issue.2, pp.213-231, 2004.
DOI : 10.1109/TMI.2003.823065

W. D. Penny, G. Flandin, and N. Trujillo-bareto, Bayesian comparison of spatially regularised general linear models, Human Brain Mapping, vol.5, issue.4, pp.275-293, 2007.
DOI : 10.1002/hbm.20327

W. D. Penny, N. Trujillo-barreto, and K. J. Friston, Bayesian fMRI time series analysis with spatial priors, NeuroImage, vol.24, issue.2, pp.350-362, 2005.
DOI : 10.1016/j.neuroimage.2004.08.034

R. M. Neal and G. E. Hinton, A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants, pp.355-368, 1998.
DOI : 10.1007/978-94-011-5014-9_12

G. Celeux, F. Forbes, and N. Peyrard, EM procedures using mean field-like approximations for Markov model-based image segmentation, Pattern Recognition, vol.36, issue.1, pp.131-144, 2003.
DOI : 10.1016/S0031-3203(02)00027-4

URL : https://hal.archives-ouvertes.fr/inria-00072526

T. Sørensen, A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, Kongelige Danske Videnskabernes Selskab, vol.4, pp.1-34, 1948.

L. Chaari, S. Badillo, T. Vincent, G. Dehaene-lambertz, F. Forbes et al., Hemodynamic-Informed Parcellation of fMRI Data in a Joint Detection Estimation Framework, Tech. Rep, 2015.
DOI : 10.1007/978-3-642-33454-2_23

URL : https://hal.archives-ouvertes.fr/hal-00859388

K. Monzalvo, J. Fluss, C. Billard, S. Dehaene, and G. Dehaene-lambertz, Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status, NeuroImage, vol.61, issue.1, pp.258-274, 2012.
DOI : 10.1016/j.neuroimage.2012.02.035

G. Dehaene-lambertz, L. Hertz-pannier, J. Dubois, S. Mériaux, A. Roche et al., Functional organization of perisylvian activation during presentation of sentences in preverbal infants, Proc. Natl. Acad. Sci. USA, pp.14240-14245, 2006.
DOI : 10.1073/pnas.0606302103

J. Brauer, J. Neumann, and A. D. Friederici, Temporal dynamics of perisylvian activation during language processing in children and adults, NeuroImage, vol.41, issue.4, pp.1484-1492, 2009.
DOI : 10.1016/j.neuroimage.2008.03.027

G. Dehaene-lambertz, L. Hertz-pannier, and J. Dubois, Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants, Trends in Neurosciences, vol.29, issue.7, pp.367-373, 2006.
DOI : 10.1016/j.tins.2006.05.011

P. Ciuciu, S. Sockeel, T. Vincent, and J. Idier, Modelling the neurovascular habituation effect on fMRI time series, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.433-436, 2009.
DOI : 10.1109/ICASSP.2009.4959613

M. Albughdadi, L. Chaari, F. Forbes, J. Tourneret, and P. Ciuciu, Model selection for hemodynamic brain parcellation in fMRI, pp.31-35, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01107475